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Abstract

The spatio-temporal evolution of the vortex sheet separating two finite-depth layers of immiscible fluids is examined in
the vicinity of threshold when spatially periodic forcing is imposed at the horizontal boundaries. As a result of the Galilean
invariance of the problem, the interface deformation is shown to satisfy a coupled system of evolution equations involving
not only the usual “short-wave” at the critical wavenumber but also a shallow-water “long-wave” associated with the mean
elevation of the interface. The weakly nonlinear model is further studied in the Boussinesq approximation where it reduces to
a forced Klein-Gordon equation. Thus, the secondary Benjamin-Feir instability of nonlinear Stokes wavetrains is analysed
in the absence of forcing. When spatial forcing is reintroduced, the competition between the imposed external length scale
and the natural length scale of the interface is shown analytically to give rise to one-dimensional propagating Sine—Gordon
phase solitons. Numerical simulations of the Klein—-Gordon evolution model fully confirm this prediction and also lead to
the determination of the range of stability of phase solitons.

1. Introduction

In a wide class of dissipative systems, spatially-
periodic structures arise as a result of a primary insta-
bility that develops above a critical value of a control
parameter. Such fully nonlinear structures are them-
selves subjected to secondary instabilities which may
take the form of phase modulations of the primary
patterns, as documented both experimentally and the-
oretically [1-4]. In Rayleigh-Bénard convection for
example, convective rolls can become unstable to lon-
gitudinal phase modulations in a certain range of roll
wavelengths. This instability, associated with the name
of Eckhaus [5], leads to the disappearance of a roll,
an event which brings the periodic pattern back into
a stable domain of parameter space [6,7]. A similar

evolution is also observed in Taylor-Couette flow be-
tween concentric cylinders [8,9].

The same type of secondary instability takes place
in conservative systems such as deep water-gravity
waves, and it is then associated with the name of Ben-
jamin and Feir [10]. In particular it has been shown
that nonlinear plane wavetrains governed by the cu-
bic nonlinear Schrodinger equation are also unstable
to phase modulations. But in contrast to the case of
dissipative systems, the subsequent nonlinear evolu-
tion does not result in an irreversible change to a new
stationary stable pattern. Instead, one observes finite-
amplitude modulations that arise from a periodic ex-
change of energy between a finite number of sideband
modes of the primary wave [11]. This succession
of modulation and demodulation cycles is commonly

0167-2789/95/$09.50 © 1995 Elsevier Science B.V. All rights reserved

S§SDI0167-2789(94)00197-9



334 O. Pouliquen et al. | Physica D 80 (1995) 333-355

known as the Fermi-Pasta-Ulam (FPU) recurrence
phenomenon [12] and it is made possible by the ab-
sence of viscous dissipation. As demonstrated by Stu-
art and Di Prima [13], the Benjamin-Feir and Eck-
haus instabilities correspond to two limiting cases of a
wider class of secondary phase instabilities that arise
within the context of the one-dimensional Ginzburg-
Landau equation.

More fundamentally phase instabilities are inti-
mately related to the continuous translational sym-
metry of the underlying basic system [2,14]. The
spatially periodic pattern naturally breaks this contin-
uous symmetry, but the phase invariance associated
with arbitrary displacements of the pattern is respon-
sible for the existence of a long wavelength neutral
phase mode that can become unstable under certain
conditions.

Continuous translational invariance may also be
broken externally by forcing the system in a spatially
periodic fashion so as to strongly affect the develop-
ment of the phase instabilities. This situation is tan-
tamount to the study of the competition between an
externally imposed length scale and the natural wave-
length of the system. Convection experiments in ne-
matics [15,16] have indicated that spatially periodic
forcing leads to a commensurate-incommensurate
transition [ 17] signaled by the appearance of soliton-
like phase envelopes. The phase dynamics analysis
“a la Kuramoto” developed by Coullet and Repaux
[20], Coullet [18] and Coullet and Huerre [19]
near the threshold of instability provides a satisfac-
tory description of this transition and it manages to
capture the soliton-like phase behavior in the case of
Rayleigh-Bénard convection.

The present theoretical investigation was initially
motivated by recent experimental results on the spa-
tially forced Kelvin-Helmholtz instability performed
in our laboratory [21]. The experiment consists in
creating a uniformly accelerating shear flow by tilting
a long tube filled with two immiscible fluids of dif-
ferent densities [22]. External forcing is produced by
periodically modulating the upper or lower boundary
of the tube with small obstacles. As in the convection
experiments of Lowe and Gollub [15,16], phase soli-
tons are observed as a result of the competition be-

tween the natural wavelength of the interface and the
imposed wavelength. Note, however, that the dynam-
ics of the interface in the Kelvin-Helmholtz experi-
ments are essentially conservative and that the dissi-
pative model in [18,19] is not applicable.

The aim of the present study is therefore to present a
phase dynamics analysis of the effects of spatial forc-
ing on the inviscid evolution of Kelvin—-Helmholtz in-
stability waves, and thereby to demonstrate that wave-
length competition leads to the formation of Sine—
Gordon phase solitons. We restrict our attention to the
case of a vortex sheet separating two uniform streams
of finite depth, a periodic modulation being applied to
the lower boundary.

The one-dimensional amplitude equations govern-
ing the evolution of the interface near instability onset
are outlined in Section 2, detailed calculations being
relegated to Appendix A. The analysis is the extension
of Weissman’s study [23] to the case of finite fluid
layers with periodic forcing. The presence of solid
boundaries at a finite distance leads to long wave-
short wave interactions, the amplitude of nearly neu-
tral interfacial waves being coupled to three additional
large-scale fields: the mean elevation of the interface
and mean corrections to the basic horizontal velocity
in each layer. However, under the Boussinesq approx-
imation, the long wavelength fields become decoupled
from the short wave amplitude and they can be set
equal to zero. The amplitude evolution model is then
reduced to a nonlinear Klein—-Gordon equation which
has been derived in other conservative problems such
as the buckling of elastic shells [24], baroclinic insta-
bility waves [25], or instabilities in slender accretion
disks [26]. The sensitivity of nonlinear plane wave so-
lutions to disturbances of the Benjamin-Feir-Eckhaus
type is examined in Section 3. In the linear analysis,
use is made of the general result obtained by Newton
and Keller [27,28] for a generic form of differential
equations. The corresponding finite-amplitude régime
is then determined by resorting to direct numerical
simulations of the Klein-Gordon equation. Finally, in
Section 4 , it is demonstrated that the phase dynam-
ics of nonlinear plane waves are governed by a Sine-
Gordon equation admitting propagating soliton solu-
tions when spatial forcing is applied. Final remarks
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Fig. 1. Sketch of basic flow.

and comparison with experiments are included in Sec-
tion 5.

2. Amplitude evolution equations

As first proposed by Lord Kelvin in 1871 [29],
we consider the instability of the interface separating
two streams of immiscible inviscid fluids in relative
two-dimensional motion (Fig. 1). All dimensional and
nondimensional quantities are indicated by starred and
unstarred variables respectively. The velocity and den-
sity of the basic flow are uniform in each layer and
denoted by UF, p7 in the lower layer and U3, p3 in the
upper layer, with pf > p3 . Surface tension between
the two fluids is equal to y*. The upper solid bound-
ary at y* = h* is kept plane and horizontal while the
lower boundary is modulated and of the form y* =
—h* +2f* cos(kyx*), where f* and k; characterize
the forcing amplitude and wavenumber respectively.
In the sequel, the forcing amplitude f* will be as-
sumed small so that, at leading order, the basic flow
is indeed unidirectional as depicted in Fig, 1.

This configuration provides a simplified model of
the set-up used in the spatially-forced temporal mixing
layer experiments reported in [21]. As in Weissman
[23], dimensionless variables are defined with respect
to the density scale

P*=pi 4P,

the capillary length scale

,y*
L*=1/——————~,
g*(pi — p3)

and the velocity scale

N AT ) 172
V*=( Y 8 (P P2) ’

Pi+p;

where g* denotes gravity. The flow is then governed by
six dimensionless parameters: the density ratio p; =
pi/p*, the dimensionless depth of the fluid layers
h = h*/L*, the scaled velocities in each layer U;
Ur/Vv*,i = 1,2, the scaled forcing amplitude f
f*/L* and wavenumber ky = k;L*.

A straightforward linear stability analysis of the ba-
sic flow in the absence of forcing leads to the disper-

Il

sion relation:

D(0,k U1, Uz) = - [0+ ik (001 + pUs))”
+p1p2k*(AUN? — (k + K®) tanh(kh) =0, (1)

where o is the complex temporal growth rate of in-
terface deformations of the form & ~ exp (ikx + ot),
k = k*L* being the dimensionless wavenumber and
AU = U, — Uy = (U; ~Uf) /V* the dimension-
less velocity difference [30]. The neutral curve in the
k — AU plane sketched on Fig. 2 is defined by the
condition D, = 0, where D, denotes the derivative of
the dispersion relation with respect to o. Its shape re-
sults from the combination of two stabilizing effects:
the density difference at large wavelengths (small k)
and surface tension at short wavelengths (large k).
The onset of the Kelvin—Helmholtz instability is seen
to take place at a well-defined critical wavenumber &,
above a value AU, of the scaled velocity difference.
This critical point is defined by the relations

D,=D;=0.

As shown in Appendix A, these relations yield a non-
zero value of the critical wavenumber k. as long as
the scaled depth & is larger than v/3. Under this as-
sumption, which will be made throughout, o takes the
specific value

oc=—i(pU, + paUs,) ke s
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Fig. 2. Neutral curve of the Kelvin-Helmholtz instability in the
nondimensional wavenumber-velocity difference plane.

which corresponds to traveling waves of phase speed
equal to p1Uy, + p2Us,.

The objective of this section is to carry out a weakly
nonlinear analysis in the vicinity of the neutral point
ke, AU; when instability waves are forced by the
stationary modulated lower boundary. Resonance be-
tween the neutral wave and the stationary spatial per-
turbation can only occur if both disturbances have
equal propagation velocities, i.e. if the phase velocity
at critical satisfies the condition

PlUlc + szzr =0. (2)

Under this assumption, which will hold in the entire
study, the dispersion relation depends only on the ve-
locity difference AU and no longer on the individual
velocities U; so that one can express (1) in the form
D(o,k,AU) = 0. A complete derivation of the sys-
tem of amplitude equations is given in Appendix A.

Following Weissman [23], we introduce an O(1)
supercriticality parameter A such that

AU = AU, + A 2,

where £ < 1 denotes the order of magnitude of the
interface deformation £(x, t). The interface elevation
is then expanded in the form

E=gtM 426D 4 ST AC NN
with

£V = A(X,T) %% + cc.

The complex amplitude A(X,T) is an unknown func-
tion of the slow space and time variables X and T
defined by

(X,T) =e(x,t),

this particular choice being motivated by the fact that
close to AU,, the linear growth rate is proportional to
(AU — AU,)"/? and the width of the unstable band of
wavenumbers is also of order (AU — AU,)'/2. Note
that the amplitude evolution time scale is O (') and
not O (¢72) as in dissipative systems.

The spatially periodic modulation imposed to the
lower boundary is assumed to be nearly resonant so
that

kf=k.+qe,

where the O(1) parameter g is a measure of the de-
tuning between ky and k.. Finally the strength of the
small forcing amplitude f is chosen in such a way as
to appear at the same order as the anticipated nonlin-
ear term |A|%A in the amplitude equation. The shape
of the lower boundary is therefore taken to be

y=—h+ Rkt 4 cc.

with Fp and g being O(1).

As outlined in Appendix A, in order to obtain a
closed system of amplitude evolution equations one
needs to solve the Laplace equation and associated
boundary and interface conditions to order &3 included.
In contrast to the infinite depth case studied by Weiss-
man [23], the evolution of the carrier wave at k. is
found to be strongly coupled to two large-scale veloc-
ity fields U (X, T) and U»(X,T) in each of the fluid
layers and to the associated large-scale elevation of
the interface H(X,T). These long wavelength fields
are O(&?) and compatibility conditions at O(&?) and
O(&%) lead to the following coupled system:

/) a Uy
<ﬁ+U2fﬁ)H_h§Y‘0’ (3a)
d J U,
— —_ — =0, 3
(8T+U1cax)7'(+hax 0 (3b)

aH (9 9
T (i, L) pas
axX (aTJrszaX) pr2
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d d 3| Al?
+ (3T + Ui, 6X> pih = S——, (3¢)
1. 924 1 3%A )
—EDo—gﬁ + EDkkm =AD,yA + N|A|*A
+Fe™ + 2k2 (p1ULUy + paUsUs) A — RHA.

(3d)

The form of the linear operator appearing in (3d)
reflects the nature of the dispersion relation (1) in the
vicinity of critical. In fact, the constant coefficients
Dgsyy Dgr Dy and Dy multiplying the various linear
terms of (3d) refer to the corresponding derivatives
of the dispersion relation (1) evaluated at k., AU..
Expressions for the coefficients N, R and S of the
various non-linear terms appearing in (3c) and (3d)
and for the scaled forcing amplitude F are given in
Appendix A (Egs. (A.9), (A.16)-(A.19)). Note that
if p1Uy, + p2U,. # 0, the phase velocity at critical
would not be zero and the forcing term on the right-
hand side of (3d) would be absent, since there is no
strong interaction with external forcing, furthermore
an extra term D,;d?A/dXdT would appear on the left-
hand side of (3d) to account for finite group velocities.

The evolution of the large scale fields U, U, and H
is primarily governed by Egs. (3a)—(3c) which can be
recognized as a system of shallow-water wave equa-
tions linearised around the basic flow U;_, U,_. More
specifically, (3a) and (3b) express mass conservation
of the mean flow in each fluid layer whereas (3c) is
a statement of conservation of momentum along the
x-direction. According to the right-hand side of (3c),
the large scale fields are induced by spatial inhomo-
geneities in the amplitude |A(X,T)| of the Kelvin-
Helmholtz wavetrain.

-The evolution of the amplitude A(X,T) associated
with the carrier wavenumber k. is primarily governed
by the forced Klein-Gordon Eq. (3d). The effect of
the prescribed spatially periodic modulation is con-
tained in the driving term Fe'?X. Finite values of the
mean fields U/, U, and H are seen to shift the effec-
tive value of the threshold of instability, as reflected
by the coupling terms involving HA, U1 A and LA on
the right-hand side of (3d).

The simultaneous occurrence of a nearly neutral
mode A(X,T) of finite wavenumber k., and of nearly

neutral modes H(X,T), U (X, T), Us(X,T) at k ~ 0O
is intimately related with the symmetry properties of
the underlying system. More specifically, in the ab-
sence of forcing, the problem under consideration is
not only invariant under arbitrary space translations
x — x + const., but also under Galilean transforma-
tions x — x — Ut. Following the same arguments as
in Coullet and Fauve [ 14], one may therefore expect
a constant velocity field in each layer to also be a neu-
tral mode of the system. In the presence of a density
interface, long wavelength variations U, U, of this
constant velocity field are likely to produce, by mass
conservation, slight modulations H of the surface ele-
vation. Thus the dynamics near threshold involve cou-
pling between a neutral mode of complex amplitude
A(X,T) at wavenumber k. and two long wavelength
neutral modes U (X,T) and Up(X,T) at k ~ Q. The
relationship between the nature of long wave-short
wave interactions at a fluid interface and the invari-
ance properties of the underlying system was initially
identified by Chomaz et al. [31]. An evolution model
closely related to system (3) has recently been ob-
tained by Pavithran and Redekopp [32,33] in the con-
text of Rayleigh-Bénard convection in a horizontal
fluid layer with a free interface. The finite wavenumber
mode is then associated with the convective rolls near
threshold whereas the large-scale field corresponds to
“shallow-water” waves at the interface. In contrast
with the case under consideration here, the dynamics
are strongly dissipative and the time-reversible Klein—-
Gordon operator in (3d) is replaced by a first-order in
time Ginzburg-Landau equation. For other examples
of long wave-short wave interactions at an interface,
the reader is referred to Davey and Stewartson [34],
Djordjevic and Redekopp [35], Ma and Redekopp
[36] and Renardy and Renardy [37] among others.
It should also be emphasized that system (3) is fully
compatible with the result obtained by Weissman [23]
in the case of infinitely deep fluid layers. If one lets
h become infinite in (3) the coefficient S multiplying
the coupling term 8|A|?/dX in (3c) becomes zero as
readily seen from Eq. (A.9) in Appendix A. Thus,
the large-scale field is uncoupled from the evolution
of A and one may assume, without loss of generality,
that Ui (X, T) =Us (X, T) = H(X, T) =0. Finally, the
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forcing coefficient F defined in (A.17) also becomes
zero in the limit A — oo and system (3) then reduces
to the nonlinear Klein-Gordon equation analyzed by
Weissman [23].

It is not the purpose of the present investigation
to pursue in detail the study of the solutions of (3).
Rather, we seek to isolate a subsystem of (3) which is
valid under well-defined conditions and which is ca-
pable of describing, to leading-order, the competition
between the imposed spatially periodic modulations
and the “natural” instability of the interface. As in our
previous work [38], we shall make the Boussinesq ap-
proximation. In the present situation, this assumption
amounts to neglecting density variations except when
they appear multiplying the gravity term. With the
choice of nondimensional parameters adopted here,
the Boussinesq approximation is equivalent to setting
p1 = p2 = 1/2. In such a case, the resonance condition
(2) reduces to U;, = —U,, and the coupling term S
on the right-hand side of (3c) vanishes, as seen from
Eq. (A9) in Appendix A. As before, one may set,
without loss of generality H = U; = U, = 0, but this
time the forcing term remains finite. It can therefore be
concluded that, in the Boussinesq approximation, the
nonlinear evolution of wavepackets, in the presence
of spatially pertodic external modulations, is governed
by the forced Klein—-Gordon equation

1 %A 1. %A
——D. —— 4 _D
2P0 gz T PR

=ADyyA + N|A*A + Fe'™* | (4)

where it is understood that all coefficients are evalu-
ated at p; = pp = 1/2 (cf. Egs. (A.20)-(A.21)).In
therest of the paper we shall restrict our attention to the
study of (4). As stated in the introduction, the Klein-
Gordon equation arises in a wide variety of situations:
buckling of elastic shells [24], baroclinic instability
[25], instability of accretion disks [26], among other
applications. In all the above examples, dissipation is
neglected and the reversible nature of the dynamics
is expressed by the invariance under time reflections
t — —t, thereby accounting for the presence of the
second-order time derivative 3%2A /9T in (4). Note that
a more general form of (4) including a dissipative first

order time derivative term has been considered by El-
phik [39] near a codimension-two bifurcation. Sym-
metry arguments are also helpful in justifying the form
taken by the forcing term [18]. When external peri-
odic modulations of wavenumber k; are introduced,
the continuous translational invariance x — x +const.
is broken and replaced by the discrete translational
symmetry x — x+2n/ky, where n is an integer. For
the complex amplitude A(X,T), the latter is equiva-
lent to the rotational symmetry A — Ae 2"/ The
forcing term in (4) respects this symmetry property
and it is identical to the corresponding term in forced
thermal convection [ 19]. The nonlinear coefficient N
depends on the properties of each basic stream. Un-
der the conditions p1 = p; = 1/2 and U, = —Us,,
one finds N < 0 as shown in Appendix A and this as-
sumption will be made in the remainder of the study.
For simplicity, the following change of variables is in-
troduced:

X—>—1——X, A — +/—NA,

with 4 = AD,y. In terms of these scaled quantities,
evolution Eq. (4) reads

?A  9%A
ar X2
where u is the new supercriticality parameter and F
and g denote the amplitude of the excitation and the
wavenumber misfit respectively.

In order to explore the effect of forcing on the de-
velopment of the instability and to illustrate some of
the theoretical results to be presented in the following
sections, the Klein—-Gordon equation (5) is solved nu-
merically in the case of periodic boundary conditions
A(X+L,T) = A(X,T) onan interval of length L. The
spatial derivative is approximated by centered finite-
differences, and the temporal evolution is incremented
through a second-order predictor-corrector scheme of
time step 8. A mesh of 80 equally spaced points is se-
lected on the periodic interval, which corresponds to
a spatial step 8x = L/80. The accuracy of the numer-
ical scheme and the amount of numerical dissipation

= nA — |A]?A + Fe'?* | (5)
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can be assessed by monitoring the temporal variations
of the total energy

1|04
E= [ |z]|=
TAEE:

~F Re (Ae'in)JdX,

2 1194

2
3| o] - ia+ iar

over the interval L. The conservative Klein-Gordon
Eq. (5) implies

dE _
i
so that E(t) should be conserved. In all the simula-
tions to be presented in the following sections, nu-
merical dissipation defined as AE/E(0Q) = [E(t) —
E(0)1/E(0) does not exceed 3% over the entire du-
ration of a run. The results are usually displayed on
spatio-temporal X —7 diagrams such as in Fig. 4b. The
total normalized interface deformation is then recon-
structed by reintroducing a carrier wave of wavenum-
ber k.. More specifically, level contours of the inter-
face elevation 2Re (A(X,T)e*X) are represented on
a gray scale in the X — T plane, by arbitrarily setting
X=xande=1.

Oa

3. Benjamin-Feir-Eckhaus instability of Stokes
wavetrains

In this section the sideband instability of finite-
amplitude wavetrain solutions of the Klein~Gordon
equation (5) is examined in the absence of spatial
forcing. The analysis is based on Benjamin and Feir’s
pioneering study of sideband instability in deep wa-
ter gravity waves governed by the cubic nonlinear
Schrédinger equation [10]. A similar formalism has
been applied by Eckhaus [5] for dissipative systems
such as convection rolls governed by the Newell-
Whitehead equation [40]. We chose to follow here the
methodology outlined by Newton and Keller [27,28]
for a generalized Klein~Gordon equation with arbi-
trary potential.

Finite-amplitude Stokes solutions of (5) with F =
0 are sought in the form

A(X,T) = QelaX—D) | (6)

Fig. 3. Stability diagram or plane-wave solutions of the
Klein-Gordon equation in the wavenumber ¢- frequency « plane.
Clear regions: stable plane waves; shaded regions: unstable plane
waves; hatched regions: no plane waves (a) u > 0; (b) © <0.

where Q is a real amplitude, w is the frequency and
g the wavenumber. By substituting (6) into (5), the
domain of existence of nonlinear plane waves is found
to be bounded by the hyperbola w? — ¢* = —u in the
g — w plane. As shown on Figs. 3a and b for 4 > 0
and u < O respectively, no plane wave solutions can
be obtained within the hatched areas.

Outside these regions, plane waves exist and their
stability is examined by introducing sideband pertur-
bations ¢(X,T) of wavenumber [ and growth rate o.
The dispersion relation takes the form:

o + [2(2 + QY +40%] o + Biwglo +1*
+2(20%* - 4¢%) =0. (7

The nonlinear Stokes wavetrain of amplitude Q,
wavenumber g and frequency @ will be unstable if
there exists a sideband wavenumber ! with a com-
plex growth rate o of positive real part. Eq. (7) is
solved numerically with respect to ¢ at each point
of the g — @ plane, for all values of the perturbation
wavenumber /. The results are summarized in Figs.
3a,b: nonlinear plane waves are determined to be
unstable within the dotted areas. It can be concluded
that, below critical (u < 0), all existing plane waves
are sideband stable (Fig. 3b). Above critical(u > 0),
there are bands of unstable plane waves as indicated
by the dotted zones in Fig. 3a. Eq. (7) may be solved
analytically in certain cases. Thus, one finds that spa-
tially uniform wavetrains Qe ~**7 are always sideband
stable. By contrast steady patterns Qe’4* which may
exist above critical (x > 0), are seen to be sideband
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stable only in the range of wavenumbers

gl < \/3u (8)

as indicated on Fig. 3a. When |g| > /% u, sideband
wavenumbers [/ such that

1] < V6q% —2u (9

grow exponentially. It is interesting to note that the
stability condition (8) is formally identical to the Eck-
haus stability criterion applicable to steady convection
rolls near threshold [40]. Note also that this sideband
instability sets in at long wavelengthsi.e. [/ < 1, when
q is close to % w as in the classical Eckhaus case.

The finite-amplitude evolution of the secondary
Benjamin-Feir instability may be investigated by
introducing as initial conditions in the numerical
simulations of Eq. (5) a stationary Stokes wavetrain
QeX that is slightly perturbed. More specifically, the
initial state is selected to be

A(X,0) = X [,/ﬂ — i+ ego(X,O)] :
dA _ 9 igX
8T(X’O)_6(9T(X’O) € )

where

@(X, T) = e;t—ilX
2 2
+ (‘7 — 2kl 4+ 4 p— q2) pTtHilX
— 2
Bm—q

is the linearised eigenfunction of sideband wavenum-
ber / and complex growth rate o given by dispersion
relation (7). The perturbation level is chosen to be
& = 1072, When the wavenumber g is within the stable
range |q| < \/%’_,LL, & > 0, perturbations remain negli-
gibly small for all values of /, and a steady sinusoidal
pattern Qe is observed. When the wavenumber qis

in the unstable range |g| > \/%Tu, sideband modes of
wavenumber g+ and g — ! grow in time as shown by
the thin and bold curves in Fig. 4a. In this particular
example, g =1 =27/L and L = 16, u = 0.3, so that
+/ are the only discrete unstable sideband wavenum-
bers satisfying inequality (9). All other harmonics are
stable. As seen from Fig. 4a, both sidebands g + !

and g — [ initially increase exponentially according to
linear theory. However, the ¢ — I mode rapidly domi-
nates and undergoes nearly time-periodic oscillations.
The corresponding spatio-temporal evolution of the
interface elevation ¢ = 2Re (A(X,T)e*¥) is repre-
sented on Fig. 4b with the value k. = 127/L of the
carrier wavenumber. In the transient regime, a spatio-
temporal dislocation is seen to occur, which leads to
the disappearance of a single wave trough and to an
abrupt change of the mean wavenumber from k. + g
to k. + g — I. Beyond this initial phase, the energy
content of all wavenumbers remains constant with the
exception of k. + g and k. 4+ g — [ which experience a
nearly periodic exchange of energy. In physical space
(Fig. 4b), this energy transfer takes the form of pe-
riodic contractions and dilatations of the spatial pat-
tern. As discussed in the introduction, similar finite-
amplitude periodic modulations have been observed
in other conservative systems and they are usually re-
ferred to by the name “FPU recurrence phenomenon”
after Fermi, Pasta and Ulam [12]. For instance, the
long-time nonlinear evolution of deep-water gravity
wavetrains has been shown to exhibit FPU recurrence
within the context of the cubic nonlinear Schrodinger
equation [41]. Such an evolution equation is, inciden-
tally, a pertinent finite-amplitude evolution model in
the stable domain of the £ — AU plane on Fig. 2, as
demonstrated by Weissman [23]. The present results
indicate that FPU dynamics also prevail in the vicinity
of the threshold of instability.

4. Phase dynamics analysis of the Klein—-Gordon
equation

The secondary Benjamin—Feir instability which has
just been investigated both analytically and numeri-
cally falls within the general class of phase instabil-
ities. As emphasized by several authors [2,3,14,18],
particularly in the case of dissipative systems, such in-
stabilities are closely related to the translational sym-
metry x — x + const. of the governing equation. As a
result of this invariance, the complex amplitude is de-
fined up to an arbitrary phase which can be interpreted
as a neutral mode of the system. Slow spatio-temporal
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Fourier Amplitude

U L=16

Fig. 4. Fermi-Pasta-Ulam recurrence in the Klein-Gordon equation.
See Section 2 for the description of initial conditions. u = 0.3,
6x=02,8t=003,g=1=27/L, L =16. (a) Nonlinear time
evolution of the amplitudes of the Benjamin-Feir unstable modes
of respective wavenumber g — / (bold line) and g+ [ (thin line);
(b) Spatio-temporal X —T diagram of the elevation of the interface
& = 2Re [A(X,T)ei"cx] of carrier wavenumber k. = 127 /L.
Darker (lighter) regions indicate the crests (troughs).

modulations of the neutral mode, i.e. phase dynamics,
are likely to be amenable to analytical treatment via
the method of multiple scales. The objective of the
present section is to present such an analysis for the
specific case of the Klein-Gordon equation, both un-
forced and forced. Our primary interest is in the phase
dynamics of stationary plane waves (w = 0) which
have the same wavenumber g as the spatial forcing.
The complex amplitude is written in the form

AX,T) = [Q + p(X,T)] @+, (10)

where p(X,T) and 6(X,T) denote amplitude and
phase perturbations of the steady pattern Qe?X of
wavenumber q and amplitude Q = /u — ¢2. Upon
substituting (10) into the Klein-Gordon equation
with forcing (5), the following system of coupled
equations is obtained for the dynamics of the pertur-
bations p(X,T) and 6(X,T):

3’p AN a’p
o2~ (@+p) ((TT) =u(@+p)+ o0
90 2 2
(@ +p) 5x T4 - (Q+ p)” + Fcos(8),
(1l1a)
%0 90 dp _ 320
(Q+p);;_7‘—2+2ﬁﬁ_(Q+p)5ﬁ
dp [ 30 .
+2ﬁ (a—x +q> — Fsin(8) . (11b)

The cases F =0 and F # 0 are successively exam-
ined in Sections 4.1 and 4.2.

4.1. Free evolution

From the results of Section 2, stationary patterns
are subject to the Benjamin-Feir instability when

their wavenumber ¢ satisfies |g| > \/%Z A weakly-
nonlinear phase dynamics analysis may be carried
out in the vicinity of threshold g. = \/%_;L Let § =

2 — % p < 1 be the small supercriticality paramet¢t
and ¢ < 1 the order of magnitude of the phase per-
turbations !. By exploiting the results of the linear
analysis and the principle of the distinguished limit,
one is led to adopt the following scaling relationships
for &, the slow time scale 7, the slow space scale 7
and the expansion of 8 and p :

S=¢’A, (12a)
r=&T, (12b)
n=e, (12c)

! The parameter & < 1 introduced here should not be confused
whith the small parameter ¢ that defines the order of magnitude
of the primary perturbations in Section 2.
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0=e0; +&60y+--, (12d)
p=p+ep3+---, (12e)

where A, 61, 0, p1, p2, - - - are all O(1) quantities.

One is led, without difficulty from Egs. (11a,b) to
the following Boussinesq equation for the dynamics
of the phase @,(n,7):

9’09,  —3A9%@; 1 3'@; 346, 9°6,
i 2@ g Ap ot g o
q- n q- on* qdn (12)

The properties of this evolution equation will not be
examined here.

4.2. Forced evolution

As shown in [18,19], spatially-periodic forcing
of dissipative systems supporting steady-periodic
patterns may lead to the formation of stationary or
propagating phase solitons. Such objects are produced
in the vicinity of commensurate- incommensurate
transitions [17] resulting from the competition be-
tween an externally imposed length scale and the
intrinsic length scale of the system. The stationary
soliton model [18] has been shown in particular to
adequately describe forced convection experiments in
nematics [15,16]: phase solitons then correspond to
a localized compression of the rolls.

The objective here is to show that phase solitons are
also generated when a conservative system, namely
the Klein-Gordon equation, is spatially-forced. Let
F < 1 denote the weak forcing amplitude. We con-
sider the case of a Benjamin-Feir stable stationary

pattern Qe’?X of wavenumber such that |q] < \/;u
In contrast with the unforced case, there is no restric-
tion imposed on the level of supercriticality. In order
to “catch” the effect of forcing at the same order as the
leading linear terms, the following scaling relations
are introduced:

T=¢T, (13a)
n=egX, (13b)
F=¢F, (13c)
0=0y+eO) +---, (13d)

p=8p1+82p2+"-, (13e)

where F, @y, @1, p1, p> are all of order unity. Note
that phase perturbations are now O(1). System (11)
leads to the following evolution equation for the phase:

20y _ ,3°0y F

=c¢"—— — —sin(&y) ,
P P (6%)
where
2_#“342
¢ = > -

Mm—q

By rescaling the variables as follows:

T—*T\/g, n—»nc\/g, (14)

the phase equation takes the standard form of the Sine-
Gordon equation:

— —sin(6y) . (15)
n

This equation is known to be integrable via the in-
verse scattering transform [42]. In the present con-
text, it is sufficient to note that Eq. (15) admits a
one-parameter family of soliton solutions that may be
written as follows:

6o(n, 7, B) = t4tan™! [exp (%)} ,

(16)

the parameter B being an arbitrary propagation veloc-
ity in the range |8| < 1. As shown in the sketches
of Fig. 5, such kink or antikink solutions correspond
to 427 phase jumps which travel along the positive
or negative n axis. If one reconstructs the total in-
terface deformation by including the carrier wave of
wavenumber ¢, the £27r phase solitons are seen to be
associated with local contractions or dilatations of the
primary periodic structures that propagate along the
interface.

The existence of propagating phase solitons has
only been demonstrated in the phase dynamics ap-
proximation based on the asymptotic scheme (13).
To confirm that the same features prevail in the full
amplitude equation, direct numerical simulations of
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a) : b)

Fig. 5. Sine-Gordon solitons and corresponding interface deforma-
tions. Black vertical segments indicate the periodicity of forcing.
(a) 427 soliton; (b) —24r soliton.

T
36

o L=32

Fig. 6. Spatio-temporal X — T diagram of the elevation of the
interface, calculated from a direct simulation of the Klein-Gordon
equation, with a —27 Sine-Gordon soliton as initial condition
(see Section 3). u =3, 6x =04, 8r=0.012, g=27/L, L=32,
F =0.03, 8 =0.95. The carrier wave at k. = 287z/L has been
reintroduced to reconstruct the total elevation.

the Klein-Gordon equation (5) have been carried out
with the exact form (16) of the soliton chosen as ini-
tial phase distortion for the periodic pattern. As seen
on the spatio-temporal diagram of the interface defor-
mation on Fig. 6, a dilatation soliton is produced and it
travels along the X axis without any noticeable defor-
mation. Thus the phase dynamics analysis is fully cor-
roborated by direct integration of the Klein-Gordon
evolution model.

There remains to determine whether the phase soli-
ton solutions ( 16) are stable or unstable within the re-
stricted one-dimensional setting adopted in the present

1 1 e d e
2 1
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Fig. 7. Stability diagram for a —27r Klein-Gordon soliton in the
forcing wavenumber g-forcing amplitude F plane. p = 3, 8x = 0.4,
B = 0.94. —: stable solitons (no detectable deformation within
the first 8000 time iterations); +: unstable solitons.

investigation. In the notation of Eq. (5) phase soliton
solutions depend on all three parameters u, g and F
and on the velocity parameter 8. In order to determine
their stability numerical simulations of Eq. (5) are un-
dertaken at © = 3 and B = 0.94 for different pairs of
values of g and F with the same type of soliton initial
conditions as before, The stability properties of soli-
tons with a —27 phase jump are summarized on Fig.
7, the + and — symbols indicating stable and unsta-
ble solitons respectively. A soliton is said to be stable
if numerical noise leaves the interface deformations
unchanged over the time interval 7 = 180. It is not
necessary to add any external noise and the results ob-
tained in this manner are not modified if one increases
the duration of the run above 7 = 180.

Negative phase jumps are seen to be all unstable for
negative values of . In such conditions, spatial forcing
of wavenumber k.+q < k. uniformly dilates the peri-
odic pattern below its natural wavenumber k. The cre-
ation at time ¢ = 0 of a —27 phase soliton produces an
additional local enhancement of this dilatation which
the system is incapable of accommodating. As shown
on Fig. 8, a new structure is created which annihilates
the initially imposed ( —27r) phase jump. This nucle-
ation process takes the form of a spatio-temporal dis-
location in the X — T plane. Such a behavior may be
interpreted in terms of the primary instability mecha-
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Fig. 8. Spatio-temporal X — T diagram of the elevation of the in-
terface, calculated from a direct simulation of the Klein-Gordon
equation, with a —27 unstable Sine-Gordon soliton as initial con-
dition (see Section 3). u =2.5, 6x =04, 6t =0.03, g = —27/L,
L =32, F=0.03, 8=0.95. The carrier wave at k. =287 /L has
been reintroduced to reconstruct the total elevation.

nism: stable phase jumps are those which tend to bring
the periodic pattern closer to its “natural” periodicity
k.. By contrast, when g > 0, spatial forcing at k. + ¢
compresses the structures above the wavenumber k..
—27r dilatational phase jumps then have a stabilizing
influence on the pattern since they locally decrease
the wavenumber closer to k.. However, not all —27
phase jumps are stable: when the forcing level F be-
comes too high, the interface is strongly constrained
to follow the imposed wavenumber k. + g and again
the phase jump is annihilated eventhough it produces
a local dilatation.

The stability diagram of 27 compressive phase
jumps is deduced from Fig. 7 by a trivial reflection
around the F axis and the same qualitative arguments
are naturally applicable.

The above reasoning strongly indicates that prop-
agative phase solitons result from the competition
between the natural instability of wavenumber k. and
external spatial forcing of wavenumber ks = k. + q.
When one mechanism dominates over the other, Sine-
Gordon solitons become unstable.

5. Concluding remarks

The main conclusion of the present study can be
stated as follows: when spatially periodic forcing is
imposed to the vortex sheet separating two counter-
moving streams of immiscible fluids, traveling phase
solitons are produced along the interface in the form of
local compressions or dilatations of the basic pattern.
The propagative nature of the solitons is intimately
related to the conservative character of the Kelvin-
Helmholtz instability.

As stated in the introduction, phase solitons have
also been observed in earlier spatially forced tilting
tank experiments [21]: when the forcing wavenum-
ber k; slightly exceeds the natural wavenumber kj, of
the Kelvin-Helmholtz instability, the interface expe-
riences a transition to an incommensurate state which
is first signaled by the appearance of a single phase
soliton, in qualitative agreement with the present the-
ory. However, experimental observations differ from
the predictions of the Sine-Gordon model in two im-
portant respects. First, the observed phase jumps are
stationary over the duration of a run and it has not
been possible to ascribe to them a finite propagation
velocity with any reasonable degree of confidence.
This discrepancy is likely to be due to the highly tran-
sient nature of the experiment which is too brief to
capture the slow evolution times typical of phase dy-
namics. Secondly, —27r phase jumps are created when
ks > k, but we have not succeeded in producing +27
phase jumps when ks < k,, although the theoretical
model does not introduce any bias between 427 and
—27r solitons. Finally, it should be emphasized that the
experiments are performed in the accelerating mode
whereby the tube is kept tilted at a finite angle until
the end of the run. The resulting basic flow is therefore
accelerating with a velocity difference across the inter-
face that increases linearly with time. Consequently,
the experimentally generated basic flow does not re-
main in the vicinity of threshold, in a regime where
the weakly nonlinear analysis developed here is likely
to be directly applicable.

To overcome the latter difficulty, experiments have
recently been undertaken [38] in the constant shear
mode where the tank is returned to its horizontal posi-
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tion beyond an initial accelerating phase. The velocity
difference is therefore approximately constant and it
can be kept close to the threshold value over the du-
ration of the run. It is then found that the presence
of thin diffusive layers on either side of the interface
drastically alters the nature of the primary instability.
The stationary Kelvin-Helmholtz mode predicted by
the vortex sheet model is replaced close to onset by
traveling Holmboe instability waves. The vortex sheet
analysis is consequently no longer valid as shown in
[38].
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Appendix A. Derivation of the amplitude evolution equations

The characteristics of the basic flow sketched on Fig. 1 have been defined at the beginning of Section 2. The
perturbed inviscid two- dimensional flow is irrotational and the pressure field in each layer can be expressed as

follows:

vi* =Ufex + V&,

* k%

Pr=—pig*y* +pl,

where i = 1 (respectively i = 2) refer to the lower (respectively upper) layer, ¢} is the perturbation velocity
potential, p* the perturbation pressure and e, the unit vector along the streamwise direction.

All variables are made nondimensional with respect to the density scale pf + p3, the capillary length scale L*
and the velocity scale V* introduced in Section 2. In terms of nondimensional unstarred field quantities, Laplace’s

equation for the perturbation velocity potentials ¢; reads

¢ I
_..g. + _(li = ()’
ax? dy?

(A.la)

the velocity field and perturbation pressure being related to the perturbation potential through the expressions

vi=Uex + Vi,
d
pi—~<5+v,~-V) &;.

(A.1b)

(A.lc)

At the deformed interface y = £(x, ), one must satisfy the continuity of particle displacement conditions

U,‘\

d .
,')’=f=(5+vi'v)§’ l=1’29
together with the pressure jump condition

y=£ dx

P2 P2lyg — P1 D1l = —€ + )

»

(A.1d)

2 —3/2

(A.le)
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Finally, the impermeability conditions at the upper and lower boundaries take the form

|y, (A1)
dy y=+h
vy - n| =0, (A.1g)

y=—h+2f cos(ksx)
where n is the unit vector normal to the modulated lower wall.

Following classical weakly nonlinear analysis, system (A.1) is solved in the vicinity of the threshold of
instability defined by the critical velocities U;, the critical wavenumber k. and imaginary critical growth rate o.
Exact expressions for these quantities will be given later when we examine the first- order solutions. Supercriticality
parameters A; are introduced such that
Ui=U, + &4,

where £ < 1 is a small parameter. As discussed in Section 2, slow space and time variables (X,T) = e(x, 1) are
defined and all dependent variables are expanded in the form

{1, 7, €} =8{¢§1)’Pi(”~§(1)} 1 &2 {¢§2),p‘(2) g(z)} L& {¢§3)’Pz(3) ‘5(3)} +oen, (A2)

where {quj ), p,-(j ),f(j)} are all of order unity. Finally, the modulated lower wall forces the flow at a nearly
resonant wavenumber ky = k, + ge with an O(&*) amplitude so that its shape is given by
y=—h+2eFycos ((k. + qge)x) .

The misfit parameter ¢ and the normalized forcing amplitude Fy are both O(1).
By substituting expansion (A.2) into the governing equations (A.1) one obtains a sequence of perturbation
problems as outlined below.

Order € problem:

32 2 (1)
(9

A Y

ax?

PV + ( +U, >¢“)=0

o’ (i U, )g(l) _
dy 40 ot “ox

P2 pz(”‘yd) p1 p| )’ + €0 - Zi(zl) =0,
W W,

Solutions of wavenumber k. and imaginary growth rate o, are sought in the form:

EW = AD(X, T) exp(aet + ikex) +c.c.,

¢ = (B (X, TYe™  + (X, T)e*) exp(a.t + ikex) +c.c.,

where A (X, T), BV (X,T) and C" (X, T) are, at this stage, unknown functions of the slow variables X and T.
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By substitution of the assumed solutions into the interface and boundary conditions above, one is led to the
following homogeneous linear system:

4 94 1 0 0 AD AW
k.
0 e ekt 0 0 BV BV
a2 0 0 -1 1 Cl(l) =M Cl(l) =0, (A3)
ke
1 1
0 0 0 ekt _pkt Bz(> ) Bé )
1) (1)
(1+K&2) —pray —pra1 paz praz 3 G
where a; = — (o, + ik U;.). In order to obtain a nontrivial solution, one must set the determinant of the matrix M

equal to zero, which yields the dispersion relation:

D(o¢, ke, Un,, Uy) =0,

where

D(o, k, Uy, Uy) = — [0+ ik(p1Uy + paUn)]” + p1pak®(AUY? — (k+ &) tanh(kh) ,

with AU = U, — U,. The interface response will resonate with the stationary boundary only if one imposes the
zero critical phase velocity condition

—O'C/ikc = p1U1C +[)2UQC =0. (A4)
The other critical parameters U}, U,_ and k. are then completely defined by the conditions
Ds,=D;=0, (A5)

which yields the critical velocity difference

1
(AU)? = (U, - Ulr)2 - (kc + ——) tanh(k.h) ,
P1P2 k.
with k. satisfying:
a 1
— -t kh =0.
(1 man ] =0

The above relation gives a non-zero value of k. only if the scaled height £ satisfies & > /3. This assumption
is made in the sequel. Under these conditions, system (A.3) may be solved for the functions B,-(l) (X,T) and
¢V (X,T) in terms of A (X,T). One obtains:

AN(X,T) a AV (X, T)
BV (x,1) =42 220 pxy = B0 )
S k(1 — eZkehy 2 (XT) ke(1 — e=2kh)y
) a AV(X,T) " a AV (X, T)
XT) = ——r ", T) = ———— .
Cl ( ) kc(e_2kch . 1) C2 (X ) kc(e2kch _ 1)
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It should be emphasized that, in contrast to the case of infinitely deep fluid layers [23], the O(e) solution is
not solely composed of a linearised neutral component of wavenumber k.. In order to satisfy all the compatibility
conditions appearing in higher-order problems, it is necessary, at this stage, to add in each layer an arbitrary
streamwise velocity in the form of unknown real amplitude potentials M fl)(X, T),i=1,2. These complementary
solutions of the linearised problem at zero wavenumber are related to the Galilean invariance of the problem, as
discussed in Section 2. Thus the total @ (&) perturbation is taken to be:

ED = AD(X T) exp(oet + ikex) +c.c.,
0 = MO XT) + [(BO (XD e™ + ¢ (X T)e") exploct + ikex) + cel
p = —ik U (B (X, TYe ™™ + CV (X, T)e") exp(oct + ikex) + c.c.,

where MEI) (X,T), i=1,2, are unknown mean potential functions in the lower and upper fluid respectively.

Order €* problem:

324)(2) (92(]5(2) (92¢(1)
i i i A6
dx? + ay? axoxX ’ (A.6)
2 2
() (1)

@ (2 9\ J N oy _ 1|3 o,

( 40 T VP = [ Z vU =)o — = kit B ,
b +(8t+ "8x> Z <8T+ wax )% T2 ) Ty
ap® ] ] ] a d otV
Wi | (L hp L oo (Lpy, L e L e T ,

dy at + “dx ¢ ar + ‘X £ ox ¢ dx

=0 y=0
2£(2) P (1) P (D) 525(1)

(2)‘ _ (2); 4 _ ¢ — g D, Dy AT
2R NN 4 3 o &V p v | |, PPy (A7)
| Y iy

dy Ty ’
y=h y=—h

The forcing terms on the right-hand side of the above system generate mean, fundamental and second harmonic
components. It is convenient to examine the fundamental contribution of wavenumber k. denoted by the letter
“f” separately and to seek a partial solution of the form

fED = AP (X, T) exp(ikcx) +c.c.,
¢ = [(BR X1 + FP (X T)y) e
+ (C}”(X,T) +HP(X,T) y> e’W] exp(ikex) + c.c..
The mass conservation equation (A.6) implies the following relations:

dB{" m
PO =i (x1), HO(x.1) = %S
120, 4 t X

(X.T).

As a consequence of the interface and boundary conditions, the remaining unknown functions must then satisfy
the linear system:
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A(Z) Zl(2)

B{Z) 22(2)
M Cl(z) = z3(2) )

B§2) Z4(2)

C2(2) 25(2)
where

1(d d i 3BV i ectV

(NI RTINS A BYC D Bl BRI I |
4 kc<aT+ I‘ax> k. 9X |k, oX

1\ .48 1\ acV
(2)= kch k ~ 3 1 —kch k _ . 1
Lo=¢ (”ch)‘ax te ( kc)’ax ’

1(a i 9BV i ac?
@_ 1 A _ LBy 0G|
5 Tk (aTJ“szax) kX Tk X

1 aBs" acyP
(2) —pkeh [ _ _ k . 2 k
4= (kc C)’ X ( +kc> X

oA d
@ i, U (B‘” C“))— S iy (B(l) C“)).
Ty +‘02<(9T+ 2faX> 2 ) e 8T+ ‘“ax e

In order for this system to admit a nontrivial solution, the vector z* must be orthogonal to the kernel of the
adjoint matrix M generated by the vector K such that

1_ p1ay piar Pay p2a; 1
tanh (k.k) ° sinh (k.h) ° tanh (k.h) * sinh (k.h) '

where a bar denotes the complex conjugate. The orthogonality condition Zf=1 Ezl—(z) = 0 then leads to the
following amplitude equation for AV (X, T):
dA(» A

iDo—— + Dy—— =0.
Poar TP ax

The above equation reflects the local properties of the dispersion relation in the vicinity of the critical wavenum-
ber k.. According to the conditions (A.5), the derivative coefficients D, and Dy, vanish at critical. The orthogo-
nality condition is therefore trivially satisfied at this order. Without loss of generality, the amplitude function AD
may be set equal to zero.

The fundamental component at order & is then found to take the final form:

£ =0
f¢,§2) = [(B,.(z) + Fi(z)y) e kY 4 (Ci(z) + H}z)y) ek‘y] exp(ik.x) +c.c.,

oBD (
F® = —ikU, (Bi(z) 2y By 9B ke

aT X

actV ac
+ (Ci(Z) +H,-(2)y - —t -, ek | exp(ik.x) + c.c.,

ar “9X

where
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B - dAM e~ keh dAD Uih

U7 3T \ 2k, sinh(k.h) 0X \2sinh*(k.h) )’
B _ _(9A(1) ekeh N 9AD Ush ’

2 T \ 2k.sinh(k.h) dX \ 2sinh?(k.h)
co _ 94D ek! _9AD Ui h > ,

1 aT  \ 2k, sinh(k.h) dX \ 2sinh’(k.h)

@ _ 0AD ekt dAD Uz h
cl?=— . + .
2 T \ 2k, sinh(k.h) 3X \ 2sinh*(k.h)

The second harmonic component of wavenumber 2k, identified by the letter “s” may be calculated without
difficulty and it is found to be

€@ = sAD exp (2ik.x) +c.c.,
s = [SBi(?‘)e‘zkfy + sC,-(Z)e2k”’1 exp(2ik.x) + c.c.,

Spl.(z) = —2ik U, (sBi(Z)e_Zkfy + sCi(z)eZkfy> exp(2ik.x) +c.c.,
where

SA® = I (ADY?

g _ ik (AT)’ I r
t- etk _ tanh (kch) ko)’
. 1 2
B = ikcUp, (A1) 1 T ,
e—dkh _ ] tanh (k.h) k.
@ _ kUi (am)* L
V' 7 e=%h 1 \tanh(kh) k)’
. 2
SC2(2) = _lkCUzc (A(l)) 1 N £
etk 1 tanh (k.h) k.
The constant I” is defined as
F=k2(1— 2 ) pa. — U,
e tanh (kch) / (1 + k2) tanh?® (kch) — 3k2

Finally the mean component identified by the letter “m” is given by

mé:(Z) - H(Z) (X, T),

mé? = MP(X,T),

2 dJ d 1 2 b* - nz 2
mpi()=_(a—T+Uic3} M -2k ‘Bi()| e y+}ci()’ )
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In the O(&?) solution, the mean component at zero wavenumber is seen to involve three unknown real amplitude
functions: the mean perturbation potentials in each layer Mfz)(X, T), i = 1,2 and the mean elevation of the
interface H(?) (X, T). These functions are the counterparts of the mean components? introduced at O(g). Upon
enforcing the pressure jump condition (A.7) at zero wavenumber one obtains the following evolution equation
for the mean fields:

d a
H U - U P = 514 A8
+ 3T+ ‘Cax M; P2\ 5+ 2‘3X M5 = S|A]%, (AB)
with the real constant S given by

_ K (el — piUL)

(A9)
sinh? (k.h)
The total solution at O (&?) is given by
5(2) =m§(2) +f§(2) +s§(2) ,
¢(2) _md){Z) + f¢(2) +S¢(2)
i =mp{® + fp® +sp®.
Order &* problem:
(3) (3) (2) (1
RN S A SO .
ax? a2 xaX axz -’
9 J apD ap)  agl!
(3) 3 _ g @ _ gD @ _ 99 i _ A%
P (c?t Ui é‘x> ¢ (8T "6X) 2 VoV, ax IX Yox
3) 2 4(1)
i/ S (A, A PO N (A DI 7O i s e
dy at ax 6T 3X 2 9x dxdy
y=0
2 (1) (1) 1 ) i}
+_a_ £ g~ +i £® g’ &M g FED agp A.ag(  (A.10a)
dox dx dx ox X  dx dx aX L oox
y=0 = y=0 y=0
(2 (2)
. p(3)‘ . p(3)( LD 92£® _ 32D g2 _e0 [ ap; ) 1 ap
2 ly=0 ax? xaxX = ax? dy dy
y=0 y=0
2 2
_39%M (66(”) o [, o ap) €)Y [, @n”) e
2 ) 2 s
2 ax ax Ay 10 dy 10 2 ay -0 ay 40
(A.10b)
5¢(3)
ﬁ = iUy Fokeexp (i (kex + gX)) +c.c., (A.11)
y==h

2 Note, however that we had then omitted to include a mean elevation function H(D (X, T). If it had been introduced, we would have
found from the O(e) pressure condition that H(D (X,T) = 0.
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o0

7y =0.

(A.12)
y=h

It is only necessary to consider at this stage the mean and fundamental contributions.
The fundamental component at wavenumber k. is of the form

E® = A® exp(ikex) +c.c.,

¢ = [(B,.(” +FPy+ G§3)y2) e " + (C,-m +H®y + Ii(3)y2) e"fy] exp (ik.x) +c.c.,

where

aB® 152B{"
FOXT) =i (1), 60T = - (X)),
3 (2) 152c(1)
HO(X,T) = (X.T), 1.(3)(X,T)=—§ xr (KT

The remaining unknown functions satisfy the linear system

A Z( )
B§3) Z( )

M C1(3) - Z( ) ,
B§3) Z(3)
C2(3) (3)

where the forcing terms are given by
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Upon enforcing the orthogonality condition Z_ﬂzi@) =0, one is led to the amplitude equation

i=1

*AM 1 2A

_%DUUW + 5 kk—*aF = (Az — Al) DAUA“) +N|A(1)|2A(1) + Feiqx
oMD oM
2k2 U 1 2 n _ (2) (1) .
+2, (Pl 1e X +P2U2c X A RH'“ZA
where
Dy = -2,

Dy =2p1p2k2 AU,

1 —2h (1 + 3K3) + 2A2 (k. + K3) tanh (k.h
Dkk=2(k——2k6>tanh(kch)+ (1 +3K2) + 24" (ke + k) tanh ( ),

¢ cosh? (k.h)
N =(pUi — pUL) (3 — tanh® (kch)?) Tk
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(A13)

(A.14a)
(A.14b)

(A.15)

(A.16)

(A.17)

(A.18)
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Fig. A.1. Variation of coefficient N of the cubic nonlinear term versus 4 in the Boussinesq approximation (Eq. (A.21)).

Finally the continuity of particle displacement conditions (A.10ab) and the boundary conditions (A.11),
(A.12) for the mean fields at order &’ lead to the following set of evolution equations:

d RM5
@ _ = A.19
<5T+U2‘§X)H e =% (A-192)

92 (1
(;T+U1cax>H<2>+h /\;2 =0 (A.19b)

It is preferable to write the final results in terms of streamwise mean velocity fields U (X, T) = 8Mfl) /0X.
In order to do so, Eq. (A.8) can simply be expressed in terms of U;( X, T) by differentiating it once with respect
to X, while trivial substitutions can be made to rewrite Egs. (A.13), (A.19a,b). With a change to the simplified
notation H(® — H, A1) — A, the evolution equations (A.19a,b), (A.8), (A.13) can be cast into the final form:

J J Uy
((9T+ 2. )7‘[ h——— 0,

a U,
U — =
( + U, — >H+hE)X 0,

aT aX
oH a d d a|A|?
—_— U- =
ax (8T+ 2fax> Py + (aT+U‘fax) pith =555
1 3*A +1 9*A 2 igX 2
_§Dmr 8T2 Dkk X2 =ADyyA + NlAl A+ Fe'" + 2k, (plUch{, + szchIz) A—RHA.

The coefficients D, Day and Dy of the linear terms are given by relations (A.14a,b), (A.15). The coefficients
N, F, R and S of the various nonlinear terms are given by relations (A.16), (A.17), (A.18) and (A.9) respectively.

If one makes the Boussinesq approximation and sets p; = py = 1/2, the nonlinear coupling coefficients R and
S vanish and one finds for the amplitude equation a forced Klein-Gordon equation as discussed in Section 2.
Under this assumption the two remaining nonlinear terms can be written

__AUZR, (A.20)
4sinh (koh)

KEAU? 2%2 n?
N = 31 tanh (k.h) + ————¢ ( ¢ —4k2+——~—> i (A21)
2 (keh) 4 tanh? (k.h) ¢ " sinh? (k.h)
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The critical conditions k., AU, may be determined from (A.5). By substitution into (A.21), one readily verifies
that the coefficient N of the cubic nonlinear term |A|?A remains negative as long as & > +/3. The variations of N
with the scaled height h are represented on Fig. A.1.
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