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’ INTRODUCTION

The penetration of a wetting liquid in a capillary tube is a classical
problem, at the origin of the science of surface phenomena.1 Beyond
static questions (height of the rise if the tube is vertical, criterion of
penetration), researchers described the dynamics of the process.2,3

For an infinite liquid reservoir, this dynamics was shown to result
most often from a balance between surface tension and viscous
resistance (proportional to the length of liquid inside the tube).
As a consequence, the length of the column increases as the square
root of time, which is often referred to as the Lucas�Washburn
law.2,3 At short time, deviations to this law were established and
shown to be due to inertia.4�6 In vertical tubes, deviations have
also been observed at long time due to gravity.3,7 Other devia-
tions arise from the additional dissipation associated with the
motion of a contact line at the top of the moving column.5,8

Marmur extended the description to the case where the
reservoir is a drop of finite radius R. He showed that complete
penetration can be achieved in a microgravity environment for
contact angles smaller than θc = 114� (instead of 90�, normally),
provided that the reservoir drops are smaller than a critical radius
Rc =�Ro/(cos θc), Ro denoting the tube radius.

9 This facilitated
wicking is due to the additional Laplace pressure inside the drop,
inversely proportional to R. The same phenomenon was studied
recently using theory and molecular dynamics simulations in the
context of metallic liquid droplets and carbon nanotubes10 and
experimentally with water and PTFE capillary tubes.11

In our experiment, the liquid is in a completely nonwetting
state (θc = 180�) for which adhesion and friction forces are
minimized.12�14 Contrasting with wicking, surface forces are
then able to extract liquid from a capillary tube, as shown in
Figure 1. An oil slug initially placed at the end of the tube is
observed to be unstable and to come out of it. The slug velocity
first slowly increases and then reaches a constant value on the order
of 1 mm/s. The motion stops when the drop is fully extracted—at

the exit of the tube—for our matched-density liquids (last image
in Figure 1). The origin of motion can be easily understood: once
a meniscus is out of the tube, any further displacement of the slug
toward this meniscus reduces the surface energy of the system
until the shape of minimum surface, i.e., a sphere is achieved. This
phenomenon is analogous to foam coarsening, where small
bubbles empty into larger ones due to surface tension.15 Capillary
extraction has been observed in the context of detergency of oil in
tubes, where it enables the complete removal of the oil at the end
of the experiment.16 Extraction also exists in the context of cell
aggregates manipulated with a micropipet, and it was used to
characterize the mechanical properties of those aggregates.17

’EXPERIMENTAL SECTION

As in Figure 1, a nonwetting slug of silicone oil (poly(dimethylsiloxane),
trimethylsiloxy-terminated, CAS number 63148-62-9, provided by ABCR
GmbH) of typical viscosity ηo ≈ 1 Pa 3 s (molar mass 30 000 g/mol) is
placed in a capillary tube (borosilicate glass, purchased from Fischer
Scientific) of radiusRo = 0.88mmand lengthLt = 40mm.Thewhole device
is immersed in a bath of water�ethanol mixture of viscosity η≈ 1 mPa 3 s.
The bath is prepared by mixing 75% (by weight) water, purified with a
Barnstead Easypure II system (the typical conductiviy is 18 MΩ 3 cm),
and 25% ethanol (96%, purchased from Fischer Scientific). To match
the densities of both liquids (common density of 960 kg/m3), exact
proportions are adjusted according to the rise or fall of oil in the bath.
The surface tension γ between oil and the water�ethanol mixture is
20 ( 2 mN/m, as determined by the pendant drop method, with two
different water�ethanol mixtures of densities slightly higher and lower
than that of the oil.
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ABSTRACT: A nonwetting slug placed at the end of a capillary tube is unstable: a small
displacement results in the complete extraction of the liquid from the tube.We study two limiting
cases, corresponding to a slug viscosity larger or smaller than that of the surrounding liquid. By
varying parameters such as the drop and tube length, we identify in each case the dominant
dissipation and describe experimentally and theoretically the dynamics of extraction.
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The tube is open at both ends, and it is horizontal, so that hydrostatic
pressure is constant. The nonwetting situation is achieved by rubbing the
inside of the tube with a polishing powder mainly composed of cerium
oxide (Cerox 1650, Rhodia) of typical particle radius 1 μm and then
treating it with a 1 M sodium hydroxide solution for 10 min, before
rinsing it with purified water. After this treatment, the tube is highly
hydrophilic: the contact angle of oil in water (or in water�ethanol
mixtures) is observed to be 180�, which implies that a thin lubricating
layer of aqueous solution always remains between the oil and the tube.
This film does not dewet the surface on the time scale of the experiment,
which prevents the formation of a contact line and any hysteresis that
may arise from it. We checked that an oil drop on a treated glass in water
maintains a contact angle of 180� for at least 40 min (Figure 2).
After insertion of an oil slug of length l into the tube with a syringe, we

move it toward the tube end by injecting the water�ethanol mixture at a
velocity of 0.1 mm/s. The motion is stopped when the slug extremity is out
by a tube radius Ro, as seen in the first image of Figure 1 and in Figure 3a.
This position is unstable: if the slug is still pushed by a small distance x
(x, Ro), it spontaneously leaves the tube. The motion is recorded with a
Phantom V7.3 camera using a Sigma 50 mm F2.8 DG EX macrolens.

’THEORETICAL BASIS

The liquid outside becomes a spherical cap of radius R > Ro,
connected to a slug of radiusRo ended by a hemisphere of radiusRo,
as seen in Figure 1 and sketched in Figure 3b. Such a shape is not an
equilibrium shape, owing to the difference of curvature between its
ends. A Laplace pressure difference ΔP = 2γ(1/Ro � 1/R) is set
between the drop extremities, which induces a flow from the small
to the large cap. An initial perturbation x therefore grows until the
drop is completely extracted from the tube (x = l� Ro).

The driving force arising from the Laplace pressure difference
can be written as

FðxÞ ¼ 2πγRo 1� Ro

RðxÞ
� �

ð1Þ

Hence, it is not constant during extraction. It starts from a very small
value at the onset of movement (R(x) J Ro), and it continuously
increases as the drop comes out. In the limit of very large outer
spherical caps (R(x) . Ro), the force becomes independent of x
and equal to its maximum value 2πγRo. Between these two limits,
we need to knowhowR varieswith x to estimateF(x), which is done
using conservation of volume.

The initial slug is sketched in Figure 3a: it is composed of a
central cylindrical part ended by two hemispherical caps. We work
in the limit of large aspect ratio (l/Ro . 1). During extraction
(Figure 3b), the drop consists of the same cylinder reduced by a
distance x of one hemisphere of radius Ro and of a spherical cap of
volumeVcap =πRo

2x+ 2πRo
3/3. Since this cap is a sphere of radius

R and width R + (R2� Ro
2)1/2, we get a cubic equation for R(x):

ð8Ro
3 + 12Ro

2xÞR3 � 3Ro
4R2 � ð5Ro

6 + 9Ro
4x2 + 12Ro

5xÞ ¼ 0

ð2Þ
This equation has one real root, whose analytical expression can be
found using Cardano’s method:
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Figure 2. Photograph of an oil drop of radius 2mmon a treated glass plate
immersed in purewater, taken 40min after first “contact”. It is observed that
the contact angle remains fixed at its maximum value of 180�.

Figure 1. Capillary extraction of a nonwetting oil drop (of viscosity ηo = 1
Pa 3 s and density F = 960 kg/m�3) initially placed in a glass tube of
radius Ro = 0.88 mm and length Lt = 40 mm, fully immersed in a mixture
of water and ethanol of the same density: when the drop is placed at the
end of the tube, a slight perturbation results in its complete extraction.
The movement is accelerated until the slug reaches a constant velocity.
The interval between images is 2.5 s. Figure 3. Sketch of the experiment. (a) represents the unstable initial

position, as the left end of the slug is out of the tube by a distance equal to
the tube radius Ro. (b) Any positive displacement x is amplified until the
slug is completely extracted. R is the radius of the outer spherical cap, x is
the distance traveled by the other end of the slug, l is the initial length of
the slug, and Lt is the length of the tube.
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In the limit x . Ro, this expression simplifies to

RðxÞ = 3
4
Ro

2x

� �1=3

ð4Þ
This equation just expresses the conservation of volume between
a cylinder of radius Ro and length x and a sphere of radius R. To
study the transition from eq 3 to its limit (eq 4), we have
conducted experiments similar to the one shown in Figure 1, and
we present in Figure 4a the evolution of the ratio R/Ro as a
function of the reduced extraction distance x/Ro.

We verify the accuracy of the analytical expression (eq 3) and
observe that the approximation (eq 4) only approaches the
experimental data when x/Ro becomes larger than 5. For larger
x, the ratio Ro/R decreases slowly, as (Ro/x)

1/3. This implies that
the constant force limit is slowly approached and that we have to
take into account the full expression for R(x) if we want to
describe accurately the extraction. This is emphasized in
Figure 4b: for x/Ro = 10, the force is only equal to half its

maximal value expected for x/Ro . 1. In fact, x/Ro has to be
equal to 1000 to have a force equal to 90% of its maximal value.

’RESULTS AND DISCUSSION

Dynamics. The extraction dynamics is shown in Figure 5 for
various viscosities, slug lengths, and tube lengths. The tube radius
is Ro = 0.88 mm, and x = 0 corresponds to the unstable position
(first image in Figure 1). The position x of the right end of the
slug increases more and more rapidly as time goes on: the slug
velocity is almost zero at the beginning, and it tends toward a
constant at the end. The dynamics is not affected when the initial
drop length l is modified by a factor of 3 nor when the tube length
Lt is changed by a factor of 2. We can also notice that extraction
takes approximately 10 s for a slug of viscosity ηo ≈ 1 Pa 3 s and
length l = 10mm, instead of 50 s if we increase ηo by a factor of 5,
keeping the other parameters constant.
To account for these observations, we have to identify the

sources of dissipation in this system. Since the Reynolds number
is always very small (for a velocityV≈ 1mm/s, Reo = FVRo/ηo in
oil is smaller than 10�3, and Rew = FVRo/η in water�ethanol is
smaller than 1), inertia can be neglected. Moreover, the viscosity
ratio ηo/η is on the order of 1000, so that we can ignore the
dissipation due to the flow of the water�ethanol mixture in the
tube, as confirmed by the fact that the dynamics is not modified
by doubling the length Lt. Thus, the dominant viscous dissipation
can a priori be in the oil or in the lubricating layer.
To evaluate the dissipation in oil, we need to characterize the

flow profile in the slug. In the presence of an aqueous lubricating
layer 1000 times less viscous than oil, we might expect a plug flow
in the oil. This can be checked experimentally by injecting small
tracer particles into the slug and following their displacement using
a long-exposure photograph, as shown in Figure 6a and 6b. From
this picture, we can deduce the velocity profile v(r) in the slug, as
displayed in Figure 6b. The lens used to record this experience has
a shallow depth-of-field (<1mm), which allows us to track only the
particles in the plane containing the axis of symmetry of the tube
and perpendicular to the optical axis. The profile is clearly not a
Poiseuille flow. The velocity slowly decays with r: it is equal to
0.15 ( 0.02 mm/s on the center line and to 0.13 ( 0.02 mm/s
near the tube wall, i.e., roughly 10% slower than at the center.
This observation contrasts with what we observe at the exit of

the tube: as seen in the bottom picture of Figures 6a and 6b, the

Figure 4. (a) Radius of the outer spherical capR normalized by the tube radiusRo as a function of the normalized displacement x/Ro. The solid line is the
analytical solution from conservation of volume (eq 3), the dotted line is the simplified solution (eq 4), and the circles are data from an extraction
experiment similar to that in Figure 1. The simplified expression for R is a good approximation for x/Ro > 5. (b) Corresponding driving force
F = 2πγRo(1 � Ro/R) normalized by its maximal value expected for x . Ro. For x/Ro = 10, the force is only half its maximal value.

Figure 5. Position of the moving end of the slug as a function of time for
various oil viscosities ηo, slug lengths l, and tube lengths Lt in a
microgravity environment. The tube radius Ro = 0.88 mm. The velocity
is almost zero at the beginning, and it tends toward a constant value as
the motion proceeds. This value is lower for high viscosities, and the
general shape of this curve does not seem to depend on the length of the
slug nor on the tube length. The origin of time is chosen a few seconds
before the movement of the slug becomes measurable.
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oil velocity decreases at a distance on the order of Ro. The Laplacian
of the velocity is therefore on the order of _x/Ro

2, and the typical
volume in which the flow occurs is Ro

3. We therefore expect a
dissipative force scaling as ηo_xRo (very different from the viscous
force opposing the rise of liquid in a tube, which is proportional to
the height of the column). More precisely, Sampson showed that
the pressure drop due to the flow from an infinite reservoir through
an orifice of radius Ro is ΔP = 3πηoV/Ro, with V the mean flow
velocity.18 The viscous force thus scales as F = 3π2ηoVRo.
Johansen experimentally investigated this problem and found
similar results, with a small corrective term (1� (Ro/R)

4) to take
into account the finite size R of the reservoir.19

Another source of dissipation arises from the shear stress in the
lubricating film. It generates a viscous resistance scaling as
2πη( _x/h)(l � x)Ro, where h is the thickness of the film. We can
estimate this thickness from the observation that the velocity profile
in the oil does not deviate from a plug flow by more than roughly
10%.Using the stress continuity at the oil/water interface, we find

η
Vint

h
≈ηo

V � Vint

Ro
ð5Þ

where V is the maximal fluid velocity in the slug and Vint is the
velocity at the oil/water interface. AssumingVint = 0.90( 0.05 V,
we obtain

h≈10Ro
η

ηo
≈10 μm ð6Þ

We can now compare the dissipative forces in the film and in
the oil. The dissipation in the oil cap will be dominant if

we have

2πη
V
h
Roðl� xÞ < 3π2ηoVRo ð7Þ

which gives

l� x <
3π
2

ηo
η
h≈50Ro ð8Þ

The dissipation in oil is therefore always dominant during the
last phase of the movement, when the slug distance to the exit is
less than approximately 50Ro. We worked with slug lengths
between 5Ro and 17Ro, meaning that the dissipation in the film is
negligible. In this limit, the force balance on the slug can be
written as

2πγRo 1� Ro

RðxÞ
� �

¼ 3π2ηoRo _x ð9Þ

This differential equation can be solved numerically by using the
analytical result for R(x) (eq 3), as shown in Figure 7. The
equation depends neither on l nor on Lt, in accord with the
experiments. It also gives a “final” constant velocity for the slug,
which is equal to

V ¼ 2
3π

γ

ηo
ð10Þ

This quantity is inversely proportional to the oil viscosity ηo, as
suggested in Figure 5. In the dimensionless coordinates x/Ro,

Figure 6. (a) Long-exposure photograph in an oil slug of viscosity ηo = 5 Pa 3 s moving in a tube of radius Ro = 0.88 mm. The oil contains small tracers,
which yields an estimate of the velocity profile. The exposure time is 2 s, and the bar represents 1 mm in both photographs. The top image is a close-up
view in the middle of the slug: the flow is very similar to a plug flow. The direction of the motion is indicated by the white arrow. The bottom image is
taken at the exit. The velocity decays over a distance comparable to the tube radius. (b) Velocity profile extracted from (a). The profile in the middle of
the slug is clearly not a Poiseuille flow (drawn with a dotted line), which confirms the presence of a lubricating film. The solid line is the equation v(r)
(mm/s) = 0.15 � 0.04r2. At the exit of the tube (r is the distance from this exit), the velocity drops on a distance of order Ro.
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γt/ηoRo, the data collapse on a master curve, which is itself
well described by the solution of eq 8 drawn with a solid line.
The prefactor taken for the fit is 0.18, close to the expected
value 2/3π ≈ 0.21.
We can finally notice that the velocity approaches a constant value,

as seen in the data. However, the value observed in Figure 7 for
the largest x/Ro is only half themaximal predicted value 2γ/3πηo
because of the slow decay of the quantity Ro/R (which is still 0.43
for x/Ro = 16).
Air Slug. We also investigated the opposite limit where the

viscosity ratio ηo/η is small compared to 1. The slug is now an air
bubble, and the bath is filled with silicone oil of viscosity η = 4.5
mPa 3 s (200 times more viscous than air) that completely wets
the tube. Since the microgravity condition cannot be fulfilled
anymore, the air slug is likely to be cut in several pieces during
extraction, unless the tube is small enough. This problem is
similar to the question of the maximal volume of a drop hanging
from a cylindrical nozzle of radius Ro.

20 Balancing the weight (or
buoyancy in our case)ΔFgR3 (whereΔF is the density difference
between the two fluids) with the surface force γRo, we find
that the slug breaks if its volume is larger than a2Ro, where
a = (γ/ΔFg)1/2 ≈ 1.5 mm is the capillary length of silicone oil
(with γ = 20 mN/m and ΔF = 915 kg/m3). In other terms, the
slug will be extracted in one piece if we have

Rol < a
2 ð11Þ

For a slug length l = 5 mm, this yields a critical tube radius
Ro* ≈ γ/ΔFgl ≈ 0.4 mm below which gravity effects can be
neglected.
In Figure 8, we observe the position of the trailing edge of the

air slug as it gets extracted out of a tube of radius Ro = 0.3 mm.
The driving force is the same as before (eq 1), but the dissipation
is different, as revealed by the data. The dynamics is slower if the
tube is longer: it takes 1 s to extract an air slug of length l = 5 mm
from a tube of length Lt = 20 mm, whereas it takes about 5 s for
the same slug placed in a tube 5 times longer (Lt = 105 mm).
The observations indicate that the flow of oil behind the slug

must be taken into account in the limit where the slug viscosity
becomes negligible compared to that of the surrounding liquid.

Since the Reynolds number is always smaller than 0.1, we assume
a Poiseuille flow in the tube. Balancing the driving force by the
dissipation arising from such a flow gives

2πγRo 1� Ro

RðxÞ
� �

¼ 8πη _xðLt � l + xÞ ð12Þ

The viscous resistance now depends on Lt and increases
linearly with x. However, since Lt . l, the variation is always
small (roughly 10% of its initial value) compared to the variation
of the driving force, which varies between 0 and 2πγRo. Hence,
we can approximate the right-hand term by 8πη _xLt. This yields
the following differential equation:

_x
Ro

¼ γ

4ηLt
1� Ro

RðxÞ
� �

ð13Þ

Hence, we expect amaximal velocity equal to γRo/4ηLt, which
depends on the tube aspect ratio Ro/Lt. We deduce from eq 13 a
new dimensionless expression for time (γt/ηLt), allowing us to

Figure 7. Position of the trailing end of the slug normalized by the tube
radius as a function of dimensionless time γt/ηoRo. The symbols and
data are the same as in Figure 5. The solid line is the solution of eq 9 with
a prefactor of 0.18 (close to 2/3π ≈ 0.21).

Figure 9. Position of the trailing edge of an air slug as a function of time
for three different tube lengths. The slug length is kept constant (l ≈
5 mm), and Ro = 0.3 mm. The data of Figure 8 are compared with
solution of eq 13 (with a prefactor of 0.25), drawn with a solid line.

Figure 8. Position of the trailing edge of an air slug, initially placed at the
exit of a tube of radius Ro = 0.3 mm, as a function of time for three different
tube lengths Lt. The slug length is the same in the three experiments (l ≈
5 mm). The surrounding liquid is silicone oil of viscosity η = 4.5 mPa 3 s.
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collapse the data of Figure 8 on a master curve shown in Figure 9.
The model (eq 13) is in good agreement with the data without
any adjustable parameter.
In this case again, the velocity slowly tends to its maximal value

because of the weak dependence of the driving force on x.
The maximal slope in Figure 9 is still only half of γRo/4ηLt for
x/Ro ≈ 16.
Gravity Effects.We finally look at the limit where gravity effects

cannot be neglected. According to eq 11, gravity breaks slugs of
length l larger than a2/Ro = 7.5 mm for Ro = 0.3 mm. Figure 10
shows two extraction experimentsmade in a tube of radiusRo = 0.3
mm and length Lt = 52 mm with two different slug lengths. In
Figure 10a where l = 8.5 mm, the air slug is cut into two parts: a
bubble of radius 0.65 mm that escapes and a remaining slug of
length 3.4mm. This remaining slug has no further reason tomove:
its left end is entirely inside the tube and distant from the unstable
position by at least Ro (last picture of Figure 10a). In Figure 10b, it
is observed that a shorter slug, of initial length l = 3.4mm, is able to
escape entirely without breaking.No air is left inside the tube at the
end of the experiment.
In case a, the force balance between buoyancy and cap-

illarity predicts a rising bubble of radius R* ≈ (a2Ro)
1/3 =

0.88 mm, on the order (yet slightly larger, like in Tate’s law20)

of 0.65 mm measured in Figure 10a. As discussed in eq 11,
gravity imposes an upper bound to the maximal volume a2Ro
that can be extracted, which is a serious limitation for potential
applications. However, in bigger tubes (Ro = 0.88 mm, Lt =
40 mm), it is observed that after pinch-off, the remaining part
still has a small velocity, probably due to inertia (the Reynolds
number just before the first pinch-off is ∼1), which is enough
to bring it to the unstable position, as seen in Figure 11
between the third and fourth pictures. The extraction process
can start again, and so on, until no air is left inside the tube.
In Figure 11, the air slug is completely extracted after the
second pinch-off.

’CONCLUSION

We discussed capillary extraction, which is the process by
which a nonwetting liquid spontaneously leaves a capillary tube
owing to surface tension. In contrast with wicking, extraction is
observed for liquids with a high contact angle (close to 180�),
and it follows a very different dynamics: the velocity slowly
increases from zero to a constant value.

As a first reason for this difference, the driving force is not
constant: it is infinitesimally small at the onset of movement, and
it slowly tends to a constant value as the slug comes out. Second,
the dissipation in our system is also different: due to the presence
of a lubricating layer between the slug and the tube, the flow
profile in the oil is not a Poiseuille flow as in capillary rise but a
plug flow, so that the dissipation at the exit of the tube becomes
the main source of resistance if the oil is viscous.

We discussed quantitatively the origin of the viscous resistance
in this limit from which we deduced the extraction velocity. We
also investigated the opposite limit of an air slug of viscosity
much smaller than that of the surrounding liquid and showed that
the dynamics is controlled by the viscous dissipation in the liquid
behind the slug.

Finally, we qualitatively studied the case where gravity effects
are not negligible. They tend to break the slug in parts which can
be a limiting factor for the total volume extracted at very low
Reynolds numbers. However, for Reynolds number close to 1
(millimetric tubes), the slug remaining in the tube still keeps a
small velocity, leading to a new extraction process, and so on,
until complete oil extraction.

’ASSOCIATED CONTENT

bS Supporting Information. Two movies showing extrac-
tion phenomena, corresponding to Figures 1 and 11. This

Figure 10. Effect of gravity on the extraction of an air slug of length l from a capillary tube of radius Ro = 0.3 mm and total length Lt = 52mm. (a) l = 8.5 mm:
the slug breaks into two parts, a bubble (of radius 0.65mm) escapes from the tube, and the other part (of length 3.4mm) remains trapped inside the tube.
(b) l = 3.4 mm: the slug is fully extracted without breaking, in agreement with eq 11.

Figure 11. Extraction of an air slug (of initial length l = 23 mm) from a
tube of radius Ro = 0.88 mm and length Lt = 40 mm. Gravity cuts the air
slug in two, but the remaining part keeps a small velocity (probably due
to inertia), allowing it to move to the exit of the tube. A new extraction
process starts, and the slug eventually gets fully extracted.
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