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The temporally growing shear layer produced by tilting a tube filled with two immiscible fluids of
different density is spatially forced via modulations of one of the lateral boundaries. The competition be-
tween the forcing wave number ks and the intrinsic wave number k, leads to a mode diagram that is
compatible with corresponding observations of spatial mixing layers. As the detuning is gradually in-
creased, the interface displays stationary phase solitons that are indicative of the existence of incom-

mensurate states.

PACS numbers: 47.20.Ft, 47.25.Ae, 47.25.Gk

In order to study pattern selection in unstable flows it is
often convenient to examine the response of the system to
an imposed perturbation. The effects of spatial forcing at
a given wavelength have been investigated in the context
of convective instabilities in nematic fluids by Lowe and
Gollub [1]. The competition between the natural wave-
length of the system and the externally applied wave-
length then leads to a commensurate-incommensurate
transition which is signaled by the appearance of phase
solitons as shown by Coullet [2]. By contrast, in spatially
developing open flows, temporal forcing is found to be
very effective in controlling the downstream evolution of
the vortical structures. For instance, spatially developing
mixing layers formed by the merging of two streams of
different velocity on either side of a splitter plate are ex-
tremely sensitive to an imposed temporally periodic exci-
tation, as first demonstrated by Ho and Huang [3,4]. In
this case, variations in the applied frequency give rise to
frequency-locked regimes whereby the initial response
frequency of the shear layer becomes an integer multiple
of the forcing frequency. Furthermore, very low excita-
tion levels can dramatically alter the downstream devel-
opment of Kelvin-Helmholtz vortices and the spreading
rate of the entire flow.

In the present investigation, we choose instead to ex-
amine the dynamics of temporally evolving mixing layers
subjected to a spatially periodic excitation. In other
words, the geometry is closed, as in convection experi-
ments, and the instability mechanism is shear induced as
in conventional spatial mixing layers. The basic experi-
mental setup is the same as in the earlier studies of
Thorpe [5,6]: A long tank filled with two immiscible
fluids of different density is tilted at a finite angle from its
initially horizontal position. A spatially uniform shear is
produced under the action of gravity, which leads to the
formation of Kelvin-Helmholtz billows. In our case, the
flow is forced by periodically modulating the lateral
boundaries along the stream. The main goal of the study
is then to determine the response of the flow resulting

from the competition between the natural wavelength as-- -
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sociated with the Kelvin-Helmholtz instability and the
externally imposed wavelength. The present observations
indicate that the mode diagram of the flow exhibits the
same locked regimes (commensurate states) as in spatial
mixing layers. However, a closer investigation reveals the
existence of incommensurate states characterized by the
presence of phase solitons when the forcing wave number
is slightly above the natural wave number. To our
knowledge, these features extending over several charac-
teristic wavelengths had not previously been observed in
unstable shear flows.

The experimental setup is sketched in Fig. 1. A cylin-
drical glass tube 1.5 m long and 6 cm in diameter is filled
with two immiscible fluids: salt water of density p
=1.018 g/cm? and 1,2,3,4-tetrahydronaphtalene of den-
sity p»=0.97 g/cm?, the surface tension between the two
fluids being 37 mN/m. Both fluid layers are chosen to be
of equal depth in order to obtain stationary instability
waves. When the tube is suddenly tilted at an angle a,
typically less than 20°, an accelerating shear flow is
created in the center of the apparatus, with the following
density and streamwise velocity distributions:

p=pi, Vi=UWe,, z<0,

p=p2, Va=—U(t)e,, z>0,

FIG. 1. Thorpe’s experiment: A tank is filled with two fluids
of density p1 and pz and is inclined at an angle a to produce an
“accelerating shear flow in the center of the tube.
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FIG. 2. Interface deformation 0.3 sec after the onset of instability, @=12.5°, A, =4 cm. (a) Unforced configuration. (b) Forced
configuration Ay =X, =2,; note the presence of a modulated top boundary.

where

pPL—p2
pitp

The velocity difference V| —V,=2U(t) must exceed
the critical value AU, =0.13 m/s for the basic flow to be-
come unstable. One then observes growing waves on the
interface, of characteristic wavelength A,, which can be
visualized by lighting the system from behind with a neon
light (Fig. 2). The evolution of the interface deformation
is recorded and the images are digitized in order to inter-
pret the data. Periodic spatial forcing of wavelength A,
may be applied by regularly placing 3-mm-high obstacles
on the upper wall and maintaining them with magnets.
The duration of the experiment is typically 1.5 sec for an
angle a=10°. It is limited by the fact that hydraulic
jumps move from the ends of the tank toward the center,
as soon as the tube is tilted. It is also important to bear
in mind that the evolution of the observed structures
takes place over inertial time scales associated with the
growth of the instability that are much shorter than
viscous diffusion time scales. The flow can therefore be
considered as purely inviscid in character, in contrast
with convection experiments where dissipation is essen-
tial.

One of the obvious effects of spatial forcing is illustrat-
ed in Fig. 2. When the flow is unforced [Fig. 2(a)l, the
observed structures are irregularly spaced and of irregu-
lar height. If one neglects end effects, the system is in-
variant under continuous translations x— x-const.
There is no phase reference, and the development of the
instability leads to the formation of a nearly periodic pat-
tern. A natural wavelength A, can be defined as the aver-
age distance between neighboring wave crests over the ex-
tent of the apparatus. In the forced case [Fig. 2(b)], the
flow is invariant under discrete translations x— x +nd,
where A is the forcing wavelength. By analogy with the
work of Ho and Huang [3], orie can define the response
wavelength A, as the wavelength initially observed im-
mediately following the onset of the instability. If A, is
sufficiently close to A,, the system is spatially locked and
one observes a perfectly regular pattern of wavelength

U@)=

gsinat.

Ar=As.

The initial response characteristics of the interface are
summarized in the mode diagram of Fig. 3. We have
adopted the same format as Ho and Huang [3]: The ra-
tio of response wave number k, to forcing wave number
ky is plotted as a function of the ratio of forcing wave
number k; to natural wave number k,. The symbols
refer to different inclination angles as indicated. It
should be emphasized that this diagram only determines
the initial spatial periodicity of the interface immediately
beyond the time of onset. When the external wave num-
ber is sufficiently close to the natural wave number one
obtains a locked configuration at k, =k, as previously
discussed. Below a critical value of ks/k,, the response
wave number k, jumps discontinuously to 2k, and re-
mains fixed at this value for a finite range of forcing wave
number k;. Additional integer step increases in k,/k, are
observed at lower values of ks. Thus, the flow response
near onset can be summarized by the single relation
k., =mky, where m=1,2,3,4 is an integer that depends on
the forcing wave number ky. The diagonal line k. =k,
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FIG. 3. Mode diagram of accelerating shear layer under
forced conditions. See text for definitions of k., ky, k. The di-
agonal line corresponds to k, =k,. Phase solitons are observed
in the hatched region.
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has also been drawn in Fig. 3. Note that the interface
tends to select an integer multiple of k, which is
sufficiently close to k,. It is also of interest to notice that
the steplike nature of the response wave number curve is
observed for all tilting angles, i.e., for all accelerations.
However, the values of k; at which steplike changes in &,
take place do depend on the particular angle a. This is to
be expected since the natural wave number k, decreases
with increasing a. In order to take these variations into
account the wave number k, has been scaled with respect
to k,. The mode diagram of Fig. 3 is therefore valid for
all angles a. It is the counterpart of the mode diagram in
frequency space obtained by Ho and Huang [3] for spa-
tially evolving mixing layers. One only needs to substi-
tute the wave numbers k,, k,, and k; for the frequencies
fl"fll, andff'

The temporal development of the spatial pattern
beyond onset is strongly affected, in modes m=2,3,4, by
the presence of the subharmonic component ky=k,/m.
As shown in Fig. 4, the initially periodic interface of wave
number &, exhibits at a very early stage in its evolution
strong amplitude modulations at the forcing wave number
ky: The structures are stronger below the obstacles than
at other streamwise locations [Figs. 4(b)-4(d)]. As in
spatial mixing layers [3], this amplitude modulation ulti-
mately leads to the formation of structures at the subhar-
monic wave number k;. For instance when m=3, one
observes the temporal evolution displayed in Figs.
5(a)-5(c): Three wave crests ultimately merge to form
an arrangement of periodically distributed large struc-
tures at the subharmonic wave number k;=k,/3. When

FIG. 4. Interface deformation 0.3 sec after onset of instabili-
ty. a=12.5° 2,=4 cm. (a) Ay=hs. (b) Ar=2A,. (c) As
=3k, (d) Ay =4,
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FIG. 5. Temporal evolution of interface. @=12.5°, Ay;=34,.
(a) 1=0.36 sec. (b) r=0.52 sec. (c) +=0.76 sec. The refer-
ence time ¢ =0 is the onset of instability.

m=1, no subharmonic modulations are present and a
locked periodic stationary pattern is obtained. The merg-
ing of more than four waves (m > 4) is only observed in
strongly accelerating flow for a > 10°. The forcing wave
number k, is then much lower than k,, and it is only
weakly unstable according to linear theory [7]. High
forcing levels are therefore necessary to trigger its
growth. In the present configuration, such high levels are
achieved only for high accelerations where large velocities
are induced above the obstacles. Here again the resulting
dynamics is analogous to spatial mixing layers: At low
frequencies, sufficiently high forcing levels produce the
merging of many individual vortices into a single larger
structure, the phenomenon being known as “collective in-
teraction” [3].

There remains to examine the nature of the response
when the forcing wave number exceeds the natural wave
number, i.e., in the domain ks/k, > 1 of the mode dia-
gram (Fig. 3). If ky is within the range 1 <k//k, < 1.2,
the interface deformation is still locked in the first mode
at k./ky=1. For larger values of ks, however, the flow
response becomes spatially disordered: The competition
between the wave number ks and k, gives rise to irregu-
larly spaced structures of varying sizes. We have found
no evidence of locked modes in the vicinity of ks/k, =2.
In this particular accelerating flow configuration, it ap-
pears that locked regimes are only possible when
ks/ks < 1.2. Nonetheless interesting patterns have been
detected in the small transition region of forcing wave
numbers (hatched region of Fig. 3) separating the locked
range k,/k;=1 from the disordered regime. Within this
domain of parameter space, the flow response maintains a
certain degree of order: It is characterized by large re-
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FIG. 6. Phase soliton, @ =12.5°, k;/k,=1.48. (a) Interface

deformation. (b) Phase ¢/2x as a function of streamwise dis-
tance x.

gions of the commensurate state k,/k;=1 that do not ex-
tend over the entire apparatus but are separated by zones
of local expansion of the basic pattern. An example is
given in Fig. 6(a): The interface follows the imposed spa-
tial periodicity in the right and left areas of the image but
a larger structure straddles two obstacles in the vicinity of
x/As=4. The nature of this local imperfection can be as-
certained by defining the phase function ¢,=2z(x,
—nhs)/As that specifies the location x, of the nth wave
crest with respect to the position #A, of the nth obstacle.
The variations of ¢ along the stream [Fig. 6(b)] reveal
that the imperfection is associated with the existence of a
2z phase jump in the streamwise direction. As ky is in-
creased beyond 1.2k, stationary solitonlike phase varia-
tions appear in a manner that is strongly reminiscent of
the experimental observations in a convecting nematic
fluid [1]. The existence of phase solitons has been shown
to be a generic feature of commensurate-incommensurate
transitions in variational continuous dissipative systems
[2,8]. The theoretical formulation is based on a phase
dynamics description of the evolution of the pattern: As
the misfit between the forcing and natural wave numbers

is increased, a definite threshold exists beyond which the
minimum of the potential energy no longer occurs at the
commensurate state but at an incommensurate state com-
posed of phase solitons. These theoretical results pertain
to dissipative systems and are not applicable in the
present context. We have argued that, in the tilting tank
experiments, viscous dissipation is negligible over the
time scales involved and the observed dynamics are essen-
tially conservative. Yet no oscillatory regimes have been
observed, as is usually the case in conservative systems.
This is probably due to the fact that energy is being con-
tinuously injected into the disturbance field through the
accelerating shear, thereby masking the conservative na-
ture of the dynamics. The role played by acceleration has
not been entirely elucidated and work is in progress to an-
alyze the constant shear case in which the tank is brought
back to its initial position.
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