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The stability of the Taylor–Couette flow is analysed when there is a stable density
stratification along the axial direction and when the flow is centrifugally unstable, i.e.
in the Rayleigh-unstable regime. It is shown that not only the centrifugal instability
but also the strato-rotational instability can occur. These two instabilities can be
explained and well described by means of a Wentzel–Kramers–Brillouin–Jeffreys
asymptotic analysis for large axial wavenumbers in inviscid and non-diffusive
limits. In the presence of viscosity and diffusion, numerical results reveal that
the strato-rotational instability becomes dominant over the centrifugal instability at
the onset of instability when the axial density stratification is sufficiently strong.
Linear transient energy growth is next investigated for counter-rotating cylinders
in the stable regime of the Froude number–Reynolds number parameter space. We
show that there exist two types of transient growth mechanism analogous to the lift
up and the Orr mechanisms in homogeneous fluids but with the additional effect
of density perturbations. The dominant mechanism depends on the stratification:
when the stratification is strong, non-axisymmetric three-dimensional perturbations
achieve the optimal energy growth through the Orr mechanism while for moderate
stratification, axisymmetric perturbations lead to the optimal transient growth by a
lift-up mechanism involving internal waves.

Key words: instability, stratified flows, Taylor–Couette flow

1. Introduction

The Taylor–Couette flow, a flow between two independently rotating concentric
cylinders, has been investigated for decades (Taylor 1923; Coles 1965; Andereck,
Liu & Swinney 1986), and is still popular and being actively investigated nowadays
(see e.g. Grossmann, Lohse & Sun 2016) to understand typical characteristics of
fluid flows such as stability, transition, intermittency, bifurcation, turbulence, etc. In
particular, the stability of the Taylor–Couette flow has received much attention in
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the fluid mechanics community. The angular velocity of the steady and axisymmetric
base flow is

Ω(r)= A+
B
r2
, A=

r2
oΩo − r2

iΩi

r2
o − r2

i
, B=

r2
i r2

o(Ωi −Ωo)

r2
o − r2

i
, (1.1a−c)

where ri, ro and Ωi, Ωo are the radius and the angular velocity of the inner and outer
cylinders, respectively. According to the Rayleigh criterion (Rayleigh 1917), inviscid
rotating flows are centrifugally unstable if there is a radius r where the Rayleigh
discriminant φ(r)= (1/r3)∂(r4Ω2)/∂r is negative, i.e. if the circulation decreases with
r. The centrifugal instability (CI) tends to restore a non-decreasing circulation by
secondary motions. According to the Rayleigh criterion, the flow (1.1) is centrifugally
unstable if µ < η2 where µ = Ωo/Ωi and η = ri/ro. In this paper, we refer to this
regime µ<η2 as the Rayleigh-unstable regime, i.e. inviscidly unstable (Maretzke, Hof
& Avila 2014). While Rayleigh (1917) considered only axisymmetric perturbations to
derive this criterion, a generalized criterion for non-axisymmetric perturbations has
been obtained recently by means of the Wentzel–Kramers–Brillouin–Jeffreys (WKBJ)
approximation (Billant & Gallaire 2005, 2013).

The Taylor–Couette flow with a stable axial stratification has also received much
attention from geophysicists and astrophysicists since it serves as a model for
equatorial flows in the atmosphere and oceans (Hitchman et al. 1987; Hua, Moore &
Le Gentil 1997b), or as a model for the Keplerian flow in accretion disks (Dubrulle
et al. 2005a,b). Withjack & Chen (1974, 1975), Boubnov, Gledzer & Hopfinger
(1995) and Caton, Janiaud & Hopfinger (2000) have mainly considered the regime
where only the inner cylinder rotates (µ = 0 < η2) which is centrifugally unstable.
They have shown both numerically and experimentally that the stratification tends
to suppress the CI. More recent work for arbitrary rotations of the two cylinders
has revealed that there exists another type of instability, called the strato-rotational
instability (SRI), which is due to a resonant interaction between inertia–gravity
waves trapped near the inner and outer cylinders (Molemaker, McWilliams & Yavneh
2001; Yavneh, McWilliams & Molemaker 2001; Dubrulle et al. 2005b; Shalybkov &
Rüdiger 2005; Le Bars & Le Gal 2007; Le Dizès & Riedinger 2010). These studies
have shown that the stratified Taylor–Couette flow is inviscidly unstable in the range
µ < 1, which is wider than the Rayleigh-unstable regime µ < η2. Recently, Park &
Billant (2013b) have shown that the SRI is also unstable when µ > 1 so that the
stratified Taylor–Couette flow is actually stable only for solid-body rotation (µ = 1).
They have also shown by means of a WKBJ analysis that the SRI is due to a reversal
of the radial group velocity of the two boundary trapped waves at the critical point
where the angular phase velocity of the waves equals the angular velocity of the base
flow. Alternatively, this instability mechanism can be interpreted in terms of wave
over-reflection at the critical point. The SRI has been mostly studied in the regime
µ > η2 which is Rayleigh stable. Very recently, Leclerq, Nguyen & Kerswell (2016)
have investigated the Rayleigh-unstable regime µ<η2. They have shown that the SRI
and CI co-exist in this regime and they have studied their competition. Recent studies
on vortices have also revealed that the CI is not always the dominant instability in
the Rayleigh-unstable regime (Park 2012; Park & Billant 2013a).

In the present paper, we shall further study the competition between the SRI and
CI in the regime µ < η2 in the inviscid limit and, then we shall map the dominant
instability in the Froude number–Reynolds number parameter space. In contrast to
Leclerq et al. (2016) who report that the SRI and CI are indistinguishable at onset,
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the analyses of these two instabilities in the inviscid limit will enable us to track
them as the Reynolds number is decreased and therefore distinguish the SRI from
the CI at onset. In addition, much stronger stratification (up to six times) and higher
azimuthal wavenumbers than considered by Leclerq et al. (2016) will be studied.
Another difference concerns the Schmidt number Sc= ν/D, where ν is the viscosity
and D the diffusivity. Leclerq et al. (2016) use Sc = 700 while we shall set Sc = 1
herein.

This study will be completed by an analysis of linear transient growth mechanisms
in the linearly stable regime of the Froude–Reynolds numbers parameter space.
The linear transient growth of the Taylor–Couette flow has been first investigated
in homogeneous fluids by Hristova et al. (2002) and Meseguer (2002) owing to
its potential importance in explaining subcritical transition to turbulence (Schmid
& Henningson 2001). Hristova et al. (2002) studied the effects of the Reynolds
number and the gap ratio η on axisymmetric perturbations for a given axial
wavelength λz = 2(ro − ri) and for exact counter-rotation of the cylinders, µ = −1.
They found that transient growth in this case can occur through the lift-up effect
and it becomes identical to that of the plane Couette flow for η close to unity.
Meseguer (2002) investigated the transient growth over wide ranges of inner and
outer angular speeds and for various axial and azimuthal wavenumbers for a given
small gap. He showed that non-axisymmetric perturbations can achieve larger transient
growth than axisymmetric ones. More recently, Maretzke et al. (2014) studied
thoroughly transient growths of the Taylor–Couette flow for various gap ratio η

and angular velocity ratio µ covering all linearly stable regimes. They showed
that non-axisymmetric perturbations lead to transient energy growth by the Orr
mechanism. Their numerical results show that the maximum energy growth Gmax
scales with the Reynolds number as Gmax ∼ Re2/3

s where Res is the shear Reynolds
number measuring the absolute shear in the flow. Maretzke et al. (2014) further
explained this scaling in the case of two-dimensional perturbations with zero axial
wavenumber by means of an asymptotic WKBJ analysis for large Res. The dominant
transient growth mechanism for the Taylor–Couette flow in non-Newtonian fluids has
been also recently investigated (Agbessi et al. 2015; Chen, Wan & Zhang 2015). In
contrast, there exists no study on the linear transient growth of the Taylor–Couette
flow in stratified fluids. Transient growth in stratified fluids has been studied only
for parallel shear layers, either with horizontal shear (Bakas & Farrell 2009a,b;
Arratia 2011) or with vertical shear (Farrell & Ioannou 1993; Bakas, Ioannou &
Kefaliakos 2001; Kaminski, Caulfield & Taylor 2014). In the case of horizontal shear,
optimal energy growth is achieved by three-dimensional perturbations through the Orr
mechanism and the excitation of internal waves. The configuration with horizontal
shear investigated by Arratia (2011) resembles closely to the stratified Taylor–Couette
flow. An important difference, however, is that the shear layer is unstable to the
normal-mode Kelvin–Helmholtz instability while we shall investigate here transient
growth of the stratified Taylor–Couette viscous flow in the stable regime of the
Froude–Reynolds numbers parameter space for exactly counter-rotating cylinders
µ=−1.

The paper is organized as follows. After having formulated the stability problem
in § 2, we focus in §§ 3 and 4 on the stability of the stratified Taylor–Couette
flow for the angular velocity ratios µ = −1 and µ = 0.5 which are thought to be
typical examples of the Rayleigh-unstable regimes of counter-rotation and co-rotation,
respectively. The gap ratio will be fixed for η = 0.9 throughout the paper. We shall
demonstrate that both the CI and SRI can appear and compete in these regimes.
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To show this, numerical and asymptotic stability analyses are first performed in
the inviscid and non-diffusive limits. Next, the dominant instability in presence of
viscosity and diffusion is determined numerically as a function of the Reynolds
number and the Froude number. In § 5, transient growth is investigated when the
stratified Taylor–Couette viscous flow is linearly stable for µ = −1. The maximum
energy growth and associated growth mechanism are determined over all axial and
azimuthal wavenumbers as a function of the Reynolds and Froude numbers.

2. Problem formulation
2.1. Stability equations

We perform a linear stability analysis of the base flow (1.1) when there is a stable
density stratification in the axial direction with a constant Brunt–Väisälä frequency
N =
√
−(g/ρ0)∂ρ̄/∂z, where g is the gravity, ρ0 is the reference density and ρ̄(z)

is the basic density profile in the vertical direction z. To non-dimensionalize the
problem, we use time scale 1/Ωo and length scale ri. The pressure and density
perturbations are non-dimensionalized by ρ0Ω

2
o r2

i and ρ0N2ri/g, respectively. For
simplicity, the non-dimensional angular velocity and radius will be denoted Ω and
r, i.e. with the same notation as the dimensional variables in (1.1). Under the
Boussinesq approximation, the linearized non-dimensional momentum, continuity and
density equations for the perturbations of velocity (ũr, ũθ , ũz), pressure p̃ and density
ρ̃ in cylindrical coordinates (r, θ, z) are

∂ ũr

∂t
=−Ω

∂ ũr

∂θ
+ 2Ω ũθ −

∂ p̃
∂r
+

1
Re

[
∇̃

2ũr −
ũr

r2
−

2
r2

∂ ũθ
∂θ

]
, (2.1)

∂ ũθ
∂t
=−Ω

∂ ũθ
∂θ
− Zũr −

1
r
∂ p̃
∂θ
+

1
Re

[
∇̃

2ũθ −
ũθ
r2
+

2
r2

∂ ũr

∂θ

]
, (2.2)

∂ ũz

∂t
=−Ω

∂ ũz

∂θ
−
∂ p̃
∂z
−

1
F2
ρ̃ +

1
Re
∇̃

2ũz, (2.3)

1
r
∂(rũr)

∂r
+

1
r
∂ ũθ
∂θ
+
∂ ũz

∂z
= 0, (2.4)

∂ρ̃

∂t
=−Ω

∂ρ̃

∂θ
+ ũz +

1
Re Sc

∇̃
2ρ̃, (2.5)

where Z = (1/r)(∂/∂r)(r2Ω) is the axial vorticity of the base flow, ∇̃2
= ∂2/∂r2

+

(1/r)(∂/∂r)+ (1/r2)(∂2/∂θ 2)+ ∂2/∂z2 the Laplacian operator, F =Ωo/N the Froude
number, Re = Ωor2

i /ν the Reynolds number and Sc = ν/D the Schmidt number,
with ν the viscosity and D the diffusivity. The Schmidt number will be set to unity
throughout the paper. Writing the perturbations in the form of normal modes as

(ũr, ũθ , ũz, p̃, ρ̃)= (ur(r), uθ(r), uz(r), p(r), ρ(r))ei(kz+mθ−ωt)
+ c.c., (2.6)

where k is the vertical wavenumber, m is the azimuthal wavenumber, ω is the complex
frequency with ω=ωr + iωi where ωr is the frequency and ωi is the growth rate, and
c.c. denotes the complex conjugate, equations (2.1)–(2.5) become:

i(−ω+mΩ)ur = 2Ωuθ −
dp
dr
+

1
Re

[
∇

2ur −
ur

r2
−

2im
r2

uθ

]
, (2.7)
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i(−ω+mΩ)uθ =−Zur −
imp

r
+

1
Re

[
∇

2uθ −
uθ
r2
+

2im
r2

ur

]
, (2.8)

i(−ω+mΩ)uz =−ikp−
1

F2
ρ +

1
Re
∇

2uz, (2.9)

1
r

d(rur)

dr
+

imuθ
r
+ ikuz = 0, (2.10)

i(−ω+mΩ)ρ = uz +
1

Re Sc
∇

2ρ, (2.11)

where ∇2
= d2/dr2

+ (1/r)(d/dr) − (k2
+ m2/r2) is the Laplacian operator in modal

form. Because of the symmetry ω(k,m)=ω(−k,m)=−ω∗(−k,−m) where ∗ denotes
the complex conjugate, we can only consider non-negative k and m. Equations (2.7)–
(2.11) can be reduced to three equations with variables ur, uθ and ρ in the form

(−iω)Bv = Av, (2.12)

where v = (ur, uθ , ρ)T, T denotes the matrix transpose and A and B are 3 × 3
differential operator matrices (see Park (2012) for the detailed expressions of A
and B). The eigenvalue problem (2.12) is solved numerically by the Chebyshev
collocation spectral method (Antkowiak 2005). The number of collocation points
used in the radial direction is between 80 and 120.

In the inviscid and non-diffusive limits (i.e. ν=D= 0), (2.7)–(2.11) can be reduced
to a single equation for ur(r)

d2ur

dr2
+

(
1
r
−

Q′

Q

)
dur

dr
+

[
k2β −

m2

r2
−

mrQ
s

(
Z

r2Q

)′
+Q

(
1

rQ

)′]
ur(r)= 0, (2.13)

where s(r)=−ω+mΩ is the Doppler-shifted frequency, Q(r)=m2/r2
− k2s2/(1/F2

−

s2), β(r)= (s2
− φ)/(1/F2

− s2), φ(r)= 2ZΩ is the Rayleigh discriminant and prime
denotes the differentiation with respect to r (Billant & Le Dizès 2009; Le Dizès &
Billant 2009; Park & Billant 2012).

2.2. Transient growth
Transient growth of perturbations will be investigated in the regimes that are linearly
stable according to the previous modal stability analysis. To this end, we consider the
total energy of the perturbations defined as

E(t)=
1
2

∫ 1/η

1

(
|ûr|

2
+ |ûθ |2 + |ûz|

2
+

1
F2
|ρ̂|2
)

r dr, (2.14)

where |u|2 = u∗u and the perturbations are no longer written in terms of a single
frequency:

(ũr, ũθ , ũz, ρ̃)= (ûr(r, t), ûθ(r, t), ûz(r, t), ρ̂(r, t))ei(kz+mθ)
+ c.c. (2.15)

This can be expressed in terms of v̂ = (ûr, ûθ , ρ̂)T and q̂ = (ûr, ûθ , ûz, ρ̂/F)T ≡ Pv̂
where P is the operator transforming v̂ into q̂,

E(t)=
1
2

∫ 1/η

1
q̂†q̂r dr=

1
2

∫ 1/η

1
v̂

†P†Pv̂r dr≡ ‖v̂(t)‖E, (2.16)
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where the superscript † denotes the Hermitian. Rewriting the (2.12) as an evolution
equation

∂ v̂

∂t
= Lv̂, (2.17)

where L = B−1A, the solution can be expressed as v̂(t) = exp(tL)v̂(0). The optimal
energy growth G(t) is then defined as

G(t)≡max
v̂(0)

E(t)
E(0)

=max
v̂(0)

‖v̂(t)‖E

‖v̂(0)‖E
=max

v̂(0)

‖exp(tL)v̂(0)‖E

‖v̂(0)‖E
= ‖exp(tL)‖E. (2.18)

To compute the optimal energy growth G(t) and the maximum optimal energy growth
Gmax=maxt>0 G(t), we use the eigenvector expansion method (Schmid & Henningson
2001). We decompose v̂ into the first Ne least stable eigenvectors v̂n of L as

v̂(r, t)=
Ne∑

n=1

κn(t)v̂n(r), (2.19)

where κn(t) is the expansion coefficient satisfying

dκ

dt
=Λκ, (2.20)

where κ = (κ1, . . . , κNe)
T and Λ = diag(−iω1, . . . , −iωNe) with the Ne least stable

eigenvalues. Then the total energy of perturbations becomes

E(t)= ‖v̂‖E =
1
2

∫ 1/η

1

(
Ne∑
i=1

κiv̂i

)†

P†P

(
Ne∑
j=1

κjv̂j

)
r dr=

Ne∑
i=1

Ne∑
j=1

κ∗i Mijκj, (2.21)

where

Mij =
1
2

∫ 1/η

1
v̂

†
i P†Pv̂jr dr. (2.22)

Applying the Cholesky factorization M=F†F, we obtain finally the expression of the
optimal transient energy growth in terms of the L2 norm:

G(t)=max
κ(0)

κ†(t)F†Fκ(t)
κ†(0)F†Fκ(0)

=max
κ(0)

‖Fκ(t)‖2
2

‖Fκ(0)‖2
2
=max

κ(0)

‖FetΛκ(0)‖2
2

‖Fκ(0)‖2
2
= ‖F exp(tΛ)F−1

‖
2
2.

(2.23)
The last quantity in the right-hand side of (2.23) is the square of the largest singular
value of F exp(tΛ)F−1 which can be computed via the singular value decomposition
(Schmid & Henningson 2001). The number of least stable eigenvectors Ne used to
compute G(t) and Gmax is between 40 and 60. This is sufficient to obtain converged
values of G(t) and Gmax. The numerical code has been validated against previous
results in homogeneous fluids (i.e. 1/F= 0). For example, for Rei= 591, µ=−3.8579
and η = 0.881, Meseguer (2002) found Gmax = 71.36 at m = 10 and k = 1.994, and
Maretzke et al. (2014) found Gmax = 71.58 at m= 10 and k = 1.997 while our code
yields Gmax=71.5851 at m=10 and k=1.997. We have tested other sets of parameters
and an excellent agreement with Hristova et al. (2002) and Maretzke et al. (2014) has
always been found.
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FIGURE 1. (Colour online) (a) Frequency and (b) growth rate as a function of axial
wavenumber k for m= 15, F= 1/20, µ=−1 and η= 0.9 in the inviscid and non-diffusive
limits. (c,d) Same as (a,b) but zoomed in on the wavenumber range k 6 400. Numerical
results obtained by solving (2.7) are indicated by dots. The different asymptotic results are
shown by: blue dashed lines, (3.7); blue dash-dotted lines, (3.10); empty circles, (3.16).
Square symbols indicate eigenvalues of the eigenmodes I, II and III displayed in figure 2.

3. Instabilities in the regime of counter-rotation
In this section, we study the instabilities in the case of exact counter-rotation µ=−1

which will serve as a typical example of the Rayleigh-unstable regime µ < 0. The
Rayleigh-unstable regime of co-rotation 06µ<η2, which is slightly different, will be
investigated in § 4. We first focus on the inviscid and non-diffusive limits in §§ 3.1–3.4,
while viscous effects will be considered in § 3.5.

3.1. Typical example
Figure 1 shows a typical example of frequency ωr and growth rate ωi as a function of
axial wavenumber k in the inviscid and non-diffusive limits for m= 15, F= 1/20 and
µ=−1. As mentioned before, the gap ratio will be set to η=0.9 throughout the paper.
There are only few branches in the frequency range ωr <−5 but their corresponding
growth rates are large and increase monotonically as k increases. These behaviours
are reminiscent of the CI observed in vortices (Smyth & McWilliams 1998; Billant &
Gallaire 2005; Park & Billant 2013a). However, many growth rate peaks are present at
finite wavenumbers. They occur when two frequency branches, one descending from
ωr = 5 and the other ascending from ωr =−5, cross and become locked. These two
types of frequency branches correspond to inertia–gravity waves trapped near the inner
and outer cylinders. The origin of the particular limits ωr = ±5 will be explained
in § 3.2. The instability due to the resonance of these waves is the SRI (Molemaker
et al. 2001; Le Bars & Le Gal 2007; Park & Billant 2013b). Therefore, the CI and
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FIGURE 2. (Colour online) Contour plots of the real part of the eigenfunction
Re[ur(r) exp(imθ)] in the plane (r, θ) for (a) mode I: k = 90, ω =−0.270+ 1.021i, (b)
mode II: k = 133, ω = −2.835 + 0.876i, (c) mode III: k = 400, ω = −9.249 + 2.425i.
The other parameters are the same as in figure 1. The contours are normalized by the
maximum value of ur and the contour interval is 0.1.

SRI co-exist but can be clearly distinguished from their frequency and growth rate
behaviours as a function of the axial wavenumber k.

These two instabilities have also distinct eigenfunctions. Figure 2 shows examples
of the eigenfunction ur for (a) k= 90 and ω=−0.270+ 1.021i corresponding to the
first peak of resonance of the SRI (indicated by I in figure 1), for (b) k = 133 and
ω =−2.835+ 0.876i corresponding to the second peak of the SRI (indicated by II),
and for (c) k = 400 and ω = −9.249 + 2.425i belonging to the first branch of the
CI (indicated by III). We see that the SRI and CI modes have very different shapes.
The first SRI mode (figure 2a) consists of two waves trapped near the inner and
outer cylinders with a phase shift and similar amplitudes, as observed by Yavneh et al.
(2001) and Park & Billant (2013b). The second SRI mode (figure 2b) is similar except
that the wave trapped near the outer cylinder exhibits an additional node because
this mode is due to the resonance of the second lower branch with the first upper
branch (figure 1). In contrast, the CI mode (figure 2c) has a large amplitude near the
inner cylinder for r . 1.06 and exhibits weak sheared waves for r & 1.06. The radius
r ≈ 1.06 which divides these two regions corresponds approximately to the radius
r0 = 1.051 above which the Rayleigh discriminant becomes positive (i.e. φ(r0) = 0).
In the following section, we shall confirm these different characteristics of the CI and
SRI by means of a WKBJ analysis.

3.2. The WKBJ approximation
For large k, the equation (2.13) can be approximated by

d2ur

dr2
+

(
1
r
−

Q′

Q

)
dur

dr
+ [k2β +O(1)]ur(r)= 0, (3.1)

and we can obtain an asymptotic solution of (3.1) by means of the WKBJ
approximation:

ur =
Q1/2

r1/2β1/4

[
A+ exp

(
ik
∫ r

rt1

√
β(t) dt

)
+ A− exp

(
−ik

∫ r

rt1

√
β(t) dt

)]
, (3.2)

where A± are constants and rt1 is a turning point where β(rt1)= 0 (Bender & Orszag
1978). As a first step, we assume for simplicity that the growth rate ωi is zero so that
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FIGURE 3. (a) Real part of epicyclic frequencies ω± (thick dashed lines) and ωN± (thick
dash-dotted lines), and critical frequency ωc (thin dashed line) for m = 15, F = 1/20,
µ=−1 and η= 0.9. β is positive in the shaded regions. The solid lines I and II indicate
the frequency ωr of the eigenmodes shown in figure 2(a,b). (b) Imaginary part of epicyclic
frequencies ω± (dashed lines). The solid line III indicates the growth rate ωi of the
eigenmode shown in figure 2(c).

β is purely real. Depending on the sign of β(r), the WKBJ approximation (3.2) is
wavelike (β > 0) or exponential (β < 0). In order to easily figure out the sign of β(r)
for a given real frequency ω, it is convenient to introduce the epicyclic frequencies
ω±(r) = mΩ ±

√
φ and critical frequencies ωN± = mΩ ± 1/F (Le Dizès & Lacaze

2005). Then, we can write

β =−
(ω−ω+)(ω−ω−)

(ω−ωN+)(ω−ωN−)
. (3.3)

When the Froude number is sufficiently small so that Re(ω+) < ωN+ and ωN− <
Re(ω−), the expression (3.3) shows that β is positive if the frequency ωr lies in
ranges Re(ω+) < ωr <ωN+ or ωN− <ωr <Re(ω−), and negative elsewhere as seen in
the example displayed in figure 3(a). The critical frequency ωc =mΩ is also plotted
in figure 3(a). We can see that the real part of the epicyclic frequencies Re(ω±)
and the critical frequency ωc merge at r = r0 =

√
(1−µ)/(η2 −µ) because φ(r) is

negative for r< r0.
Non-singular inertia gravity waves, i.e. without the presence of critical points

rN± where ωr = ωN±, can exist if their frequency lies in the interval max(ωN−) <
ωr < min(ωN+). This corresponds to −5 < ωr < 5 for m = 15 and F = 1/20
explaining the frequency range of most of the branches in figure 1(a), excepted
those corresponding to the CI. The SRI can exist if there are two wave regions at
a given frequency separated by the critical frequency ωc (Park & Billant 2013b).
When the epicyclic and critical frequencies increase with r as in figure 3(a) (i.e.
when µ < 0 or µ > 1), the conditions for the existence of the SRI are therefore:
min(ωN+) > max(ωN−), max(Re(ω−)) > max(ωN−), min(ωN+) > min(Re(ω+)) and
max(Re(ω−)) > min(Re(ω+)). These conditions for the SRI lead to the following
relations when µ< 0:

1
F
>max

[
m
2

(
1−

1
µ

)
, 2

√
1− η2/µ

1− η2

]
, m>

−2µ
1−µ

√
1− η2/µ

1− η2
. (3.4a,b)
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FIGURE 4. Stokes line networks for (a) ω = −0.270 + 1.021i, (b) ω = −2.835 + 0.876i
and (c) ω=−9.249+ 2.425i, corresponding to the modes I, II and III shown in figure 2,
respectively. The other parameters are the same as in figure 1. Thick solid and dashed
lines are the Stokes lines emitted from the turning points rt1 and rt2 (dots), respectively.
Short lines indicate the direction of Re(

∫ r √
−β(t) dt) = const., and wavy lines indicate

the branch cuts. The critical points rc and rN− are indicated by star and diamond symbols,
respectively. The square symbols represent the radii at which Stokes lines cross the real
axis.

These conditions imply that the SRI can occur only when the stratification is
sufficiently strong and when the azimuthal wavenumber is sufficiently large. They are
satisfied for the examples of frequency indicated by the lines I and II in figure 3(a).

In the case of the CI, the growth rate is not small and it is therefore not appropriate
to consider a real frequency as in figure 3(a). In a first approach, it is convenient
to assume instead that the frequency is ωr = mΩ and consider an arbitrary growth
rate ωi. In this case, β is also purely real. As seen in figure 3(b), β is then positive
close to the inner cylinder when − max(

√
−φ) < ωi < max(

√
−φ). For the growth

rate indicated by the line I, the WKBJ approximations are wavelike between the inner
cylinder ri and a turning point rt1, and exponential for r> rt1.

The above descriptions of the sign of β for the SRI and CI have assumed that β is
purely real for simplicity. For the SRI, ω has been assumed to be purely real despite
that the growth rate ωi is non-zero. Conversely, for the CI, the frequency has been
assumed to be ωr =mΩ even if ωr should be constant. When these assumptions are
abandoned, β is complex meaning that the WKBJ analysis should be performed in
the complex plane. This is the purpose of the next sections.

3.3. Complex WKBJ analysis for the CI
Figure 4(c) shows the Stokes line networks in the complex r-plane for the eigenvalues
ω=−9.249+ 2.425i corresponding to the CI mode shown in figure 2(c). There exist
two turning points rt1 and rt2 with Re(rt1) < Re(rt2). The critical point rN− where
ω=ωN− can be also seen in figure 4(c). The thick lines show the Stokes lines which
satisfy Re(

∫ r
rt

√
−β) = 0. They divide the complex plane into domains where the

WKBJ approximations have the same exponential behaviours (Olver 1974). We see
in figure 4(c) that only one of the three Stokes lines emanating from rt1 crosses the
real axis at r̃t1 (indicated by a square symbol). Such structure is similar to the one
studied in homogeneous fluids by Billant & Gallaire (2005). We first assume that the
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WKBJ approximation (3.2) is valid for ri < r < r̃t1. In order to find the matching
WKBJ approximation for r> r̃t1, we need to consider the vicinity of the turning point
rt1 where (3.2) is no longer valid. An approximation of (2.13) around rt1 is Airy’s
equation:

d2ur

dr̃2
− r̃ur =O(ε), (3.5)

where r̃= (r− rt1)/ε and ε = 1/[−β ′(rt1)k2
]

1/3. Matching the asymptotic behaviour of
Airy’s function from r̃→−∞ (with |arg(−r̃)|< 2π/3) to r̃→∞ (with |arg(r̃)|< π)
(Abramowitz & Stegun 1965) shows that the WKBJ approximation in the range r̃t1 <
r< ro which matches (3.2) is

ur =
Q1/2e−iπ/4

r1/2(−β)1/4

[
B+ exp

(
−k
∫ r

rt1

√
−β(t) dt

)
+ B− exp

(
k
∫ r

rt1

√
−β(t) dt

)]
, (3.6)

where B+ = (A+ + iA−)/2 and B− = iA+ + A−. By imposing the boundary condition
ur = 0 at r= ri and r= ro, we obtain the following dispersion relation

i− exp
(
−2ik

∫ rt1

ri

√
β dt

)
1− i exp

(
−2ik

∫ rt1

ri

√
β dt

) + 1
2

exp
(
−2k

∫ ro

rt1

√
−β dt

)
= 0. (3.7)

It can be further simplified at leading order in k to

k
∫ rt1

ri

√
β(t) dt=

(
n−

1
4

)
π, (3.8)

where n is a positive integer. This implies that Im(
∫ rt1

ri

√
β(t) dt) = Re(

∫ rt1

ri

√
−β(t) dt)

= 0 so that the turning point rt1 and the radius r= ri are connected by a Stokes line
as observed in figure 4(c). Moreover, rt1 should be close to ri in order to satisfy (3.8)
as k→∞. Thus, we can Taylor expand β around ri: β(r)= β(ri)+ (r − ri)β

′(ri)+
O((r− ri)

2). Then, (3.8) becomes

k
(β(ri))

3/2

β ′(ri)
=−

3
2

(
n−

1
4

)
π, (3.9)

which implies that β(ri) becomes zero as k→∞. By using the expansion ω= ω0 +

ω1k−2/3
+ · · ·, ω can be obtained explicitly in terms of k as

ω=mΩ+ i
√
−φ−

i(1/F2
− φ)

2k2/3
√
−φ

[
3π

2

(
n−

1
4

)(
2im
√
−φΩ ′ + φ′

1/F2 − φ

)]2/3

+· · ·, (3.10)

where all the variables are evaluated at r= ri. When F→∞, this dispersion relation
recovers the one obtained by Billant & Gallaire (2005) in homogeneous fluids. The
asymptotic formula (3.7) and (3.10) are plotted in figure 1 with dashed lines and dash-
dot lines, respectively. The formula (3.7) is almost identical to the numerical results
and (3.10) is also in good agreement for large k. When the turning point rt1 is close to
ri, we could also directly apply the boundary condition ur= 0 at r= ri to the solution
of the local equation (3.5). This leads to a relation identical to (3.9) at leading order
in k except that the right-hand side is replaced by (−an)

3/2 where an are the zeroes of
the Airy function Ai. However, the differences between the zeroes an and the values of
((3π/8)(4n− 1))2/3 are at most 0.01 (see Billant & Gallaire 2005) so that the results
are almost identical to those of (3.9).
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3.4. Complex WKBJ analysis for the SRI
Similarly, figure 4(a) shows the Stokes line network for the eigenvalue ω=−0.270+
1.021i of the SRI eigenmode shown in figure 2(a). There exist two turning points
rt1 and rt2 which are close to the real axis. One Stokes line emanating from each
turning point crosses the real axis. There are therefore three distinct regions on the
real axis in contrast to the CI (figure 4c) where only two regions are present. Such
configuration reflects the fact that the SRI consists physically in the resonance of
two inertia–gravity waves trapped near each cylinder. This differs from the CI whose
eigenmode is oscillatory only in a single region bounded by one cylinder. Another
example of a Stokes line network is displayed in figure 4(b) for the second most
unstable SRI mode (figure 2b). At first sight, this Stokes line network seems similar
to the CI’s one (figure 4c). However, a crucial difference is that there are still two
Stokes lines crossing the real axis thereby dividing the structure of the mode into three
distinct regions instead of two for the CI. Park & Billant (2013b) have performed a
matching analysis of the different WKBJ approximations for the SRI when the turning
points are well separated. In figures 4(a,b), the two turning points are too close to each
other for their analysis to be quantitatively valid. Since the turning points are close to
the critical point rc where ω=mΩ(rc), we can consider the local equation around rc:

d2ur

dr̃2
c

+
(
r̃2

c + ã
)

ur =O(εc), (3.11)

where r̃c = (r − rc)/εc, εc = (kmΩ ′(rc)F)−1/2 and ã=−φ(rc)/(εcmΩ ′(rc))
2. Note that

ã is positive if φ(rc) < 0 meaning that the two turning points r̃c = ±i
√

ã are in the
complex plane (as in figure 4b) instead of being on the real axis. The solution of
(3.11) is

ur(r̃c)= r̃ce−(i/2)r̃
2
c

[
c1M

(
3
4
+

iã
4
,

3
2
, ir̃2

c

)
+ c2U

(
3
4
+

iã
4
,

3
2
, ir̃2

c

)]
, (3.12)

where c1 and c2 are constants and M and U denote the Kummer functions
(Abramowitz & Stegun 1965). From the asymptotic behaviours of the Kummer
functions from r̃c→−∞ (with |arg(−r̃c)| < π/2) to r̃c→∞ (with |arg(r̃c)| < π/2)
(Abramowitz & Stegun 1965), we can obtain the WKBJ approximation in the range
r̃t2 < r< ro which matches (3.2) in ri < r< r̃t1:

ur =
Q1/2

r1/2β1/4

[
C+ exp

(
ik
∫ r

rt2

√
β(t) dt

)
+C− exp

(
−ik

∫ r

rt2

√
β(t) dt

)]
, (3.13)

where

C+ = A+

2π exp (−3πã/4) (4e/ã)−iã/2

Γ

(
3
4
+

iã
4

)
Γ

(
1
4
+

iã
4

)
− A−

1+
2π exp(π(3i− ã)/4)

Γ

(
3
4
−

iã
4

)
Γ

(
1
4
+

iã
4

)
 ,

(3.14)

C− = −2A−

(
4e
ã

)−iã/2 Γ

(
3
4
+

iã
4

)
Γ

(
3
4
−

iã
4

)
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×

 −iπ exp(−πã/4)

Γ

(
3
4
−

iã
4

)
Γ

(
1
4
+

iã
4

) + exp
(

π(3i+ 2ã)
4

)
+A+

[
1+ 2π exp

(
π(3i− ã)

4

)/{
Γ

(
3
4
−

iã
4

)
Γ

(
1
4
+

iã
4

)}]
, (3.15)

where Γ denotes the gamma function. Applying the boundary condition ur=0 at r= ri
and r= ro leads to the dispersion relation

exp
(

2ik
∫ ro

rt2

√
β(t) dt

)exp
(

2ik
∫ rt1

ri

√
β(t) dt

)
2π exp (−3πã/4) (4e/ã)−iã/2

Γ

(
3
4
+

iã
4

)
Γ

(
1
4
+

iã
4

)


+ 1+
2π exp(π(3i− ã)/4)

Γ

(
3
4
−

iã
4

)
Γ

(
1
4
+

iã
4

)


+ 2
(

4e
ã

)−iã/2 Γ

(
3
4
+

iã
4

)
Γ

(
3
4
−

iã
4

)
 −iπ exp(−πã/4)

Γ

(
3
4
−

iã
4

)
Γ

(
1
4
+

iã
4

) + exp
(

π(3i+ 2ã)
4

)

+ exp
(

2ik
∫ ri

rt1

√
β(t) dt

)1+
2π exp (π(3i− ã)/4)

Γ

(
3
4
−

iã
4

)
Γ

(
1
4
+

iã
4

)
= 0. (3.16)

Since the asymptotic dispersion (3.16) is implicit, it has been solved by an iterative
Newton method. As shown by the circle symbols in figure 1, it is in excellent
agreement with the numerical results. Note that (3.16) also approximates very well
the branches for which there is a transition from the SRI to the CI.

3.5. Effects of the Reynolds and Froude numbers
In this section, we investigate the effects of the Reynolds and Froude numbers for a
Schmidt number fixed to Sc= 1. Figure 5(a) shows the growth rate as a function of k
for m=15, F=1/20 and for different values of the Reynolds number: Reo=Ωoro(ro−

ri)/ν. This is the usual definition of the Reynolds number for the Taylor–Couette
flow (Andereck et al. 1986). It is related to the Reynolds number Re defined in § 2.1
by Reo = Re(1 − η)/η2. Both the CI and the SRI are stabilized as the Reynolds
number decreases but the CI is stabilized faster than the SRI because the CI is most
unstable for large k while the SRI exists in a finite range of moderate wavenumbers.
For the parameters of figure 5(a), the SRI becomes more unstable than the CI for
Reo < 11 360. The SRI remains unstable down to Reo ≈ 2680. Conversely, figure 5(b)
shows the growth rate as a function of k for different Froude numbers for a fixed
Reynolds number Reo = 10 000. When the Froude number is increased from F =
1/20 to F= 1/10, the SRI disappears because the condition (3.4) for its existence is
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FIGURE 5. (a) Maximum growth rate max(ωi) as a function of the axial wavenumber k
for m= 15, F= 1/20, µ=−1, η= 0.9, Sc= 1 and for the Reynolds numbers Reo= 30 000
(dot), 10 000 (empty circle) and 5000 (cross). (b) Maximum growth rate max(ωi) as a
function of the axial wavenumber k for Reo=10 000 and for the Froude numbers F=1/10
(dot), 1/20 (empty circle) and 1/30 (cross). The other parameters are the same as in (a).

no longer satisfied. In contrast, the maximum growth rate of the CI increases. This
is due to the fact that the number controlling viscous effects in strongly stratified
fluids is the buoyancy Reynolds number Rebo = ReoF2 because the inviscid stability
equation (2.13) depends on k and F only through the similarity variable kF when
F� 1 (Billant & Chomaz 2001). Hence, when the Froude number is increased from
F= 1/20 to F= 1/10, Rebo increases. Alternatively, when F is decreased to F= 1/30
for Reo = 10 000 (crosses in figure 5b), Rebo decreases and the centrifugal instability
is completely stabilized by viscous effects. In contrast, the SRI exists for F = 1/30
since the condition (3.4) is satisfied.

Figure 6 shows the neutral stability curves of different azimuthal wavenumbers m in
the parameter space (1/F,Reo). For weak stratification 1/F< 15, the neutral Reynolds
numbers grow with the stratification. In other words, the stratification stabilizes the
CI as found by Boubnov et al. (1995) and Caton et al. (2000) for µ= 0. The overall
neutral stability curve corresponds to the neutral stability curves for m= 3 or 4 when
1/F < 15, but they are almost identical to the one for m = 0. The overall stability
curve for 1/F < 15 can be very well fitted to Reo ' 250.3 + 11.2/F2. This implies
that the critical buoyancy Reynolds number is Rebo = 11.2+ 250.3F2.

On the other hand, when the stratification is stronger 1/F>15, the neutral Reynolds
numbers Reo decrease abruptly with 1/F when m > 15 (figure 6). The sudden
transition occurs when the SRI starts to exist for a given azimuthal wavenumber
m, i.e. when the condition (3.4) becomes satisfied. For µ = −1, this occurs when
1/F > m as observed in figure 6. The critical Reynolds number for a given m
reaches a minimum and then re-increases like 1/F2 as seen for m = 15 in figure 6.
The minimum critical Reynolds number is reached for larger 1/F, i.e. stronger
stratification as m increases. This is due to the fact that the vertical wavenumber kc
at which two waves resonate decreases as the azimuthal wavenumber increases. Thus,
viscous effects due to the vertical shear, which scale like k2

c/Reo, decrease as the
azimuthal wavenumber increases. However, for a fixed azimuthal wavenumber, the
vertical wavenumber of the resonance scales like kc ∼ 1/F for sufficiently small F
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FIGURE 6. Neutral stability curves in the parameter space (1/F, Reo) for various
azimuthal wavenumbers for µ=−1, η= 0.9 and Sc= 1. The thick solid line represents the
neutral stability curve for all azimuthal wavenumbers. The numbers (mmax, kmax), indicated
at a few selected points along this neutral curve, give the dominant azimuthal and axial
wavenumbers mmax, kmax.

because of the self-similarity of strongly stratified fluids. Thus, vertical viscous effects
increase like 1/(ReoF2) for large stratification for a given azimuthal wavenumber.

Because of these two effects, we see that the overall critical Reynolds number (bold
solid line in figure 6) stabilizes at nearly a constant Reynolds number Reo ≈ 2500
when 1/F > 15. Actually, it reaches a minimum at 1/F ≈ 26, Reo ≈ 2540, and then
slowly increases for stronger stratification.

4. Instabilities in the regime of co-rotation 0 6µ6 η2

We now turn our attention to the value µ = 0.5 which will serve as a typical
example of the Rayleigh-unstable regime of co-rotation. The difference with negative
angular velocity ratio µ < 0 is that the epicyclic and critical frequencies ω±, ωN±
decrease with r since Ω decreases with r. In addition, the Rayleigh discriminant
φ(r) is negative everywhere between the two cylinders. As in § 3, we first present
numerical and asymptotic results in the inviscid and non-diffusive limits in §§ 4.1–4.3,
and viscous effects are then considered in § 4.4.

4.1. Typical example
Figure 7 shows the frequency ωr and growth rate ωi as a function of k in the inviscid
and non-diffusive limits for m= 20, F = 1/20, η = 0.9 and µ= 0.5. Like for µ < 0
in figure 1, the CI is most unstable in the limit k → ∞. The beginning of the
growth rate curves also exhibits peaks whenever two frequency branches of two wave
families cross, which is the signature of the SRI. Figure 8(a) shows the eigenmode
corresponding to the first peak of the SRI. Two out-of-phase waves near the inner
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FIGURE 7. (Colour online) (a) Frequency and (b) growth rate as a function of axial
wavenumber k for m= 20, F= 1/20, µ= 0.5 and η= 0.9 in the inviscid and non-diffusive
limits. Numerical results are indicated by dots, asymptotic results (4.2) and (4.5) are
indicated by empty circles and empty triangles, and asymptotic results (3.10) with n= 1
and (4.7) with n1 = 1 are indicated by blue dashed lines and blue dash-dotted lines,
respectively. Square symbols indicate the eigenvalues of the eigenmodes I, II and III
shown in figure 8.
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FIGURE 8. (Colour online) Contour plots of the real part of the eigenfunction
Re[ur(r) exp(imθ)] in the plane (mθ, r) for (a) mode I: k = 110, ω = 29.72 + 1.61i,
(b) mode II: k= 400, ω= 35.43+ 2.75i and (c) mode III: k= 400, ω= 24.39+ 1.94i. The
parameters are the same as in figure 7. The contours are normalized by the maximum
value of ur, and the contour interval is 0.1.

and outer cylinders can be seen as for µ = −1 (figure 2a). For larger wavenumber
k, the growth rate increases monotonically and there is a smooth transition to the
CI. A difference with the case µ = −1 (figure 1) is that there are two types of
CI branches, ones for which the frequency increases with k (referred to as upper
branches hereafter) and the others for which the frequency decreases with k (lower
branches). Interestingly, the growth rate of the upper branches increases faster with
k than for the lower branches. Two examples of eigenmode corresponding to these
two different branches are displayed in figure 8(b,c). As seen in figure 8(b), the
eigenmode of the upper branch is concentrated near the inner cylinder like the one
for µ=−1 (figure 2c). In contrast, the eigenmode of the lower branch (figure 8c) is
mostly localized near the outer cylinder, i.e. its structure is reversed compared to the
eigenmode of the upper branch.
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FIGURE 9. (a) Real part of epicyclic frequencies ω± (thick dashed lines) and ωN± (thick
dash-dotted lines), and critical frequency ωc (dashed line) for m = 20, F = 1/20, µ =
0.5 and η = 0.9. The solid lines I, II and III correspond to the frequencies ωr = 29.72
(frequency of the SRI eigenmode shown in figure 8a), ωr = 35.43 (frequency of the CI
eigenmode shown in figure 8b) and ωr = 24.39 (frequency of the CI eigenmode shown in
figure 8c), respectively. Stokes line networks for (b) ω = 29.72+ 1.61i, (c) ω = 35.43+
2.75i and (d) ω = 24.39 + 1.94i correspond to the eigenmodes shown in figure 8. The
representation is the same as in figure 4 and the parameters are the same as in (a).

4.2. Conditions of existence for the SRI

In the regime 0 6 µ 6 η2, the Rayleigh discriminant φ(r) is negative everywhere
since the radius r0, where φ(r0) = 0, is larger than the radius of the outer cylinder
ro (i.e. r0 =

√
(1−µ)/(η2 −µ) > ro). Thus, Re(ω+)= Re(ω−)= Re(ωc) as displayed

in figure 9(a) for m = 20, F = 1/20, µ = 0.5 and η = 0.9. The conditions for
the existence of the SRI are the same as for µ < 0, i.e. min(ωN+) > max(ωN−),
max(Re(ω−)) > max(ωN−), min(ωN+) > min(Re(ω+)), max(Re(ω−)) > max(Re(ω+)),
but they lead only to

1
F
>

m
2

(
1
µ
− 1
)
, m> 0, (4.1)

instead of (3.4). These conditions imply that the SRI can occur for any non-
axisymmetric wavenumber provided that the stratification is sufficiently strong.

4.3. Complex WKBJ analysis
To understand the structure of the different modes in the framework of the WKBJ
approach, the Stokes line networks for three representative eigenvalues are plotted in
the complex plane in figure 9(b–d). Figure 9(b) corresponds to the mode I shown in
figure 8(a), i.e. the first peak of SRI (ω= 29.72+ 1.61i at k= 110). The Stokes line
network is similar to the one in figure 4(b) for the SRI for µ=−1 except that the two
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turning points are farther apart. A turning point has two Stokes lines crossing the real
axis between the two cylinders ri < r < ro. There are therefore three distinct regions
on the real axis in figure 9(b) like for the SRI for µ=−1 (figures 4a,b). Figure 9(c)
is an example of the Stokes line network of the mode II (figure 8b) which belongs
to the first upper branch of CI (ω= 35.43+ 2.75i at k= 400). In this case, only one
Stokes line crosses the real axis between the two cylinders and a second Stokes line is
connected to the inner cylinder at r= ri like for µ=−1 (figure 4c). Hence, there are
two distinct regions as in figure 4(c). However, a difference is that the Stokes lines
originate from the upper turning point rt2 instead of the lower turning point rt1. Thus,
the WKBJ dispersion relation for this case is simply (3.7) with rt1 replaced by rt2:

i− exp
(
−2ik

∫ rt2

ri

√
β dt

)
1− i exp

(
−2ik

∫ rt2

ri

√
β dt

) + 1
2

exp
(
−2k

∫ ro

rt2

√
−β dt

)
= 0. (4.2)

However, this change has no effect and (4.2) leads at leading order in k to the same
explicit dispersion relation as (3.10). This implies that the upper CI branches tend to
ω→mΩ(ri)+ i

√
−φ(ri) as k goes to infinity. The asymptotic dispersion relations (4.2)

(circles) and (3.10) (dashed line) are in good agreement with the numerical results
as seen in figure 7. Surprisingly, the asymptotic dispersion relation (4.2) not only
approximates very well the CI, but also the SRI. This good agreement for the SRI
comes probably from the fact that the second Stokes line crosses the real axis close
to r= ri. Hence, the error made by assuming the WKBJ approximation (3.2) at r= ri
is weak. For this reason, we have not performed a specific WKBJ analysis for the
SRI in this case.

However, (4.2) is not able to describe the lower branches of the CI. In order to
understand this, figure 9(d) shows the Stokes line network of the mode III (figure 8c)
belonging to the first lower branch (ω = 24.39 + 1.94i at k = 400). The network is
similar to the one for the first upper branch in figure 9(c) except that one Stokes line
is connected to r= ro instead of r= ri. Hence, the configuration is reversed compared
to figure 9(c). The WKBJ approximation for r̃t2< r< ro (where r̃t2 is the radius where
the second Stokes line crosses the real axis) reads

ur =
Q1/2

r1/2β1/4

[
D+ exp

(
ik
∫ r

rt2

√
β(t) dt

)
+D− exp

(
−ik

∫ r

rt2

√
β(t) dt

)]
, (4.3)

where D± are constants. Using the same procedure as in § 3.3, it can be shown that
(4.3) matches the following WKBJ approximation for ri < r< r̃t2:

ur =
Q1/2e−iπ/4

r1/2(−β)1/4

[
E+ exp

(
k
∫ rt2

r

√
−β(t) dt

)
+ E− exp

(
−k
∫ rt2

r

√
β(t) dt

)]
, (4.4)

where E+ =D+ + iD− and E− = (iD+ +D−)/2. Applying the boundary conditions at
both cylinders, we obtain the asymptotic dispersion relation

2i+ exp
(
−2k

∫ rt2

ri

√
β dt

)
2+ i exp

(
−2k

∫ rt2

ri

√
β dt

) − exp
(
−2ik

∫ ro

rt2

√
−β dt

)
= 0. (4.5)
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This relation can be also simplified further at leading order in k to

k
∫ ro

rt2

√
β dt=

(
n1 −

1
4

)
π, (4.6)

where n1 is a positive integer. This implies that Im(
∫ ro

rt2

√
β dt)=Re(

∫ ro

rt2

√
−β dt)=0 so

that rt2 and ro should be connected by a Stokes line as observed in figure 9(d). Since
rt2 should be close to ro as k→∞, we can obtain an explicit dispersion relation

ω=mΩ + i
√
−φ −

i(1/F2
− φ)

2k2/3
√
−φ

[
−

3π

2

(
n1 −

1
4

)(
2im
√
−φΩ ′ + φ′

1/F2 − φ

)]2/3

+ · · ·.

(4.7)
This new dispersion relation is similar to (3.10) except that all the variables are now
evaluated at r= ro instead of r= ri. This implies that the eigenfrequency of the lower
branches tends to ω → mΩ(ro) + i

√
−φ(ro) as k→∞ instead of ω → mΩ(ri) +

i
√
−φ(ri) as k→∞ for the upper branches. Since φ(r) increases with r,

√
−φ(ri) is

larger than
√
−φ(ro) explaining why the upper branches asymptote to a larger growth

rate than the lower branches. As seen in figure 7, the asymptotic dispersion relations
(4.5) (triangles) and (4.7) (dash-dotted lines) are in good agreement with the numerical
results. It is worth mentioning that (4.5) and (4.7) should be also valid for F →
∞. Hence, two types of centrifugal modes should also exist in homogeneous fluids
for 0 6 µ 6 η2. The mode localized near the outer cylinder has been also reported
recently by Leclerq et al. (2016). We recall that only the mode localized near the
inner cylinder can exist for µ< 0 because the Rayleigh discriminant is positive near
the outer cylinder.

4.4. Effects of the Reynolds and Froude numbers

The CI and SRI are also in competition in the regime 0 6 µ 6 η2 and the most
dangerous instability will depend on the Reynolds and Froude numbers. Figure 10(a)
shows growth rate as a function of the axial wavenumber k for m = 20, F = 1/20,
µ = 0.5, η = 0.9, Sc = 1 and for three Reynolds numbers. We clearly see that the
growth rate decreases as the Reynolds number decreases. The first growth rate peak
for each Reynolds number corresponds to the SRI while next peaks correspond to the
CI. For these Reynolds numbers, the CI is less unstable than the SRI and is suppressed
before the SRI as the Reynolds number decreases.

Figure 10(b) shows neutral stability curves for various azimuthal wavenumbers for
µ= 0.5, η= 0.9 and Sc= 1. The critical Reynolds number Reo for a given azimuthal
wavenumber increases with 1/F for weak stratification like for µ = −1 (figure 6).
For strong stratification, a sudden decrease followed by a re-increase of the critical
Reynolds number is also observed for m > 15. This abrupt transition occurs when
the SRI starts to exist, i.e. when 1/F > m/2 as predicted by (4.1) for µ = 0.5. The
dominant instability on the overall neutral stability curve is the centrifugal instability
for 1/F< 25, either axisymmetric for 1/F . 7, or non-axisymmetric for 7. 1/F< 25.
For stronger stratification 1/F> 25, the SRI becomes the dominant instability.

5. Transient growth of the stratified Taylor–Couette flow for µ=−1

5.1. Optimal energy growth
We now investigate the transient growth of the perturbations in the linearly stable
regime for exact counter-rotation µ = −1, i.e. the regime below the overall neutral
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FIGURE 10. (a) Maximum growth rate max(ωi) as a function of axial wavenumber k for
m=20, F=1/20, µ=0.5, η=0.9, Sc=1 and for various Reynolds numbers: Reo=15 000
(dot), Reo = 3000 (empty circle) and Reo = 1500 (cross). (b) Neutral stability curves in
the parameter space (1/F, Reo) for various azimuthal wavenumbers for µ= 0.5, η = 0.9
and Sc = 1. The thick solid line represents the neutral stability curve for all azimuthal
wavenumbers. The numbers (mmax, kmax), indicated at few selected points along this neutral
curve, give the dominant azimuthal and axial wavenumbers mmax, kmax.
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FIGURE 11. (a) Optimal energy growth G(t) (thick solid) and energy growth (dashed) of
selected initial perturbations which lead to optimal transient growths at the target times
(dots) t = to/2, t = to and t = 2to for m = 0, k = 34, Reo = 123.5, 1/F = 10, µ = −1,
η= 0.9 and Sc= 1. The thick dashed line corresponds to the energy growth of the optimal
perturbation. (b) G(t) as a function of time t for (1/F, k)= (0, 30), (10, 34), (20, 39) and
(30, 42) (top to bottom) for Re= 123.5, m= 0, µ=−1, η= 0.9 and Sc= 1.

stability curve in figure 6. We first consider the transient growth of axisymmetric
perturbations, m = 0. Figure 11(a) shows the optimal energy growth G(t) (solid
line) for k = 34, Reo = 123.5 and 1/F = 10. Figure 11(a) displays also the energy
growths of different perturbations (dashed lines) which lead to the optimal energy
growth at the target times t = to/2, t = to and t = 2to, where to is the time at which
the maximum energy growth Gmax is attained: G(to) = Gmax. The axial wavenumber
k = 34 corresponds to the maximum of Gmax among all axial wavenumbers. We
see that the transient growth behaviours of the perturbations differ for different
target times. However, we shall only consider herein the optimal perturbation which
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FIGURE 12. Contour plots of Gmax as a function of the azimuthal and axial wavenumbers
(m, k) for µ=−1, η= 0.9, Sc= 1 and for (a) Reo= 123.5, F= 1/10 and (b) Reo= 740.7,
F= 1/30. The contour interval is 0.1.

achieves the maximum energy growth Gmax. Figure 11(b) shows the optimal energy
growth G(t) as a function of time t for different stratifications 1/F = (0, 10, 20, 30)
for the same Reynolds number Reo = 123.5. The corresponding axial wavenumbers
k = (30, 34, 39, 42) are those which give the optimal energy growth Gmax among
all axial wavenumbers. We clearly see that the optimal energy growth Gmax and
the optimal time to where G(to) = Gmax decrease as the stratification increases. The
optimal axial wavenumber increases as the stratification increases as observed by
Boubnov et al. (1995) and Caton et al. (2000) for the linear dominant instability
for µ = 0 and by Yim & Billant (2016) for the centrifugal instability of vortices in
strongly stratified fluid.

Figure 12 shows contour plots of the maximum optimal energy growth Gmax as a
function of the azimuthal and axial wavenumbers (m, k) for (a) Reo= 123.5, F= 1/10
and (b) Reo= 740.7, F= 1/30. As already mentioned, the maximum value of Gmax=

3.23 for the first case is reached at k= 34 and m= 0 while, for the second case, we
have Gmax= 8.99 at k= 42 and m= 30. Thus, non-axisymmetric perturbations lead to
the maximal optimal energy growth in the second case in contrast to the first case.

Figure 13 summarizes in the parameter space (1/F,Reo) which type of perturbations,
axisymmetric or non-axisymmetric, achieves the maximal optimal energy growth. The
solid lines show the contours of max(Gmax)=maxm,k Gmax over all axial wavenumbers
and over all azimuthal wavenumbers while for the dashed contours, the azimuthal
wavenumber is fixed to m = 0 (i.e. maxm=0,k Gmax). We see that the axisymmetric
perturbations achieve max(Gmax) only when 1/F . 17 or when the Reynolds number
is low Reo . 200 while non-axisymmetric perturbations lead to the maximal energy
growth for high Reynolds numbers Reo & 200 and strong stratification 1/F & 17.
The maximal energy growth decreases with F and increases with Reo, attaining
O(50) values near the marginal stability. In the next section, we investigate the
transient growth mechanisms of axisymmetric perturbations and non-axisymmetric
perturbations.

5.2. Transient growth mechanisms
Figure 14 shows the temporal evolution of vorticity ωθ , velocity uθ and density
ρ of the optimal perturbation in a vertical cross-section (r, z) for k = 34, m = 0,
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FIGURE 13. Contours of max(Gmax) in the parameter space (1/F, Reo) for all axial
wavenumbers and for all azimuthal wavenumbers (solid lines) and m = 0 (dashed lines)
for µ = −1, η = 0.9 and Sc = 1. Numbers near the curves indicate the values of Gmax.
The shaded region indicates the linearly unstable regime. The numbers (m, k), indicated at
few selected points along the contours, are the optimal azimuthal and axial wavenumbers
which give max(Gmax).

Reo = 123.5 and F = 1/10. These wavenumbers correspond to the maximum of Gmax

for Reo = 123.5 and F = 1/10 (figure 12a). Since the perturbations ωθ , uθ and ρ

have different orders of magnitude, they are each scaled by their own maximum
values at t = to. The optimal initial perturbation leading to the maximum of Gmax

consists of azimuthal vortices resembling Taylor vortices (figure 14a) and density
perturbations (figure 14e) that are maximum or minimum near the inner and outer
cylinders and that vanishes in between. As time evolves, azimuthal vortices and
density perturbations generate azimuthal velocity streaks (figure 14b,c). After the
optimization time to, the azimuthal velocity streaks and density perturbation decay
(see figure 14d,h at t = 2to). This evolution is very similar to the lift-up effect
observed for the Taylor–Couette flow in homogeneous fluids (Hristova et al. 2002).
However, the strong density perturbations present in the optimal initial condition
mean that the lift up involves here internal waves as shown by Bakas & Farrell
(2009a,b) and Arratia (2011) for horizontal parallel shear layers in stratified fluids.
The density perturbations associated with the internal waves initially produce vertical
motions via the restoring baroclinic torque so as to enhance the azimuthal vortices
that generate azimuthal velocity through the lift-up mechanism. This will be further
shown below.

Similarly, figure 15 shows the temporal evolution of ωθ , uθ and ρ of the optimal
perturbation for the wavenumbers m= 30 and k= 42 achieving the maximum of Gmax

for Reo = 740.7 and F = 1/30 (figure 12b). Unlike the axisymmetric perturbation,
the non-axisymmetric optimal perturbation consists initially in oblique streaks, i.e. in
azimuthal velocity perturbations inclined in the vertical plane (figure 15a) while the
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FIGURE 14. (Colour online) Temporal evolution of (a–d) velocity uθ (colour) and vorticity
ωθ (black contours), and (e–h) density ρ of the optimal perturbation in a vertical cross-
section (r, z) for k = 34, m = 0, Reo = 123.5, F = 1/10, µ = −1, η = 0.9 and Sc = 1:
optimal perturbations at t= 0 (a,e), at t= to/2 (b, f ), at t= to = 0.27 (c,g) and at t= 2to
(d,h). Black solid and dashed lines in (a–d) represent positive and negative values of ωθ ,
respectively. Each quantity is scaled by its own maximum value at t = to. The contour
interval for every quantity is 0.1.
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FIGURE 15. (Colour online) Same as figure 14 except for k = 42, m = 30, Reo = 740.7
and F= 1/30.

density perturbations are weak at t = 0 (figure 15e). As time evolves, the azimuthal
velocity perturbations rotate in anti-clockwise direction, i.e. the inclination angle of
the streaks increases (figure 15b,c). At t = to, the azimuthal velocity perturbations
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FIGURE 16. (Colour online) Temporal evolution of the horizontal velocity uh=
√

u2
r + u2

θ

(colour) and vertical vorticity ωz (black contours) of the optimal perturbation in the
horizontal plane (r, θ): optimal perturbations at t= 0 (a), at t= to/2 (b), at t= to = 0.33
(c) and t= 2to (d). The parameters are the same as in figure 15. Black solid and dashed
lines represent positive and negative values of ωz, respectively. The horizontal velocity uh
and vorticity ωz are scaled by their own maximum values at t= to. The contour interval
is 0.1.

(figure 15c) as well as the density perturbation (figure 15g) consists in two out-of-
phase waves near each cylinder, somewhat like for the SRI (figure 2a).

Figure 16 further shows the evolution of horizontal velocity uh =
√

u2
r + u2

θ

and vertical vorticity ωz of the optimal perturbation in a horizontal cross-section
(r, θ). We clearly see that the vertical vorticity ωz, which is initially strongly tilted
against the direction of shear (the base angular velocity is negative at r = ri and
positive at r = ro), rotates so as to become aligned with the direction of shear
at t = to. By this mechanism, the horizontal velocity uh increase in amplitude.
This is similar to the Orr mechanism (Orr 1907) by which perturbations initially
tilted against the shear direction can grow transiently. However, the perturbations
are actually three-dimensional as also observed in shear layers by Arratia (2011)
and Kaminski et al. (2014). As shown by Bakas & Farrell (2009a,b) and Arratia
(2011) for horizontal parallel shear layers, the effect of the Orr mechanism on such
three-dimensional perturbations is to generate strong density perturbations (figure 15g)
even if they are weak initially (figure 15e). Bakas & Farrell (2009a,b) have also shown
that internal waves are generated near t= to when Fv = (k/m)2ηF/(1− η) is of order
unity. This parameter can be seen as a vertical Froude number based on the shear of
the base flow and on the vertical length scale of the perturbations. Here, this vertical
Froude number is approximately 0.8 but the emission of internal waves is difficult
to ascertain from figures 15 and 16. For other Reynolds and Froude numbers, the
wavenumbers (mmax,kmax) of the three-dimensional optimal perturbation (indicated at
selected points in figure 13) are always such that Fv is of order unity.

Figure 17 shows the evolutions of the contribution of each velocity component to
the kinetic energy and the potential energy:

Er =

∫ 1/η

1

ũ2
r

2
r dr, Eθ =

∫ 1/η

1

ũ2
θ

2
r dr, Ez =

∫ 1/η

1

ũ2
z

2
r dr, Eρ =

∫ 1/η

1

ρ̃2

2F2
r dr,

(5.1a−d)
where the overbar denotes the average in azimuthal and axial directions. The total
energy E=Er +Eθ +Ez+Eρ is also plotted with dashed lines. In figure 17(a) where
the parameters are the same as in figure 14, it shows that the potential energy is
initially dominant while the kinetic energy of the azimuthal vortices (Er and Ez) is
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FIGURE 17. (Colour online) Temporal evolution of Er (blue), Eθ (black), Ez (green), Eρ
(red) and total energy E(t) (thick dashed lines) for µ = −1, η = 0.9, Sc = 1 and for
(a) Reo = 123.5, F= 1/10, m= 0, k= 34 and (b) Reo = 740.7, F= 1/30, m= 30, k= 42.

smaller but also significant. As time evolves, the kinetic energy Eθ increases while
Er, Ez and Eρ decrease. At t = to = 0.27, the total energy E(t) is dominated by Eθ .
Subsequently, Er, Ez and Eρ decay as for the lift up in homogeneous shear flows
but they exhibit oscillations. Moreover, the oscillations of Eρ are out of phase with
those of Er and Ez. We can further notice that the period of oscillation of Eθ is
twice the period of the other components. The period of oscillations of Eρ , Er and
Ez is T ' 0.49 in figure 17(a). Other Froude numbers have also been studied and
interestingly, the period varies like T ' 4.9F. This implies that the corresponding
dimensional frequency is proportional to the Brunt–Väisälä frequency. It can be
further shown that this period agrees fairly well with the non-dimensional dispersion
relation of internal waves ω2

= cos2 θ/F2, where θ is the angle of the wavevector
with the horizontal. From figure 14(a–d), we can estimate the non-dimensional radial
wavenumber as kr = πri/(ro − ri) = πη/(1 − η) ≈ 28. If the cylindrical geometry is
neglected, we have cos θ =

√
k2

r/(k2 + k2
r ) ≈ 0.6 since the vertical wavenumber is

k = (34, 39, 42) for F = (1/10, 1/20, 1/30). The frequency is therefore ω ≈ 0.6/F
giving a period T ≈ 10F corresponding to a period T/2≈ 5F for the energy since it
is a square quantity. This clearly shows that the lift-up mechanism in the stratified
Taylor–Couette flow involves internal waves like for horizontal shear layer in stratified
fluids (Bakas & Farrell 2009a,b; Arratia 2011). The period of oscillation of Eθ is T ,
instead of T/2 as for the other energy components, because the radial velocity that is
induced by the internal waves is of the same sign as the radial velocity of the initial
azimuthal vortices only every period T .

In contrast, the initial energy of the optimal perturbation in figure 17(b) which
corresponds to the same parameters as figures 15 and 16 is dominated by Eθ as
already seen in figure 15(a) by the inclined coloured contours. Initially, the kinetic
energies Er, Eθ , Ez increase while the potential energy Eρ decreases. Later on, the
potential energy increases dramatically and becomes dominant at t= to= 0.33. Hence,
while the two-dimensional Orr mechanism would generate transient growth of only
Er and Eθ , the effect of the Orr mechanism on three-dimensional perturbations is
to induce significant growth of both the potential and kinetic energies. Since the
perturbation is three-dimensional, the increase of the horizontal velocity ũr and ũθ
by the Orr mechanism is indeed associated with variations of the vertical pressure
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gradient which in turn generates density perturbation through the hydrostatic balance.
After t = to, the energy components Eρ and Ez are significantly larger than the
horizontal kinetic energy components Er, Eθ . They decay monotonically without
significant oscillations (figure 17b) as one would expect if large internal waves were
excited like for unbounded shear flows (Bakas & Farrell 2009a,b; Arratia 2011). We
have checked that this absence of oscillations is not due to the spatial integration
performed in (5.1a–d). The vertical velocity and density perturbations take the form
of two boundary waves near the inner and outer cylinders with zero azimuthal phase
velocity at r= ri and r= ro, respectively (see figure 15(d,h) at t= 2to).

The Orr mechanism can be understood from the evolution equation of the total
energy E:

∂E
∂t
=

∫ 1/η

1
(−rΩ ′ũrũθ − εK − εP)r dr, (5.2)

where εK = (∇u : ∇u)/Re and εP= (∇ρ : ∇ρ)/(Re Sc F2) are the dissipation of kinetic
and potential energies. The first term on the right-hand side of (5.2) represents the
transfer of kinetic energy from the base flow to the perturbation. This term is positive
when ũrũθ is negatively correlated with the angular velocity shear Ω ′. It is the origin
of the Orr mechanism.

In summary, the kinetic energy of axisymmetric perturbations can grow transiently
through the lift-up effect which is coupled to internal waves in stratified fluids,
while both the kinetic and potential energies of non-axisymmetric three-dimensional
perturbations can grow transiently owing to the Orr mechanism.

6. Conclusions and discussions
In this paper, we have investigated the instabilities and transient growth of the

Taylor–Couette flow in stratified fluids in the regime µ < η2 where the flow is
inviscidly centrifugally unstable according to the Rayleigh criterion. Two different
values have been studied: exact counter-rotation µ=−1 and co-rotation µ= 0.5 for
the gap ratio η= 0.9. In the inviscid and non-diffusive limits, two types of instability,
the centrifugal instability (CI) and the strato-rotational instability (SRI), exist. The
CI is most unstable when the axial wavenumber k goes to infinity while the SRI
occurs when two waves resonate at a finite k. The CI and SRI have also distinct
eigenfunction structures. An asymptotic analysis has been performed for large k by
means of the WKBJ approximation for both the CI and the SRI. The asymptotic
dispersion relations are in very good agreement with the numerical results for both
instabilities. When the viscous and diffusive effects are present, the numerical results
show that both instabilities are stabilized. However, the CI is stabilized faster than the
SRI as the buoyancy Reynolds number decreases when the stratification is sufficiently
strong. Thus, the CI is the dominant instability on the neutral stability curve for
weak and moderate stratification while the SRI is the dominant instability for strong
stratification.

The transient growth of the stratified Taylor–Couette flow in the linearly stable
regime for exact counter-rotation µ = −1 has been also investigated for both
axisymmetric and non-axisymmetric perturbations. For weak and moderate stratification
or low Reynolds number, the maximum transient growth is attained by axisymmetric
perturbations which initially consist in azimuthal vortices and a strong density
perturbation associated with internal waves. They induce streaks in the azimuthal
motion similarly to the lift-up effect in homogeneous fluids. On the other hand,
for strong stratification and high Reynolds number, the maximum transient growth
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is achieved by non-axisymmetric three-dimensional perturbations which are initially
tilted against the shear direction. They lead to large amplifications of both kinetic
energy and potential energy by the Orr mechanism. Boundary waves are generated
by this mechanism but classical internal waves do not seem to be excited in contrast
to unbounded horizontal shear layers in stratified fluids (Bakas & Farrell 2009a,b;
Arratia 2011).

In summary, the stability analyses have revealed that the stratified Taylor–Couette
flow in a Rayleigh-unstable regime is not always unstable primarily to the CI but
another instability, the SRI, can be dominant. Secondly, we have shown that the
dominant mechanism for transient growth is strongly dependent on the stratification.

In the future, it would be interesting to continue the study of the transient growth of
the stratified Taylor–Couette flow, in particular to determine the effect of a non-unity
Schmidt number. Indeed, Hua, Le Gentil & Orlandi (1997a) and Caton et al. (2000)
have reported an axisymmetric oscillatory mode at onset of instability for µ = 0
and Sc ≈ 700 in the stratified Taylor–Couette flow. This is different from the steady
axisymmetric mode or non-axisymmetric mode observed here for Sc = 1. Thus, it
is likely that the transient growth mechanisms will also differ when Sc is different
from unity. A study of the transient growth mechanisms in the regime µ> η2 where
only the SRI can exist would also be of interest (Molemaker et al. 2001; Yavneh
et al. 2001; Le Bars & Le Gal 2007; Park & Billant 2013b). Moreover, it could
be interesting to study nonlinear transient growth as done for parallel shear flows
(Monokrousos et al. 2011; Rabin, Caulfield & Kerswell 2012; Eaves & Caulfield
2015).
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