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†PMMH, UMR 7636 du CNRS, ESPCI, 75005 Paris, France
‡LadHyX, UMR 7646 du CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex, France
§Department Food Science & Technology, Nestle ́ Research Center, 1000 Lausanne 26, Switzerland

ABSTRACT: We investigate the wicking in granular media by
considering layers of grains at the surface of a liquid and discuss the
critical contact angle below which spontaneous impregnation takes
place. This angle is found to be on the order of 55° for
monodisperse layers, significantly smaller than 90°, the threshold
value for penetrating assemblies of tubes. Owing to geometry,
impregnating grains is more demanding than impregnating tubes.
We also consider the additional effects of polydispersity and
pressure on this wetting transition and discuss the corresponding
shift observed for the critical contact angle.

1. INTRODUCTION
The spontaneous invasion of pores by liquids is driven by a
reduction in surface energy. This phenomenon is relevant to
many natural applications such as soil imbibition by rain,1−3 soil
decontamination,4 and plant physiology.5,6 It is also of broad
industrial relevance for oil extraction, civil engineering,7

absorbent consumer goods,8,9 paper and textile design,10,11

and chromatographic12 and microfluidic processes.13 An
important application in the food industry is the reconstitution
of a beverage after the wetting of a dehydrated powder.14

Depending on the field of interest, impregnation can be either
beneficial (food industry) or detrimental (civil engineering).
Figure 1 compares wicking in porous media made of

spherical beads and in a capillary tube. For large contact angles,
there is no wicking (Figure 1a). Impregnation occurs only if the
contact angle is below a critical value: 90° for the capillary tube
(Figure 1b) and a much lower angle for the beads (Figure 1c).
This experiment emphasizes the role of geometry in wicking: a
porous medium made of grains or beads substantially differs
from cylindrical capillaries because the cross-sectional area and
wall orientation vary along the pores. This modifies the
condition of wicking, as also shown for other special porous
media such as wedges15 and microtextures on solid
surfaces.16,17 However, the classical theories for cylindrical
tubes18−20 are still broadly applied to powders.
In the general case of a compact pile of grains, the maximum

penetration height can be computed by appropriately adapting
Jurin’s theory.16 In the same spirit, the classical kinetics of
Lucas21 and Washburn22 can be modified by considering the
effect of the variable cross section of the granular pores on the
viscous dissipation, which generates the rich impregnation
kinetics of layered beads.23,24 In these works, the capillary
driving force is often considered to be constant along the pore
length. Reyssat et al.24 considered, for instance, complete
wetting and included an adjustable parameter in the capillary
term. Fries et al.23 assumed that spontaneous impregnation in

granular beds occurs if the contact angle of the liquid with the
channels is lower than 90°, that is, the condition of pores
having walls parallel to the pore axis. Tsori25 and Czachor26

theoretically studied the capillary penetration in channels of
varying cross section, including sinusoidal capillaries. The
former showed the existence of multiple equilibrium positions,
and the latter predicted the existence of a critical wetting angle
for capillary rise that depends on the sinusoidal wall waviness.
Lago et al.27 discussed the optimal angle for the highest
capillary rise and found θ = 15.4° for compact piles of spherical
grains. Bań et al.28 and Shirtcliffe et al.29 investigated
spontaneous wicking in such piles. They predicted the existence
of a critical contact angle θ★ < 90° for wicking in this geometry
and produced experimental evidence for this result. These
works will be further commented on in sections 4 and 5.
In this article, we report experiments and discuss a model

showing the existence of an acute contact angle above which
the impregnation of a heap of grains can be blocked, as seen in
Figure 1. We also discuss how this critical angle depends on the
polydispersity, hydrostatic forcing, and disorder. These results
can be used either to improve or to block capillary invasion,
depending on the system of interest.

2. EXPERIMENTAL SETUP AND PROTOCOL
The experiment consists of depositing dry silanized grains of glass on
the surface of a liquid bath filling a centimetric transparent cell (Figure
2a). The liquid−grain interface is observed with a camera,
magnification ×2. Our wicking criterion is the detachment of grains
from the interface, which then fall in the bath because of a density ρs =
2450 kg/m3 greater than that of water. Conversely, the liquid does not
penetrate the pile if all the grains remain on the surface.
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The grains are borosilicate glass beads (from Sigmund Lindner) that
are sieved in order to reduce the polydispersity (Figure 2b,c). Several
radii R are used: 25 ± 2, 52 ± 2, 100 ± 5, and 256 ± 13 μm. The glass
beads, initially hydrophilic, are silanized with 1H,1H,2H,2H-perfluoro-
octyltriethoxysilane to be hydrophobic, following the protocol for
fluorination by Qian et al.30 The wetting properties of the system are
tuned by using mixtures of water and ethanol. The ethanol volume
fraction vf in water is controlled by measuring the density of the
mixture, referring to tables in ref 31. The capillary length a = (γ/ρg)1/2

(where γ and ρ are the surface tension and density of the liquid, and g
is the gravity constant) varies from 2.7 mm for deionized water to 1.7
mm for pure ethanol and is always larger than the bead radius.
To measure the contact angle θ, single beads (with R ≪ a) are

placed at the surface of the liquid, and θ is deduced from the distance δ
= R cos θ between the bead center and the liquid interface (inset in
Figure 3). Pictures are taken with a Ricoh GX200 camera through
binoculars at ×20. The position of the liquid−gas interface is
determined by the reflection of the beads on the surface. The contact
angle measurement for each vf is repeated on 10 different beads. The
contact angle θ with deionized water (vf = 0) is 105 ± 5°, and it
decreases to 35 ± 5° for pure ethanol (vf = 1). As reported in Figure 3,
water−ethanol mixtures allow us to obtain intermediate angles, which
continuously decrease from 105 to 35° as vf passes from 0 to 1.

3. EXPERIMENTAL RESULTS
We deposit a uniform layer of dry grains on the surface of a bath of
ethanol fraction vf (Figure 4). A meniscus forms along the cell walls,
which generates the dark zone observed in the figure. The actual
thickness of the powder represents only a few layers of beads (typically
four). Two regimes are observed. In Figure 4a, no beads fall into the

bath, and the pile remains dry. In Figure 4c, beads detach and fall as
the liquid invades the pile. Figure 4b shows the limit of impregnation,

Figure 1. Silanized capillary tube and porous medium made of silanized glass beads placed in contact with various water−ethanol baths, changing the
contact angle θ. (a) No wicking is observed at high contact angles. (b) Wicking in the tube occurs when the contact angle is below 90° but the grains
can remain dry. (c) Spontaneous impregnation in the porous media is observed only below a critical contact angle θ★ that is significantly smaller
than 90°. Scale bars correspond to 5 mm.

Figure 2. (a) Experimental setup and sketch of the wicking criterion. (b) Silanized glass beads of radius R1 = 52 ± 2 μm on the surface of a water−
ethanol bath. (c) Corresponding distribution of bead radii for a sample of 100 beads.

Figure 3. Contact angle θ between silanized glass beads of radius R =
52 μm (red circles) or R = 256 μm (blue triangles) and water−ethanol
mixtures as a function of the ethanol volume fraction vf. The contact
angle can be continuously varied between 105 ± 5° and 35 ± 5° by
increasing the ethanol fraction. The inset shows a typical measurement
of the contact angle on a bead (with R = 256 μm and vf = 0.55). The
dashed line indicates the liquid−air interface.
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where only very few beads fall. The wicking transition occurs for an
ethanol fraction of νf

★ = 0.65 ± 0.03 (for R = 256 μm), which
corresponds to a contact angle of θ★ = 58 ± 7°. θ★ is a critical angle: if
we have θ < θ★, then wicking is observed; if not, then the pile remains
dry. The results for different grain radii are presented in Table 1,
showing that θ★ hardly depends on R for grains smaller than the
capillary length (R≪ a). The highest value of the critical contact angle
corresponds to the largest radius. Because the density ρs of the grain is
significantly larger than the density of the liquid, gravitational
corrections are expected for the experiments with R = 256 μm.

4. MODEL
4.1. Interface Equilibrium. To explain these experiments,

we first consider a single grain at the interface: because the
spheres are denser than the liquid, gravity is balanced by
interfacial forces. Let γ be the surface tension of the liquid; ψ,
the angle between the equatorial plane and the radius that
connects to the contact line; Rc, the curvature of the interface;
and βRc, the length of the liquid−air interface between the bead
and the flat bath (Figure 5a). On a small scale, the angle
between the sphere and the interface must be θ. All of these
angles are linked by the geometrical relationship

ψ θ β π+ − =
2 (1)

Keller32 has shown that the vertical projection of the pressure
forces is equal to the weight of the volume of liquid bounded by
the horizontal free surface of the bath, the wetted surface of the
body, and the vertical cylinder of radius R cos ψ and height ξ =
Rc(1− cos β) (in white below the dashed line in Figure 5a). At
equilibrium, the vertical projection of forces on the body can be
written as a balance between the surface force 2πRγ cosψ sinβ
(corresponding to the weight of the volume in gray in Figure
5a) and an effective weight 4/3πR3gρeff, gathering the buoyancy
and the weight of the sphere. This leads to

β
ρ

γ ψ
ρ
ρ ψ

= =
R g R

a
sin

2

3 cos
2

3 cos

2
eff eff

2

2 (2)

where a = (γ/ρg)1/2 is the capillary length. In our case, the radii
are much smaller than the capillary length, and the ratio of
densities is of order unity. Thus, sin β is small, on the order of
10−2 for R ≈ 100 μm. For θ > 0, we can neglect the effect of the
weight and consider a flat interface as indeed observed in the
experiments (inset in Figure 3). This corresponds to ψ + θ =
π/2. The sphere equator stabilizes at a height δ below the flat
interface (Figure 5b), where δ is given by

δ θ= R cos (3)

4.2. Two-Dimensional Pile. On the basis of the
experimental observation in Figure 2b, we consider a compact
pile of grains (Figure 5c). As the equilibrium previously
discussed is achieved for the first layer, the liquid may reach the
second layer of grains. If it happens, the contact line is no
longer at equilibrium and it will move up into the pile until it
satisfies both a flat interface and a contact angle θ on the

Figure 4. Side views of our experiment for different ethanol volume fractions vf. A pile of grains is deposited at the interface between the bath and air.
The apparent thickness (in black) of the interface comes from the menisci at the edges. Wicking is deduced from the presence of grains falling into
the bath: (a) no impregnation, (b) limiting case, and (c) impregnation. The glass bead radius here is 256 ± 13 μm.

Table 1. Wicking Transition in Terms of the Critical Ethanol
Fraction νf

★ and Corresponding Contact Angle θ★ for
Different Beads of Radius R Smaller than the Capillary
Length a

R (μm) νf
★ θ★ (deg)

25 ± 2 0.73 ± 0.01 53 ± 6
52 ± 2 0.73 ± 0.01 53 ± 6
100 ± 5 0.70 ± 0.01 55 ± 6
256 ± 13 0.65 ± 0.03 58 ± 7

Figure 5. (a) Sphere at a curved interface. (b) Equilibrium state of a
small bead at a liquid−gas interface. (c) Limiting case for the
impregnation in 2-D close packing: the interface is tangent to the
upper spheres. (d) Projection along the plane given by a median of the
base of the tetrahedron and its summit for a 3-D pile. The dashed
circle represents the two other spheres forming the base of the
tetrahedron, out of the plane of the figure.
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second layer. As it did for the first layer, it reaches the next
spheres, and the same mechanism applies: no equilibrium is
possible as long as there are dry grains. Liquid impregnates the
pile, until the last monolayer of grains gets trapped at the
interface. As the liquid rises, lower spheres become surrounded
by liquid and thus detach from the rest of the pile and fall into
the bath, as seen in Figure 4c. Conversely, if the liquid does not
reach the second layer of grains, only the first layer contacts the
liquid and no grain detaches from the interface.
The limit between these two situations corresponds to θ =

θ2D
★ , for which the interface is tangent to the spheres of the
second layer (Figure 5c). The distance between two equatorial
planes is R + δ★, which can also be written by introducing the
angle α between the line linking the centers of the sphere from
different layers with the normal to the first layer (Figure 5c):

δ α+ =★R R2 cos (4)

In the compact 2-D case, the centers of monodisperse grains
form equilateral triangles, which yield α = 30°. Together with
eqs 3 and 4, this provides the value of the critical contact angle
θ2D
★ for impregnating a 2-D pile (assembly of infinite cylinders):

θ = − ≈ °★ arccos( 3 1) 432D (5)

If the contact angle θ is larger than this critical value (and
smaller than 90°), there is a local minimum in the surface
energy of the system: impregnation can be blocked. The system
may not reach its global energy minimum, owing to the
existence of an energy barrier ΔE (per unit length) given by

π γ
θ θ θ θ θ

π
Δ = − + −★ ★E

R2
sin sin ( )cos

(6)

This expression becomes, at leading order in θ − θ★,

π γ
θ
π

θ θΔ = −
★

★E
R2

sin
2

( )2

(7)

For a bead diameter of 2R ≈ 100 μm, the magnitude of the
energy barrier typically is 2RΔE ≈ 10−12 J, which is of course
much larger than the thermal energy.
4.3. Three-Dimensional Geometry. Similar effects are

expected in 3-D, and Shirtcliffe et al.29 used surface free
energies to predict the existence of a critical contact angle of
wicking of 50.73° for a compact pile. We can also obtain this
result using geometrical considerations. In a 3-D compact pile
of spheres, the grains form a tetrahedral network. The
discussion above is still correct as well as eqs 3 and 4, but
the relative position of the successive layers is slightly modified,
leading to a different value of α, now given by sin α = 31/2/3
(Figure 5d). This provides the critical angle for impregnating a
3-D pile, as also proposed by Bań et al.28 and Shirtcliffe et al.:29

θ = − ≈ °★ ⎛
⎝⎜

⎞
⎠⎟arccos

8
3

1 510
(8)

In our experiments, in contrast to previous approaches,28,29

we measure the contact angle directly on the grains, as
discussed in section 1. Moreover, we bring the grains into
contact with the liquid without confinement. Using this
experimental protocol allows us to detect impregnation as it
occurs over a single grain layer, improving the precision of the
measurement. The observed critical contact angles (Table 1)
are indeed close to θ0

★ ≈ 51° yet slightly larger. (An additional
deviation appears when R is greater than 100 μm, revealing the

influence of gravity, which is neglected in the model.) A
different hypothesis can be proposed to explain this small (yet
systematic) difference. (1) Experimentally, wicking is reported
as soon as the first grain detaches. Thus if the actual critical
contact angle θ★ locally differs from θ0

★, our experimental
criterion will determine only the highest possible critical
contact angle. (2) In Figure 2c, one can see that the diameter of
the grains is not perfectly fixed, corresponding to the standard
deviations reported in Table 1. A small polydispersity can
modify the geometry inside the pile so that the local value of
the critical angle θ★ can be different from the monodisperse
value, θ0

★. In section 4, we investigate an elementary case of
polydispersitytwo differently sized piles. (3) The interface
was supposed to be flat, which is not the case if the difference in
pressure through the interface is not negligible. In section 5, we
discuss the effect of pressure for a pile of thickness comparable
to the capillary length. (4) The determination of θ0

★ assumes a
close packing of spherical particles. As discussed in section 6, if
the compactness of the pile is lower or if the particles are
slightly elongated, then defects in the pile can appear,
modifying the wetting transition.

5. POLYDISPERSITY

As observed in Figure 2c, there is a small dispersion of bead
radii. Bań et al. considered a polydisperse packing and
anticipated theoretically that impregnation should be easier
(θ★ should be larger) than in a monodisperse pile, although
they found no difference experimentally.28

The theoretical determination of the critical angle is similar
to the monodisperse case in three dimensions, but the
geometry is modified by the bidispersity of the grains (Figure
6). Equation 3 can now be written for the lower layer:

δ θ= R cos1 (9)

In addition, we have

δ α+ = +R R R( )cos2 1 2 (10)

where α is determined by

α =
+
R

R R
sin

2
3

1

1 2 (11)

Figure 6. Limiting case of impregnation for a bilayer of bidisperse
grains. The dashed circle represents the spheres of the lower layer out
of the plane of the projection.
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Using eqs 9−11, we obtain the critical angle θ★ as a function
of the ratio r = R1/R2 (<1):

θ =
+ − −

★
r

r
cos

1 2 1r
3

2

(12)

If the upper spheres are much larger than the lower ones (r
→ 0), then the critical contact angle goes to 0°. Interestingly,
this equation remains the same if the upper beads are the small
ones (r > 1), and it is valid as long as the upper spheres are
large enough to stand on the lower layer, that is, r < 3 + 2(31/2).
In the monodisperse limit (r → 1), eq 12 gives the same result
as eq 8. Additionally, for a small polydispersity, it yields, to
leading order in (r − 1),

θ θ= + − −★ ★ ⎛
⎝⎜

⎞
⎠⎟ rcos cos 1

6
2

( 1)0
(13)

Because 1 − 61/2/2 is negative, θ★ increases with r and exceeds
θ0
★ for small spheres on large ones (r > 1). This situation is
favorable to wicking and thus should determine the path that is
followed during the wicking of a random bidisperse pile.
Therefore, for applications where wicking has to be guaranteed
or prevented, eq 12 allows us to identify the most stringent
contact angle condition, which has to be met in the most
unfavorable case of local segregation.
To investigate experimentally the effect of polydispersity, we

achieved two layer systems, with each one being formed from
beads of a given size. Combinations of spheres presented in
Table 1 were used to obtain values of r between 0.2 and 2.5. A
monolayer of beads of radius R1 is first placed at the surface of
the bath with a contact angle θ. Then beads of radius R2 are
added one by one (Figure 7a). We observe two regimes,
depending on θ. If θ > θ★, then the beads of radius R2 stay on
the monolayer of beads of radius R1, and no impregnation is
observed (Figure 7b). In contrast, for θ < θ★, beads of radius R2
are wetted and pass partially through the interface between the
beads of the monolayer (Figure 7c). Some R1 beads detach
from the interface and sink into the liquid whereas only the
north pole of the upper sphere remains dry. The measured
critical angle θ★ is very sensitive to the polydispersity of these
elementary piles because it varies from θ★ = 36° for r = 0.2 to
θ★ = 62° for r = 2, as reported in Figure 8. Equation 12 is
coherent with the data, even if the value of the critical contact
angle seems to be slightly underestimated (Figure 8). This
discrepancy may be due to defects in the packing of the base
monolayer, which is investigated in section 6. However, this

experiment emphasizes again how critical the geometry is in the
wicking of grains.
Coming back to the monodisperse experiments of section 1,

the size of the beads slightly varies from one layer to another,
hence modifying the local critical contact angle. The dispersion
of the radius typically yields r ≈ 1.1 (Table 1), which generates
a critical angle θ★ of 52°: polydispersity can explain part of the
difference between the experimental data in Table 1 and the
theoretical value of θ0

★ expected from eq 8.

6. HYDROSTATIC FORCING
Even if the thickness h of the dry pile was set to be as small as
possible in section 2, spheres can be coarse enough to make h
comparable to the capillary length a. In this case, the
hydrostatic pressure plays a role, changing the shape of the
interface between beads and thus the limit for impregnation.
The experiment in Figure 9 shows the influence of the pile
thickness on wicking. On a liquid with a contact angle of θ > θ0

★

(no wicking), we locally feed the surface with beads to increase
the thickness. For h lower than a threshold h★, the pile remains
dry (Figure 9a). As the thickness h reaches h★, a few grains
detach from the interface (Figure 9b). For thicker piles, the dry
powder is impregnated, and many beads fall into the bath
(Figure 9c). The reference h = 0 is taken at the lowest point of
the meniscus in the transparent cell, before any grains are

Figure 7. (a) Setup of the bidisperse experiment. (b) R2 = 256 ± 13 μm beads stay on top of the base monolayer of radius R1 = 52 ± 2 μm. (c) The
same experiment, with a lower contact angle (θ < θ★). The R2 spheres partially pass through the monolayer, and only their top poles remain visible.

Figure 8. Wicking phase diagram for a bidisperse powder in terms of
the contact angle θ versus the ratio of grain radii r = R1/R2. Dots are
data for the critical angle θ★, and the solid line is eq 12. It is found that
the smaller the r value, the easier the wicking.
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added. Figure 10a shows a phase diagram (θ, h) separating dry
and wet states. At a given height h, wicking occurs only if θ is
smaller than a critical value θ★, which increases with h. The two
domains are separated by a line of slope 30 mm/rad for R = 52
μm.
If the grain radius is comparable to a or if there is a pressure

difference ΔP between the liquid and the gas, then the interface
is curved between the beads, as illustrated in Figure 11. The
associated Laplace pressure compensates for the pressure ΔP
and changes the condition for impregnation. The Laplace
equation gives the radius of curvature of the meniscus at
equilibrium (γ/ΔP), where γ is the surface tension of the liquid.

The sign of this curvature is related to the sign of the forcing: a
larger pressure in the liquid helps the impregnation process,
elevating the highest point of the meniscus (Figure 11). The
expression for δ changes, but eq 4 remains correct. If β is the
angle between the meniscus at the contact point with the
sphere and the equatorial plane (Figure 11), we can write

δ θ β γ β= − +
Δ

−R
P

cos( ) (1 cos )
(14)

The distance between the two contact points can be written
as a function of either β or θ − β (Figure 11), which leads to

γ β θ β
Δ

= − −
P

Rsin (1 sin( ))
(15)

To determine β, we can consider a situation close to the flat
meniscus. Assuming β ≪ 1 and a meniscus radius larger than
the grain diameter (RΔP/γ ≪ 1), eq 15 simplifies at leading
order to

β
γ

θ= Δ −R P
(1 sin )

(16)

Hence eq 14 becomes

δ θ
γ

θ= + Δ
R

R P
cos

2
cos

2
2

(17)

As shown in section 3, the critical angle for impregnation
with a flat meniscus is given by cos θ0

★ = δ/R. With a curved
meniscus, the critical contact angle θ★ is the angle θ obtained
from solving eq 17, which yields for leading order

Figure 9. Forced impregnation at an ethanol volume fraction of vf = 0.33 with varying pile thickness h. The contact angle here is θ = 80° ± 5° > θ0
★.

When h is greater than h★, impregnation is observed.

Figure 10. (a) Phase diagram for the thickness h of the pile as a function of the contact angle θ. The dots correspond to the limit between wet and
dry states and thus represent the critical thickness h★ of wicking for beads of radius R = 52 μm. The line is a linear regression of slope 30 mm/rad.
(b) Phase diagram in terms of the normalized thickness of powder and the cosine of the contact angle (for R = 52 μm).

Figure 11. Limit of impregnation with forcing and close up of the
meniscus. Because of the curvature of the meniscus, the liquid reaches
the second layer of grains, and no impregnation would have been
observed with a flat meniscus and the same contact angle.
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θ θ
γ

θ= − Δ★ ★ ★R P
cos cos

2
cos0

2
0

(18)

If the pressure ΔP is negative, which means a higher pressure
in air, then it is harder to impregnate the pile (θ★ < θ0

★): the
liquid has to wet more of the surface to wet the grains.
Conversely, if the pressure is positive, then a liquid with θ larger
than θ0

★ can invade the pile. If the grain radius is comparable to
the capillary length, then the curvature is set by the balance
among the weight of the sphere, the buoyancy, and the surface
tension. Its sign will depend on the balance of the first two
forces: if the spheres are denser than the liquid, then the
curvature is positive and piles of such spheres can be
impregnated at a contact angle higher than θ0

★, as indeed
observed with the largest beads in Table 1.
As seen in Figure 9, the pressure can be imposed

hydrostatically: we have ΔP = ρgh, where h is the depth of
the deepest point of the pile (Figure 9b). According to eq 18,
the cosine of the critical contact angle should be linear in h. A
liquid with a contact angle of θ > θ0

★ invades the powder if h is
higher than a critical value h★ given by

θ θ
θ

=
−★

★

★h
a
R

2 cos cos
cos

2
0

2
0 (19)

where cos θ0
★ = (8/3)

1/2 − 1 (eq 8) and a2 ≈ 3.1 ± 0.1 mm2 (a
quantity almost constant in the tested range of the ethanol
volume fraction). In Figure 10b, the normalized critical height
h★ is observed to decrease as cos θ increases, as predicted by eq
19. However, the experimental value of the slope is −0.6, which
is 1 order of magnitude smaller than the slope predicted by our
model, −2/cos2 θ0★ ≈ −5. This discrepancy might be due to
large errors in both h★ and the contact angle, measured in a
narrow domain of cos θ.

7. ECCENTRICITY AND DEFECTS IN THE PILE

Defects in the packing of the pile may also affect impregnation.
Indeed, the observation of a monolayer of beads (Figure 12)
shows deviations from close packing. The packing depends on
the way that the monolayer is prepared, and defects especially
occur if the liquid does not impregnate a monodisperse pile (θ
> θ★). In this section, we consider as a model defect gaps
between spheres. Typical values for the gap are obtained by
comparing the surface fraction occupied by the spheres to a
compact situation. In 2-D close packing, the surface fraction
occupied by spheres is Φc = π/2(31/2) (Figure 13a). If the
spheres have a gap of 2εR between them, then the compaction
decreases to Φ = Φc/(1 + ε)2 (Figure 13b), so the
dimensionless gap can be expressed as

ε =
Φ
Φ

− 1.c

(20)

From pictures such as those shown in Figure 12, we can
extract the compacness Φ and thus deduce a mean value for ε,
as reported in Table 2. Experimentally, the monolayer has fewer
defects when made on a wicking liquid for a monodisperse pile:
a small excess of grains will be removed by the wicking of the
pile, as described earlier (section 3), leaving only a compact

Figure 12. Compactness of monolayers of grains of radius R and contact angle θ at the surface of water−ethanol solutions. The pictures are taken
from above through binoculars at ×20 magnification.

Figure 13. Surface fraction occupied by spheres at the liquid−air interface: in the triangle, the surface of the grains is πR2/2. In the close-packing case
(a), the total surface is 31/2R2 whereas it is 31/2(1 + ε)2R2 if there is a gap 2εR between spheres (b). As model defects in the first layer of the pile, we
consider gaps 2εR between the grains (c).

Table 2. Estimated Values of the Surface Fraction of Beads
Φ and Average Relative Gap ε Corresponding to the
Different Situations and Radii

R (μm) θ = 45° < θ★ θ = 105° > θ★

52 ± 2 Φ = 0.90, ε = 0.4% Φ = 0.72, ε = 12%
100 ± 5 Φ = 0.87, ε = 2.1% Φ = 0.76, ε = 9.2%
256 ± 13 Φ = 0.86, ε = 2.7% Φ = 0.82, ε = 5.2%
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monolayer. In the polydisperse case and for r > 1, we are in the
opposite situation and thus expect the base monolayer to be
poorly packed.
We focus on the situation favoring wicking, in particular,

when a defect is present in the first layer of grains (Figure 13c).
For a monodisperse pile, eqs 3 and 4 are still correct. In the 3-D
case, because the base of the tetrahedron is loose, as sketched in
Figure 13b, α is given by sin α = 31/2/3(1 + ε). These equations
lead to a modified critical angle function of ε,

θ ε ε= − − −★ ⎛
⎝⎜

⎞
⎠⎟cos

8
3

1
2

1
2

(21)

which becomes, for low ε,

θ θ ε= −★ ★cos cos
2
30

(22)

These equations show that introducing defects into the
packing (ε > 0) tends to increase θ★ so that wicking becomes
less demanding in terms of the contact angle, thus approaching
the classical assumption of θ★ = 90°. Applying eq 22 to the
experimental values of Table 1 leads to estimations of ε in the
monodisperse case: we find that ε = 4% for R = 25 and 52 μm,
ε = 7% for R = 100 μm, and ε = 13% for R = 256 μm. These
results are coherent with the fact that smaller spheres form
more compact layers because of the relatively stronger
interaction of the meniscus (Figure 12c,d).33 These estimations
are, however, slightly higher than observed on monolayers
(Table 2), but the latter values are average quantitites whereas
the experimental protocol is sensitive to larger local values of ε.

8. CONCLUSIONS
To study the wicking in granular media, we carried out
experiments on piles of glass beads at the surface of a bath and
showed the existence of a critical angle θ★ below which wicking
occurs. This angle is significantly smaller than that observed in
capillary tubes (90°), and its value is close to the value expected
from models, around 51°. This critical angle can be modified by
a pressure gradient across the liquid−air interface, defects in the
pile compacity, or the polydispersity of the grains. These effects
can be used in industrial processes to either help or prevent the
wicking of a powder, depending on the field of application.
Moreover, this study emphasizes the crucial role of geometry in
the wicking of ordered powders. More generally, the geometry
of porous media allows one to control the penetration or to
prevent the invasion of this medium by a given liquid, which
permits a wetting liquid to be repelled from a solid surface, as
observed with superoleophobic materials.34
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