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From temporal to spatiotemporal dynamics in transitional plane Couette flow
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Laboratory experiments point out the existence of patterns made of alternately laminar and turbulent oblique
bands in plane Couette flow (PCF) on its way to or from turbulence as the Reynolds number R is varied. Many
previous theoretical and numerical works on the problem have considered small-aspect-ratio systems subjected
to periodic boundary conditions, while experiments correspond to the opposite limit of large aspect ratio. Here,
by means of fully resolved direct numerical simulations of the Navier-Stokes equations at decreasing R, we
scrutinize the transition from temporal to spatiotemporal behavior in systems of intermediate sizes. We show that
there exists a streamwise crossover size of order Lx ∼ 70–80h (where 2h is the gap between the plates driving
the flow) beyond which the transition to or from turbulence in PCF is undoubtedly a spatiotemporal process,
with typical scenario turbulent flow → riddled regime → oblique pattern → laminar flow, whereas below that
size it is more a temporal process describable in terms of finite-dimensional dynamical systems with the scenario
chaotic flow → laminar flow (via chaotic transients). In the crossover region, the oblique pattern stage is skipped,
which leads us to suggest that an appropriate rendering of the patterns observed in experiments needs a faithful
account of streamwise correlations at scales at least of the order of that crossover size.

DOI: 10.1103/PhysRevE.83.036308 PACS number(s): 47.54.−r, 47.20.−k, 47.27.−i

I. INTRODUCTION

During the last few years there has been a resurgence of
interest regarding the formation of laminar-turbulent patterns
in wall-bounded shear flows having very large aspect ratios
(when the lateral dimensions, along x and z, are more than
two orders of magnitude larger than the relevant wall-normal
dimension, along y). The phenomenon was discovered in
circular Couette flow (CCF) by Coles and Van Atta [1,2] who
called it “spiral turbulence.” The pattern can be observed when
the two cylinders of CCF rotate in opposite directions in a
specific velocity range, which is only a part of the complete
bifurcation diagram [3]. Only one or two stripes of the
laminar-turbulent pattern were observed in those experiments
owing to their low aspect ratio (the ratio of the perimeter
to the gap between the cylinders). It was only later that
Prigent et al. [4] made detailed measurements of the relevant
features of this phenomenon in their very-large-aspect-ratio
setup, where about 10–15 stripes could be obtained.

A similar event of laminar-turbulent pattern formation was
also observed by the same team [4] in large-aspect-ratio plane
Couette flow (PCF), a schematic of which is shown in the top
panel of Fig. 1, the bottom one displaying a snapshot of the
pattern obtained experimentally. When the control parameters
of CCF and PCF are made equivalent by using appropriate
scales, both CCF and PCF display patterns in almost the
same parameter range [5], with the obvious difference of
streamwise periodicity present in CCF and not in PCF. In the
following we leave aside the case of CCF, whose bifurcation
diagram is slightly more complicated owing to the interplay
of centrifugal instability mechanisms, and concentrate our
attention on PCF in the range of parameters relevant to the
transition to turbulence.

Traditionally, the control parameter is the Reynolds number,
and for PCF it is defined as R := Uph/ν, here based on
the half channel height h, the plate velocity Up, and the
kinematic viscosity ν; in the following h and the advection
time τa = h/Up are used as length and time units, respectively.

(The viscous relaxation time is τv = h2/ν, so that R = τv/τa.)
The transition process can be studied by increasing or decreas-
ing R. The essential point is that the laminar flow is stable
against infinitesimal perturbations for all R, so that a direct
transition to turbulence is observed when finite-amplitude per-
turbations are introduced, according to a globally subcritical
scenario (for an introductory review see [9], Chap. 7]). Studies
at increasing R are strongly sensitive to the amplitude and
shape of the triggering perturbation. Quantitatively different
results about the transition can accordingly be obtained under
different protocols, e.g., [7,10], while the picture of course
remains qualitatively unchanged. In contrast, the experiments
of Prigent et al. (see [11] for details) were systematically
performed by varying R in small steps while waiting for
statistical equilibrium at each R, which helps us to clearly
identify several stages. First, beyond Rt ≈ 410, turbulence
is essentially uniform or “featureless,” borrowing the term
introduced by Andereck et al. for CCF [3]. Next, oblique
laminar-turbulent bands appear upon decreasing R slowly
below Rt. The amplitude of the laminar-turbulent modulation
grows continuously as R is further decreased, which has been
interpreted as a supercritical bifurcation in the presence of a
noise, reminiscent of featureless turbulence [4]. The bands next
become fragmented and turn into irregular oblique turbulent
patches which seem sustained for R � Rg ≈ 325 but decay in
a finite time for R < Rg. The value of Rg mentioned above
has also been obtained in experiments where turbulent spots
were triggered [6,7]. Below Rg the lifetimes of turbulent spots
are distributed according to decreasing exponentials whose
characteristic time is seen to diverge as R approaches Rg from
below [6]. Finally, for R < Ru ≈ 280 large perturbations relax
without measurable waiting time and in a mostly monotonic
way.

Direct numerical simulation (DNS) of these large-aspect-
ratio systems was delayed because of the huge computational
requirements. Barkley and Tuckerman [12] were the first
to obtain the band patterns in fully resolved simulations of
the Navier-Stokes equations, but in carefully chosen narrow
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FIG. 1. Top: Schematic of PCF with top and bottom plate moving
at ±Up (at y = ±h) separated by a distance 2h. Bottom: Experimental
visualization of laminar (dark)–turbulent (light) pattern in PCF at
R = 358, Lx = 770h, and Lz = 430h (courtesy of A. Prigent). For
comparison, most of Bottin’s experiments were performed with Lx =
284h and Lz = 72.6h [6,7]. The size of the minimal flow unit (MFU)
is λx = 2π/α, λz = 2π/γ , where α and γ are the fundamental wave
numbers in the streamwise and spanwise directions, respectively.
Here we take the values corresponding to the self-sustained exact
solution found by Waleffe [8], α = 0.49 and γ = 1.5 and thus λx =
12.8 and λz = 4.2.

and tilted computational domains. Their choice of domain,
however, precluded the occurrence of patterns with defects
or orientation changes inside the flow. This restriction was
overcome in the DNS by Duguet et al. [13] who recovered
the experimental findings of Prigent et al. in a fully resolved
very-large-aspect-ratio system. Similarly, the spiral regime
of CCF was numerically obtained by Meseguer et al. [14]
and Dong [15]. An oblique band pattern was also found
numerically by Tsukahara et al. [16] in the case of plane
Poiseuille flow (PPF). The above three systems, CCF, PCF,
and PPF, are prototypical for the study of laminar-turbulent
patterns; all of them are confined by two walls in direction y,
the other two dimensions extend to infinity, in the limit.

Two other flows of theoretical and technological importance
showing behavior similar to the above-mentioned systems are
pipe flow and the flat-plate boundary-layer flow. Pipe flow is in
some sense simpler, because it has only one spatially extended
dimension, the length of the pipe. Inside a specific Reynolds
number range, localized patches of turbulence (“puffs”) are
observed separated by laminar regions. At present it is not
clear how they are related to the oblique bands in other systems
[17]. On the other hand, the boundary-layer flow case gets
more complicated due to the fact that the relevant wall-normal
dimension, the boundary-layer thickness, increases with the
flow direction and, with it, the relevant value of R. Turbulent
spots that appear amid laminar flow during the transition are,
however, strikingly similar to those growing into oblique bands
observed in PCF.

In contrast with instabilities in closed flow systems such
as Rayleigh-Bénard convection for which the aspect ratio is
a genuine control parameter that can be varied from small
to large by changing the positions of walls in all directions
[9, Chap. 3], open flows develop most often in domains
physically less constrained by lateral walls, while stream-
wise boundary conditions make it reasonable to accept the
assumption of translational invariance in that direction, at least
locally. In this respect, all of the investigations mentioned
above, both experimental and numerical, are related to large-
aspect-ratio systems and represent the typical situation, even
if the experimental setup is difficult to construct [4,7,10]
or the DNS computationally demanding [13,16]. Despite its
relevance, this is not the situation that has been considered in
many recent works on the transitional problem. Indeed, most
of the theoretical and numerical work has been performed
in configurations confined by periodic boundary conditions
at small distances. Seminal work in the 1990s bore on
high-resolution simulations devoted to the identification of
the minimal flow unit (MFU) below which turbulence cannot
be sustained, as was done by Jimenez and Moin [18]. Such
simulations were later used for the elucidation of the self-
sustaining process (SSP), the mechanism of sustenance of
turbulence by which streamwise vortices induce streaks that
break down to regenerate the vortices, following Hamilton
et al. [19]. They were applied next to the discovery of
exact coherent states of Navier-Stokes equations, follow-
ing Nagata [20] and Waleffe [8], and to the study of
the boundary of the attraction basin of the laminar flow
[21].

In fact, setting boundary conditions at small distances
reduces the infinite-dimensional dynamical problem posed
by the Navier-Stokes equations to a finite-dimensional prob-
lem as long as R remains moderate, which is the case
in the transitional regime (but would be insufficient in
the high-R limit where fine vortical structures develop
already at the level of the MFU). Accordingly all the
works in small domains to some extent have come un-
der the purview of temporal dynamics and chaos theory.
The investigation of such small systems has indeed been
extremely valuable [21,22], with important achievements
such as the recent findings of “edge states” and “localized
solutions” in PCF [23,24], as an encouragement to make
the connection to special solutions and associated bifurca-
tion structures obtained in pattern-forming model equations
[25,26].

However, any accurate representation of the dynamics at
the level of the MFU, though remaining instructive, is not
informative of the experimental situation since the smallest
setups that have been used should rather be analyzed as
two-dimensional arrays made of tens or hundreds of MFUs
(see caption of Fig. 1), which allows for global spatiotemporal
dynamics, while placing periodic boundary conditions at the
scale of the MFU grossly overestimates the coherence of the
flow. The size of the system (�MFU) and the coexistence
of two possible local states, either laminar or chaotic, each
corresponding to a possible temporal regime at the MFU
scale, make it possible for whole regions, either laminar or
turbulent, to coexists in physical space. The possibility of such
modulations is at the root of the recourse to concepts from
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the theory of spatiotemporal chaos [27]. Within this general
framework, the pattern → featureless transition in PCF, CCF,
and other similar flows appears to be a symmetry-restoring
bifurcation observed upon increasing R for which an order
parameter can be defined [4,28], with the understanding that
the base state is the translationally invariant, strongly noisy,
featureless regime beyond Rt.

A previous attempt to reach the spatiotemporal level
directly via modeling by one of us [29], though promising [30],
failed to reproduce the bands, due to insufficient wall-normal
resolution. Another avenue to spatiotemporal dynamics is
through DNS of the Navier-Stokes equations but, as already
mentioned, long-duration simulations of wide enough domains
is still too demanding. Reduction of the wall-normal resolution
has been shown to be a viable option at a qualitative level [31]
but it was not clear that the quantitative shift observed in the
transitional range [Rg,Rt] was without hidden consequence for
the pattern formation problem.

The aim of the present work is at studying, by means
of fully resolved DNS of the Navier-Stokes equations, what
happens when the system size L (to be defined more precisely
later) increases and the temporal dynamics gives way to
spatiotemporal dynamics. The next section anticipates the
outcome of the study before giving details on the numerics.
Section III contains the main results extracted from the
numerical simulations as well as the bifurcation diagram. The
final section summarizes the study and draws conclusions.

II. GENERAL FRAMEWORK FOR THE STUDY OF
TRANSITIONAL PCF

A. Expected bifurcation diagram for the turbulent-laminar
transition

Figure 2 gives a schematic three-dimensional view of the
bifurcation diagram for transitional PCF in the two well-
studied cases of MFU-like systems and large-aspect-ratio
systems, and proposes an interpolation between these two
cases as an educated guess. We use R, D, and L as the
coordinate system. In addition to R, the Reynolds number,
D is a measure of the distance to laminar flow, e.g., the
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FIG. 2. (Color online) Schematic of the expected bifurcation
diagram for PCF including the locations of domains with size of
the order of the MFU, and that of pattern-forming systems.

time-averaged, domain-averaged rms of the velocity departure
from the laminar flow profile, and L is the characteristic
lateral domain size. The diagram shows two thick black lines
in two (R-D) planes, one at L = O(MFU) and the other at
L = O(100 MFU) where “100” is just meant to be a large
number typical of laboratory experiments. They sketch the
variation of D as a function of R, as the latter parameter
is gradually reduced from a high value where the system is
turbulent.

The first curve, at L = O(MFU) is typical of a subcritical
bifurcation with an abrupt jump from turbulence (D finite and
large) to laminar flow (D = 0). Here it is just a tentative sketch
of the ideal situation where temporal chaos would break down
in a single stage via attractor crisis [32]. This guess is consistent
with the observations of exponentially distributed lifetimes of
chaotic transients and the divergence of the average lifetime
as the putative crisis point is approached [21]. In fact, the very
existence of a crisis at finite R (here situated around R = 410)
has not been proved so far but this does not change our picture
drastically.

In contrast, the second line at L = O(100 MFU) cor-
responding to large-aspect-ratio systems is supported by
laboratory and computer experiments [4,13]. As R is lowered
below Rt ≈ 410, the distance D begins to decrease owing to
the coexistence of laminar and turbulent regions in variable
amounts in the whole domain. Whereas the turbulence inten-
sity seems to decrease only slightly with R, the main part of
the decrease of D, a quantity averaged over the whole surface
of the system, has to be attributed to the increase of the laminar
fraction, the complement of the turbulent fraction. The spatial
organization of this laminar-turbulent coexistence is expressed
by the term PATTERN (henceforth shortened as P) used in the
figure. At Rg ≈ 325, the distance D drops to zero because the
regime observed in the long-time limit is laminar, but this does
not mean that one cannot observe transiently turbulent patches
with smaller turbulent fraction and exponentially distributed
lifetimes [6].

The thick red dashed lines in Fig. 2 suggest changes in
the diagram as L varies, showing two regions more: LAMINAR

(L) and TURBULENT (T) or CHAOTIC (C). When L is large,
T actually means “featureless turbulence” but, when L is small,
“temporal chaos” would better reflect the spatial coherence in
the flow, hence the C. This coherence prevents the emergence
of subdomains that could be identified as laminar or turbulent
in the system, which is no longer the case when L gets
larger. For reasons of topological continuity, there should be
a crossover size (shown by a hatched band) below which PCF
displays two states, L and C, and above which three states, L,
P, and T, the hatched band extending into the C and T region to
mark the change from temporal chaos to spatiotemporal chaos.
It will be shown below that such a bifurcation diagram indeed
exists, with, however, some peculiarities in the P region.

B. Numerical simulation details

Direct numerical simulation of the Navier-Stokes equations
is carried out using Gibson’s well-tested, freely available DNS
software CHANNELFLOW [33]. It is a pseudospectral code using
Chebyshev polynomials in the wall-normal direction with
no-slip conditions at yp = ±1 and in-plane Fourier modes
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TABLE I. Computational domains and the corresponding grid
points.

Lx,Lz Nx,Nz Lx/Nx Lz/Nz L θ (deg)

5π,2π 64,32 0.25 0.19 16.9 21.8
24,9 94,32 0.26 0.28 25.6 20.6
32,15 128,64 0.25 0.23 35.3 25.1
60,26 192,96 0.31 0.27 65.4 23.4
70,30 282,128 0.25 0.23 76.2 23.2
80,35 384,192 0.21 0.18 87.3 23.6
90,40 384,192 0.23 0.21 98.5 24.0
100,45 384,192 0.26 0.23 109.6 24.2
128,64 512,256 0.25 0.25 143.1 26.6

adapted to periodic boundary conditions at distances Lx,z

in the (x,z) directions. The number of Chebyshev modes
is Ny = 33, which is well suited to resolve all the relevant
modes of turbulent flow in the range of R studied according
to Duguet et al. [13].1 The time step is such as to keep the
Courant-Friedrichs-Lewy (CFL) number between 0.4 and 0.6.
Some details of the various domains used in simulations are
given in Table I, where Nx and Nz are the number of collocation
points in the x and z directions, respectively, and Lx and Lz the
corresponding domain lengths. Since the 3/2 rule is applied
in all cases to remove aliasing, this corresponds to solutions in
the Fourier space using N ′

x,z = 2
3Nx,z modes, or equivalently

to space steps Lx,z/N
′
x,z = 3

2Lx,z/Nx,z. Domains are chosen
with increasing size, measured here by the diagonal length
L := √

L2
x + L2

z , which will also be used in referring to various
simulations. Moreover, in all cases θ := tan−1(Lz/Lx) is kept
between 20◦ and 30◦, consistent with previous investigations
[4,34]. For certain domain sizes, extra computations with an
increased number of grid points are also carried out to ensure
the independence of grid resolution, e.g., for L = 16.9, Nx

was raised to 96, and for L = 65.4, (Nx,Nz) were raised to
(282,128) without any significant quantitative changes in the
results.

The laminar base flow simply reads vlam = yx̂, where x̂ is
the unit vector in the streamwise direction. The velocity pertur-
bation ṽ is obtained as ṽ = v − yx̂, where v := ux̂ + vŷ + wẑ
is the instantaneous velocity field solution to the Navier-Stokes
equations that are simulated. For further reference, Fig. 3
displays typical snapshots of the solutions obtained for R =
410 in the different domains that we consider. We illustrate
the fluctuation field using u evaluated in the plane y = 0,
which is a direct trace of the perturbation since vlam ≡ 0 there.
The different domains are displayed, starting with L = 143.1
and decreasing the size from top left to bottom right. The
snapshots presented are approximately proportional to the
domain sizes. Colors red and blue correspond to u ≈ ±0.5.
These images show that the very large structures discovered
by Komminaho et al. [35], in a domain of size 28π × 8π

1This corresponds to an average wall-normal spacing 	y+ = 1.81
based on Rτ = 32; the superscript + denotes quantities scaled by the
viscous length unit ν/uτ , where uτ is the friction velocity

√
τw/ρ, τw

being the shear stress at the wall and ρ the fluid density; further, Rτ

is defined as uτh/ν and Rτ = 32 roughly corresponds to R = 420.

FIG. 3. (Color online) Streamwise velocity fluctuations (u) in the
plane y = 0 for different domains at R = 410: L = 143.1 (top left),
109.6 (top right), 98.5, 87.3, 76.2, 65.4, 35.3, 25.6, and 16.9 (bottom).

(L 
 91.5) at R = 750 deep inside the featureless regime, are
already present at R = 410, in the immediate vicinity of Rt. In
all cases the flow fields are dominated by streamwise elongated
(or streaky) structures which are more or less alternating in the
spanwise direction. In the smallest domains, the development
of these streaky structures is severely constrained. In larger
domains, i.e., for L = 76.2 and larger, pockets of laminar flow
can be observed already at R = 410. More details about these
structures and their significance as R is decreased will be
discussed in the subsequent sections.

The results to be described now, in connection to the
temporal vs spatiotemporal issue in domains of sizes varying
from a few units of MFU to ones where patterns or bands
appear, are all obtained using an “adiabatic protocol” to be
described below according to which, starting from a turbulent
state at high Reynolds number, R is reduced by steps of 	R

and the simulation is run for 	T , repeatedly down to the
laminar regime.

III. RESULTS

A. Fluctuations in varying domain size

Here we use two global measures of fluctuation intensity,
the overall rate of energy dissipation per unit volume,

D := 1

LxLyLz

∫ Lx

0

∫ 1

−1

∫ Lz

0
(|∇u|2 + |∇v|2

+ |∇w|2) dx dy dz, (1)

where Ly = 2, and the rate of mechanical energy input,

I := 1

LxLyLz

∫ Lx

0

∫ Lz

0

(
∂u

∂y

∣∣∣∣
y=1

+ ∂u

∂y

∣∣∣∣
y=−1

)
dx dz. (2)

They are normalized such that, for the laminar solution, both
D and I are equal to 1. For any flow field, on average D is
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FIG. 4. (Color online) Input I vs dissipation D as a function of
time at different R; L = 16.9 (a), 35.3 (b), 76.2 (c), and 143.1 (d).
See text for details.

equal to I, and their instantaneous difference is a measure of
the fluctuation of the system’s energy:

E(t) := 1

LxLyLz

∫ Lx

0

∫ 1

−1

∫ Lz

0

1

2
‖v(x,y,z; t)‖2 dx dy dz,

(3)

so that, directly from the Navier-Stokes equations, one derives
dE/dt = R−1(I − D).

Figure 4 shows the trajectories followed by the system
as projected on the D-I plane for four increasing domain
sizes L: 16.9, 35.3, 76.2, and 143.1. An adiabatic protocol
is followed, similar to the annealing experiment performed
by Schmiegel and Eckhardt [36] in a MFU-sized system or
Barkley and Tuckerman [12] in their oblique domain. We
start at R = 450 for the smallest domain and at R = 420
for the others. By adiabatic, we mean that R is reduced
by steps 	R every 	T , the final state at a given R being
used as initial condition for the simulation at R − 	R.
Usually we take 	T = 103 and 	R = 10 for R � 320 and
	R = 5 below 320. Not all the traces are shown in order
not to overprint the figure. Traces tending to the (1,1) point
in the D-I plane express turbulent → laminar breakdown,
which is the case for R = 400 when L = 16.9, R = 370
for L = 35.3, etc. This is also the case for R = 300 when
L = 143.1 but the simulation has been interrupted before
complete relaxation toward the laminar regime. For the
smallest domain, it is observed that the trajectory quickly
falls in the neighborhood of the diagonal (D = I) and then
continues to revolve in a region along this line. Decreasing R

results in a slight decrease in the wandering but the point
representing the state of the system stays along the diagonal
and close to it. As the domain size is increased, the amplitudes
of the excursions along the diagonal, and away from it,
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FIG. 5. (Color online) Distance to laminar flow (Urms) at different
R for L = 16.9. Adiabatic protocol with time series of duration 	T =
5 × 103.

decrease and the dynamics seems slower; the transition from
one R to another also seems smoother. These characteristics
can be understood as the result of averaging over larger
domains, in connection with the extensive character of the
featureless turbulent regime examined in Sec. III B below.

A complementary piece of information is obtained from the
distance to laminar flow, whose time average was proposed in
Fig. 2 to characterize the flow regime on a global scale. As a
relevant measure of the distance, we take the volume-averaged
root-mean-square value of the velocity perturbation ṽ, here
denoted Urms. Time series of this quantity during simulations
performed according to the adiabatic protocol described earlier
are shown in Figs. 5 and 7 in two representative cases, L =
16.9 and L = 143.1, respectively:

(a) As seen in Fig. 5 for L = 16.9, while the average of
Urms for different R does not vary much, at some reduced R

the flow suddenly relaminarizes. This process was found to be
probabilistic, e.g., by Schneider et al. [37], and explained as
arising from chaotic transients associated with the dynamics
around a tangle in phase space. Snapshots taken during the
decay of the chaotic state at R = 380 are displayed in Fig. 6,
bottom. Whereas images taken before decay look similar to the
one at t = 2000, breakdown of the chaotic state is seen as a
fast damping of small-scale structures (t = 2050), leaving just
a pair of streaks (t = 2100,2150) that progressively fade away

z

x

FIG. 6. (Color online) Top: Distance to laminar flow (Urms) during
the end of the transient at R = 380 for L = 16.9. Bottom: Snapshots
during decay; time, corresponding to points on the graph, is indicated
below the images; exceptionally, the streamwise direction is along
the vertical.
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(t = 2250,2350). Here decay is observed for R = 380 whereas
a similar decay happened at R = 400 in the experiment
reported in Fig. 4(a), with different initial conditions and a
different protocol (	T = 103 instead of 5 × 103 here) but
this merely expresses the probabilistic character of chaotic
transients whose lifetimes are strongly sensitive to initial
conditions [21]. It should be noted that the exact size of the
domain certainly matters for such small systems since, using
their annealing protocol at a velocity corresponding to the rate
	R/	T = 2 × 10−3 of Fig. 5, Schmiegel and Eckhardt [36]
found that transient chaotic dynamics with a lifetime of order
2500 time units could be maintained down to R 
 310 in a
system of size 2π × π , whereas in a system of size 5π × 2π

we obtain short-lived chaotic transients already at R = 380
(though we have not performed a detailed statistical study).
On the other hand, a definite mark of spatiotemporal dynamics
will bear a much weaker sensitivity to the precise in-plane
dimensions of the system.

(b) When L = 143.1, upon further lowering of R below
400, the average value of Urms is seen to decrease regularly
with R until relaminarization occurs, here for R = 300. Also
shown in Fig. 7 are the snapshots of u at various R (indicated
at top left) at the end of a simulation step (	T = 1000). At
R = 380, laminar troughs, i.e., small patches where turbulence
seems depleted, can be observed (and not yet patterns). Upon
further reduction of R the troughs join to form a well-defined
pattern of oblique bands, alternately laminar and turbulent
(snapshot at R = 360). The subsequent decrease in Urms is
due to the increase in the width of the laminar band. The final
decay to laminar flow is neither sudden nor uniform in space
as in small domains, but through a local breaking of the band
leaving separated turbulent patches (see snapshot at R = 300)
that recede and disappear. Only at the very last stage, when the
turbulent patches have reached a small size, do they collapse
under the effects of viscous dissipation like the flow in small
domains. Throughout the decay, the internal structure of the
turbulent spots is not fundamentally different from that of
spots growing from a finite-amplitude localized disturbance at
higher Reynolds numbers, as obtained experimentally [6,7,10]

FIG. 7. (Color online) Distance to laminar flow (Urms) at dif-
ferent R for L = 143.1 (θ = 26.6◦). Inserted figures show snap-
shots of u at various R (indicated on top left) after simulation
over 	T = 103.

or numerically [13,38]. It should be noted that, here, decay is
observed at R = 300 while experiments at large aspect ratio
would rather suggest decay for R < Rg ≈ 325. A first reason
for this delayed breakdown may be that periodic boundary
conditions tend to stabilize the pattern. A second, certainly
more important, reason is that according to our adiabatic
protocol, R is changed by 	R every 	T and that 	R may be
too large and 	T too small. Basically, the systems “knows”
at which value of R the simulation is running only after
several viscous relaxation times τv = Rτa, where τa is the
advection time h/Up, which is also our time unit. Accordingly,
	T = 103 ∼ 3τv, which is barely sufficient to reach the steady
state. This is all the more true since, owing to the subcritical
character of the laminar-turbulent coexistence, we should
allow for long waiting times implied by the nucleation of the
stable (laminar) state within the metastable (turbulent) state at
the origin of the breaking of the band that causes the decay [39].
The need for long-lasting simulations in wide enough systems
was indeed a strong motivation to considering under-resolved
DNS as a modeling strategy [31].

B. From temporal to spatiotemporal dynamics through
probability distributions

From a statistical point of view, energy fluctuations are
best characterized by their probability distribution functions
(PDFs). Figure 8 plots, in lin-log coordinates, the normalized
histograms �(E) of E(t) defined as the volume average
of 1

2 ṽ2, i.e., E = 1
2 (Urms)2, and recorded for four different

domains, L = 16.9, 35.3, 76.2, and 98.5, at different values
of R, during runs of duration up to 3 × 104 time units.
This is much longer than for Fig. 5 or 7 and sufficient
for the present purpose since the remark about the duration
of the simulation does not apply as long as the system
is not on the verge of decaying. All the curves display a
marked hump with some variations. For the smallest domain,
Fig. 8(a), neither the mean value (see also Fig. 5) nor the most
probable value (MPV) of E(t) changes significantly with R;
the tail present at large E is presumably a signature of the
underlying chaotic dynamics. For L = 35.3 in Fig. 8(b) the
curves are roughly parabolic (which corresponds to Gaussian
distributions), except for R = 380. The MPV stays fixed with
R as for L = 16.9 whereas the extended tail toward smaller E

for R = 380 suggests approaches to the laminar state which,
when sufficiently marked, lead to turbulence breakdown, so
that the system is likely not far above the value below which
decay can happen in a short time. The same tendency is
observed in Fig. 8(c) for a larger domain, L = 76.2, but now
a downward shift of the MPV of E is observed, which is
best attributed to the existence and growth of the laminar
fraction as R is decreased, a laminar fraction that will be
more conspicuous at larger L as shown in Fig. 7. The PDF
also displays a low-end tail for R = 360 which again implies
that turbulence breakdown can take place if one is patient
enough in pursuing the simulation, and will do so more easily
at a lower R. The last case is for L = 98.5 in Fig. 8(d),
showing cleaner parabolic shapes and a systematic shift in
the MPV of E. Since R = 330 is sufficiently above Rg = 325,
the system is not at risk to decay and the PDF has no low-E
tail.
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FIG. 8. (Color online) Probability distribution functions �(E) as functions of E for different system sizes; values of R are indicated in the
legends. (a) L = 16.9; (b) L = 35.3; (c) L = 76.2; (d) L = 98.5. Notice the different scales for E on the horizontal axis.

From these curves, one main feature emerges: the position
of the MPV may or may not be variable. Snapshots of the
solutions show that the decrease of the MPV with R reflects
the presence of a larger and larger region of the system which
has returned to laminar flow, temporarily or persistently, and
the PDFs tell us that the return is in a statistically significant
way. We interpret this as the signature of the change in the
dynamics from temporal to spatiotemporal and conclude that
one can decide this issue blindly from the consideration of
time series of E only. From the variation of the MPVs, one
can locate the change for L around 76.2. A secondary feature
is the presence or not of a low-end tail in the PDF of E, which
is an indication of the robustness of the state considered. In the
absence of a tail, the distribution is essentially Gaussian and
the system is not at risk to decay at the given value of R. If an
exponential tail is present, it means that the decay probability
is small but significant, which means that if the experiment is
long enough, the flow will decay.

Let us now consider the featureless turbulent regime at
R = 420 where the PDFs displayed in Fig. 8 are all nicely
one-humped. A quantitative characterization of their shapes is
obtained by fitting ln �(E) against a polynomial in the form
aE2 + bE + c. The width of the distribution can be defined
from a as σ := |a|−1/2. By eye, it can be seen in Fig. 8 that
σ decreases as L increases, which can be understood as a
consequence of averaging over wider domains. Assuming local
random behavior at the scale of the MFU, one can view the
system as an assembly of independent subsystems (which is of

course not the case but may serve as a template), in which case
one expects the standard deviation of the fluctuations to vary
as the inverse square root of their number, i.e., as the inverse
of the square root of the system’s surface. Accordingly, in
Fig. 9 we plot σ compensated by its presumed variation with
the size, i.e., σ

√
LxLz as a function of

√
LxLz. The fact that

this quantity is indeed approximately constant supports the
underlying assumption but, by virtue of contrast, also suggests
that it will have to be reexamined when the pattern sets in as a
result of the interaction between MFUs at lower R.

C. Correlation lengths and the temporal-spatiotemporal issue

In order to gain further insight into the
temporal→spatiotemporal transition at a “microscopic”

0 20 40 60
0  

0.2

0.4

(L
x
L

z
)1/2

σ 
(L

xL z)1/
2

FIG. 9. Width σ of the PDFs of E compensated for the presumed
extensive behavior of the featureless turbulent regime at R = 420 for
L = 16.9, 35.3, 76.2, and 98.5, from data presented in Fig. 8.
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level, we now study the changes in the correlation functions
upon domain size variation. Here we focus on the streamwise
perturbation velocity component obtained upon subtraction of
the base flow profile, ũ = u − y. We consider the streamwise
and spanwise time-averaged correlation functions in the
mid-plane y = 0 where the base flow is strictly zero. They are
defined as

Cx :=
( 〈ũ(x + xx̂,t)ũ(x,t)〉

〈ũ(x,t)ũ(x,t)〉
)

,

(4)

Cz :=
( 〈ũ(x + zẑ,t)ũ(x,t)〉

〈ũ(x,t)ũ(x,t)〉
)

,

where x is the in-plane running point while 〈〉 and the overbars
denote averaging over space and time, respectively. Owing to
the periodic boundary conditions in z and x, the correlation
functions are periodic with periods Lx and Lz. Furthermore,
symmetry considerations lead one to expect them to be
symmetric with respect to the origin, which is approximately
the case. Accordingly, we only display one-sided symmetry-
averaged correlations profiles over [0,Lz/2] or [0,Lx/2] for the
different domains that we have considered. They are presented
for R = 410 in Fig. 10 which shows Cz and Cx , in panels
(a),(c) and (b),(d), respectively.

Due to the constraints caused by the boundary conditions,
both Cz and Cx show that small domains are highly correlated.
It should however be noticed that Cz passes zero even for the
smallest domain, which is consistent with the presence of a
pair of streaks (see Fig. 3). Information about processes at
the scale of the streak, such as the regeneration mechanism
of turbulence, can thus be studied in such domains. That the
process depends much more on the velocity profile variation
in z than in x can be understood from the high level of
correlation along x [Fig. 10(b), L = 16.9]. With increasing
domain size L, Cz oscillates with a period typical of the
streaks. Oscillations seem to persist even at L = 143.1. On the
other hand, the streamwise correlation function Cx decreases
much more slowly and may reach zero, testifying to the very
elongated character of these structures.

The above discussion shows that L = 76.2–87.3 forms
some kind of a boundary between the two distinct regions
which exhibit temporal and spatiotemporal dynamics. This
boundary will be further explored in Sec. III D below. It
is suggested that only domains able to accommodate these
naturally existing elongated streaks are those that will exhibit
banded patterns at lower R. In this connection let us notice
that, in their work, Barkley and Tuckerman were implicitly
taking this feature into account by using their tilted domains
since periodic conditions were correlating streaks that were
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FIG. 10. (Color online) Time-averaged streamwise velocity correlations at R = 410 for various domain sizes as indicated in the legends.
(a),(c) Along the direction ẑ. (b),(d) Along the streamwise direction x̂. Averaging over 1000 successive snapshots taken every δt = 1 is
performed.
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shifted by one spanwise MFU width λz so that their streamwise
amplitude could be modulated on a scale much longer than
the period imposed by their pseudostreamwise conditions
at Lx ′ = λz/ sin θ , where θ is the angle between their
domain short direction and the x axis [12]. In the simulation
corresponding to their Fig. 1, modulation took place over
nine periods, corresponding to simulations in a periodic box
of size Lx = 97 and Lz = 43 aligned with the flow. The
limitation of their approach is that correlation in the spanwise
direction is somewhat enhanced by the shift condition, which
ends in patterns that look much more regular than those one
obtains in boxes like our largest ones, L = 109 (Lx = 100,
Lz = 45, close to their effective dimensions) or L = 143.1
(see snapshots in Fig. 7).

D. Bifurcation diagram of transition in plane Couette flow

Bifurcation diagrams for PCF at different values of L

are displayed in Fig. 11, left panel. In the right panel we
show them unfolded according to the system size, i.e., in a
R-L-D coordinate system, the presentation adopted for Fig. 2.
The diagrams are all obtained following the same adiabatic
protocol with 	R = 10 and 	T = 103, starting from states
prepared at R = 420, except for systems with L = 16.9 and
25.6 which are started at R = 450. The distance D used to
characterize the state of the system is Urms averaged over the
last 600 time units. In all cases, an abrupt transition from
a sustained turbulent regime to laminar flow is observed as
R is decreased. It should however be stressed that the exact
quantitative position of the jump depends on the protocol:

(a) When L is small, the transition is probabilistic [21,37]
but a single trajectory is followed. A better determination
would necessitate the determination of PDFs of transient
lifetimes and the value of R at which the mean lifetime is
larger than some value beyond which the flow regime would
be considered as sustained.

(b) At larger L, the relaxation of turbulence also has
probabilistic features and choosing 	T too small may not

ensure us that the system has explored a sufficiently large part
of its accessible phase space so that the result is still sensitive
to the initial state at the value of R considered, which is the
state at the end of the simulation at R + 	R. On the other
hand, when 	R is too large, setting the system at R from
R + 	R can be a large perturbation, which may place the
initial condition outside the attraction basin of the turbulent
state at the considered R, leading to an overestimation of the
R corresponding to the jump in the bifurcation diagram for that
L. This case corresponds to quench experiments in which the
initial state is systematically taken to be fully turbulent [6]. The
risk is more limited if 	R is small enough as in the adiabatic
protocol that we are following.

We are confident that the decrease of the Reynolds number
at which decay to laminar flow occurs seen in Fig. 11 as
L increases is not an artifact of the protocol. This decrease
in R means that, when L is increased, the flow needs to be
forced less vigorously to remain turbulent because its effective
phase space has enlarged so that it has more freedom to
evolve nontrivially in a spatiotemporal manner, rather than
strictly temporally when it is confined by the lateral boundary
conditions at small distances. The increase in the region of
nonlaminar flow with increasing domain size can also be
inferred from the plot in Fig. 12 where colors from blue = zero
to red show Urms in increasing values. Also shown in this figure
are black-and-white (BW) coded snapshots of the system for a
series of sizes and Reynolds numbers. The corresponding cases
are indicated by white dots in the left panel. These images are
obtained by coarse-graining ‖ṽ‖2 from the final state of each
simulation at the corresponding R in cells of size 1 × 1 × 1,
following a procedure described in [40]. The top (y � 0) and
bottom (y � 0) cells are separately coarse grained to take the
lateral shifts of the laminar-turbulent regions in both halves
into account [2,34,40]. BW thresholding is then performed, a
pixel being termed “turbulent” and B colored when the mean of
the energy of the two corresponding stacked cells is larger than
half the average energy in the whole system, “laminar” and W
colored otherwise. This automated cutoff criterion has been
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FIG. 11. (Color online) (a) Bifurcation diagrams in the R-D plane for the different system sizes indicated in the legend, with D ≡ Urms.
(b) Three-dimensional unfolding of (a) according to system size L.
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FIG. 12. (Color online) Left:Bifurcation diagram in the R-L plane with color coded values of D ≡ Urms; red (rendered medium gray)
corresponds to the largest value of D (turbulent at large L, chaotic at small L); blue (rendered dark gray) is for laminar flow where D = 0;
patterns and rigged states have intermediate values of D from yellow to orange (rendered light to medium gray). Above and on the right: BW
representation of turbulent-laminar patches for L = 143.1 (top), 98.5, 76.2, and 35.3 (bottom). Corresponding Reynolds numbers are indicated
at the bottom right corner of each image. White dots in the left panel show the location of the states corresponding to the BW plots. Cases
(L = 143.1, R = 300) and (L = 98.5, R = 320) are decaying and eventually become laminar.

found suitable across the whole ranges of R and domain sizes
studied, yielding pictures visually similar to their y-averaged,
non-coarse-grained counterparts.

The observation of the bifurcation diagrams in Fig. 11
(left) does not lend itself to clear differentiation of the regions
where well-oriented patterns occur and where they do not,
though for domains L = 65.4 and smaller, Urms is seen not to
vary much before decay, whereas in larger domains a gradual
change is observed. However, the BW energy plots in Fig. 12,
e.g., (L = 143.1,R = 400) or (L = 98.5,R = 380), show that
apart from the patterned region, there exists a parameter
region where the surface of the system is “moth eaten” or
“riddled” with fluctuating laminar troughs. This can also be
realized from the changing magnitude of Urms in the color
plot if its slow decrease with R is attributed to a concomitant
increase of the laminar fraction. The hatched domain limited
by a white dashed line in the left part of Fig. 12 roughly
indicates the presence of these riddled states. This particular
regime thus appears as a precursor to the banded regime when
the patterns are approached by increasing L or decreasing
R, situated in the bifurcation diagram like the intermittent
regime described by Prigent et al. [4] and Barkley and
Tuckerman [12] and to which it corresponds closely. A possible
equivalent of it in pipe flow seems to be the intermittent
laminar-flash regime described in [17] near the transition to
uniform turbulence that we call featureless. In our numerical
configuration, the bifurcation diagram reaches its eventual
large-aspect-ratio limit “featureless-riddled-banded-laminar”
for systems of sizes beyond L = 76.2.

Further visualization in Fig. 13 shows systems with L �
76.2 where one can visually observe the tendency to form a
well-organized pattern as L is increased. Below this domain
size, i.e., L � 65.4, no pattern or troughs could be observed
upon reducing R down to the final laminar state. Accordingly,
patterns seems to need systems larger than some minimal size

to exist. However, this size should rather be considered to mark
some crossover than to be “critical” in the usual sense because
there cannot be any decisive criterion to decide whether one
has more or fewer oblique, elongated, laminar troughs as for
L = 76.2, or already well-formed bands, as for L = 87.3. As
noted above, these laminar troughs are also found in very large
domains at higher R and are precursors to the bands when, at
given L, R is reduced adiabatically from well above Rt. In fact,
from the plots in Fig. 11 (left), one can see that R = 350 is
close to the transition to laminar flow for L = 76.2 and 87.3,
and hence at the corner of the white hatched region in Fig. 12.
Systems in the crossover region thus go from turbulent to
laminar by skipping the patterned stage but still going through
the intermittent-riddled regime.

FIG. 13. (Color online) Streamwise velocity fluctuation u in the
plane y = 0 for different domains at R = 350: L = 76.2, (θ =
23.2◦, top), 87.3 (θ = 23.6◦, center left), 98.5 (θ = 24.0◦, center
right), 109.6 (θ = 24.2◦, bottom left), and 143.1 (θ = 26.6◦, bottom
right).
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IV. SUMMARY AND CONCLUSIONS

The formation of banded patterns in flows such as plane
Couette flow, circular Couette flow, and plane Poiseuille flow
is typically a spatiotemporal problem. And true enough, this
phenomenon has been experimentally observed in domains
with lateral dimensions that are more than two orders of
magnitude larger than the wall-normal distance. Numerical
simulations of the flow field in these large systems have
become possible only recently, thanks to the less stringent
resolution requirements to resolve all the scales of low-
R turbulent flow and to our ever-increasing computational
capabilities. Despite these favorable circumstances, simula-
tions cannot be performed over long enough durations to
give definite answers about the statistics of the transitional
regime in the large-aspect-ratio limit. Previously, with fully
developed wall-bounded turbulence in mind (high R), nu-
merical computations and theory were more focused on
small domains. In the moderate-R range of interest to the
problem of transition, these small systems are best analyzed
within the framework of finite-dimensional dynamical sys-
tems theory. The present work stays in between these two
types of studies, wherein we start with low-R turbulence
in small domains where temporal dynamics takes place,
and increase the domain size gradually to reach the spa-
tiotemporal regime. An adiabatic decrease of R for each
domain then gives information about the different regimes
visited by the system from featureless turbulence to laminar
flow.

Upon decreasing R, starting from a featureless fully
turbulent flow, we have obtained the result that, in small
systems, the mean value of the perturbation energy remains
roughly constant as a function of R down to the point where
the chaotic regime breaks down into laminar flow, whereas
it is regularly decreasing in larger systems. Furthermore,
visualization of the flow field indicates that the mean energy
variation corresponds to the system entering a spatiotemporal
regime that at first (high R) presents fluctuating laminar
troughs and later (low R) steady oblique patterns of bands
alternately laminar and turbulent, but absent in the small
systems in which spatial coherence implies a mostly temporal
dynamics.

In the featureless regime, fluctuations of the mean per-
turbation energy have distribution probabilities with a sin-
gle marked hump around the mean for all domain sizes.
Their variance decreases with increasing system size, and
fluctuations in the widest domains are close to normal,
which can be understood as a result of the additivity of
local (MFU scale) fluctuations that remain little correlated
as long as the system is sufficiently far from laminar break-
down, expressing the extensive character of the featureless
regime.

A study of the spanwise and streamwise dependence of
the streamwise velocity component correlation function as
functions of the system size has also been performed. The
spanwise variation accounts for the self-sustaining process
by displaying a periodic dependence at the scale expected
for the streaks. More importantly, the slow streamwise
variation expresses correlations reinforced by the periodic
boundary conditions in the smallest systems. The ability

to take into account this streamwise dependence properly
seems an important ingredient in order to explain the ab-
sence of patterning noticed in these systems. Indirectly,
this also explain the observation of the pattern in the
Barkley-Tuckerman tilted but short domains, since their
domain width was chosen to fulfill a commensurability
condition ensuring the periodic continuation of streaks at
the tilt angle observed in the experiments, thus mimick-
ing longer domains in the streamwise direction. In our
computations, patterns were found for L > 76.2, i.e., Lx >

70.
Inspection of flow fields (e.g., Fig. 13 or the BW insets

in Fig. 12) indicates that, in accordance with the information
gained from correlation functions, one can only observe inter-
mittent laminar troughs for L = 76.2, and see any organized
pattern of laminar-turbulent oblique bands only for L = 87.3
and beyond.

In Fig. 2, a conjecture was presented about the bifur-
cation diagram of PCF, connecting systems of MFU size
exhibiting temporal dynamics [37] to large-aspect-ratio sys-
tems displaying spatiotemporal dynamics and patterns [4].
Substantiating this conjecture at a quantitative level, Figs. 11
and 12 display the bifurcation diagrams obtained for various
system sizes. The smallest domains follow the direct route
chaotic flow → laminar flow (via chaotic transients), whereas
in very large domains one has turbulent flow → riddled
regime → oblique pattern → laminar flow. For L in the range
75–85 the oblique pattern stage is skipped, which marks
the crossover from temporal to spatiotemporal dynamics.
Furthermore, the threshold at which the pattern decays, Rg,
is shown to decrease with increasing system size, seemingly
tending to a constant in the large-aspect-ratio limit. A precise
quantitative estimate of this limit was, however, outside the
scope of this paper since the final turbulence breakdown still
keeps probabilistic features that require statistics (longer time
series, large number of independent realizations), especially
in regard to the occurrence of turbulent patches issued
from the fragmented bands and next turned into turbulent
spots closer to Rg. At any rate the exact value is of little
interest, all the more that periodic boundary conditions tend
to stabilize the pattern, which thus artificially decreases Rg

at moderate aspect ratios. The observed trends (decrease of
Rg as L is increased, shrinking of the band regime to the
benefit of the intermittent riddled regime), however, go in the
same direction as the experimental findings, showing that at
intermediate aspect ratio, the transitional range is pushed to
higher R and that patterns can hardly be observed—see [10]
and [7, Sec. 4.4]—though no quantitative link can be
made in view of the differences in the lateral boundary
conditions.

All in all, the recognition of a crossover size beyond which
the transition to or from turbulence in PCF is undoubtedly a
spatiotemporal process, and the need for a faithful account
of streamwise correlations at this scale, either directly or
indirectly via the tilted-domain trick, seem our most important
observations. They might help us to unravel the physi-
cal mechanism behind the organization of low-R turbu-
lence in wall-bounded flows, which still largely remains an
enigma.
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