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a b s t r a c t

Wepresent three-dimensional (3D) numerical simulations of the pairing of two vertical columnar vortices
in a stably stratified fluid. Whereas in two dimensions, merging of two isolated vortices occurs on a
diffusion time scale, in the three-dimensional stratified case we show that merging is a much faster
process that occurs over an inertial time scale. The sequence of dynamical processes that leads to this
accelerated pairing involves first a linear stage where the zigzag instability develops displacing vortices
alternately closer and farther with a vertical periodicity scaling on the buoyancy length scale LB = Fhb,
where Fh is the horizontal Froude number (Fh = Γ /πa2N with a the core size of the vortices, Γ their
circulation and N the Brunt–Väisälä frequency) and b is the separation distance between the vortices. In
layers where the vortices have started to move closer, their distance decreases exponentially with the
growth rate of the zigzag instability. Non-linearities do not seem to affect this process and the decrease
only stops when the pairing is completed in that layer. At the same time, enstrophy that has also grown
exponentially reaches a magnitude of the order of the Reynolds number Re = Γ /(πν) (where ν is the
kinematic viscosity of the fluid) if the Reynolds number is not too large, meaning that energy is then
dissipated on the inertial time scale. This dissipation occurs in thin layers and the vortices that were
originally moving away in the intermediate layer start slowing down and rapidly merge.

© 2014 Elsevier Masson SAS. All rights reserved.
1. Introduction

Atmosphere, oceans and some astrophysical fluids are stably
stratified (see [1] for a review) and rotating. At mesoscale for the
Earth’s atmosphere, i.e. between 1 and 100 km, the planetary rota-
tion is weak and the stratification controls the dynamics. Nastrom,
Gage and Jasperson [2] reported that the kinetic energy spectrum
versus horizontal wavenumber kh is of the form k−5/3

h for the at-
mosphere in the mesoscale range, whereas it is of the form k−3

h

at larger scales. Following Lilly [3], they suggested that this k−5/3
h

spectrum might be due to an inverse energy cascade from small
(∼1 km) to large (∼500 km) scales, similar to the energy cascade
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predicted for two-dimensional (2D) turbulence by Kraichnan [4]
and well confirmed by numerical simulations and experiments. In
2D, energy is transferred by the merging of two vortices to form
a larger one [5]. The idea that the potential vorticity in a stratified
flow even at slow time scale in the absence of the gravity wave
component might behave as a 2D fluid was questioned by many
authors [6–10]. In particular, [11,12] showed that several 2D flows
were unstable when the fluid is stratified, and they named this in-
stability the zigzag instability. Specifically, the zigzag instability af-
fects co-rotating vortex pairs [13,12] and has a growth rate which
scales as twice the external strain field generated by one vortex on
the other (S = Γ /2πb2). Thus, this instability is as fast as the ro-
tation Ω = Γ /πb2 of the vortex pair. Destabilization should thus
occur in a few rotations of the pair and as a consequence, this in-
stability should strongly affect the merging between vortices, and
may therefore help explaining the departure of the stratified tur-
bulence from two-dimensional turbulence.

In the present paper, we investigate through numerical
simulations a single pairing event in a strongly stratified fluid
in order to find out to which extent stratification affects this
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process. In particular, we will compare this stratified merging
to purely two-dimensional merging. The second section presents
the numerical method used to study a pairing event by direct
numerical simulations. The third section shows the qualitative
behavior of the merging. The fourth, fifth and sixth sections
describe and analyze in detail the pairing in a stratified fluid.

2. Numerical simulations

2.1. Governing equations and numerical method

The dynamics of the flow is governed by the incompressible
Navier–Stokes equations under the Boussinesq approximation:

∂u
∂t

= u ∧ ω − ∇


p +

u2

2


− ρez + ν∆u, (1)

∂ρ

∂t
+ u · ∇ρ = N2uz + D∆ρ (2)

where ez is the unit vector in the z-direction pointing upward,
p the pressure field, u the non-divergent velocity (div u = 0),
uz = ez ·u its vertical component,D the diffusivity of the stratifying
agent and ν the kinematic viscosity. The density field is the sum
of a constant density ρ0, a linear profile ρ̄(z) and a perturbation
ρ0ρ/g . The density perturbation is rescaled by g/ρ0 in order to
avoid an extra constant in Eq. (1). The Brunt–Väisälä frequency is
N =

√
−(g/ρ0)dρ̄/dz, where g is the gravity acceleration.

Eqs. (1)–(2) are expressed in the Fourier space:

dû
dt

= P(k)

u ∧ ω − ρ̂ez


− νk2û, (3)

dρ̂
dt

= N2ûz − Dk2ρ̂, (4)

where the Fourier transform is denoted by a hat, k is thewavenum-
ber and P(k) is the projection operator on the solenoidal space. To
compute (3)–(4), we use a pseudo-spectral solver adapted from the
unstratified code used by [14]. The computational domain is a par-
allelepipedic box of height Lz with a square horizontal base (Lx = Ly
where Lx and Ly are the dimensions respectively in the x and y di-
rections). The spatial resolution is chosen to be about the same in
all directions implying that the numbers of collocation points on
the horizontal directions are equal, nx = ny, and that the number
of collocation points on the vertical is nz ∼ nxLz/Lx. Time integra-
tion is performed with a second order Adams–Bashforth scheme.
Dissipative terms are integrated exactly. The 2/3 rule is applied for
de-aliasing.

2.2. Initial conditions

The initial velocity field U is made of a quasi-steady 2D pair of
co-rotating vortices U2D(x, y) perturbed by the most unstable 3D
eigenmode U ′

U(x, y, z, t = 0) = U2D(x, y) + Aℜ(eikzmzU ′(x, y)) (5)

where A is the amplitude of the perturbation, ℜ denotes the real
part and kzm is themost unstable vertical wavenumber obtained by
a linear stability analysis [13]. Inmost simulations, the vertical size
of the box Lz is set to the most unstable wavelength Lz = λmax =

2π/kzm.
In order to obtain the basic flow U2D, a 2D non-linear sim-

ulation is first carried out with the following initial vortic-
ity field corresponding to two identical co-rotating gaussian
vortices of initial radius ai, circulation Γi, separated by an initial
distance bi:

ωi =
Γi

πa2i


exp


−

(x −
bi
2 )2 + y2

a2i



+ exp


−

(x +
bi
2 )2 + y2

a2i


. (6)

This two-dimensional simulation is conducted for the same set
of parameters (nx, ny, Lx, Ly, ν) as the 3D simulation. Each vortex
is deformed by the strain field created by the companion vortex
and becomes slightly elliptical [15–18]. Then, the vortex core
a increases slowly by diffusion whereas the distance b remains
constant. The velocity field U2D is taken during this quasi-steady
phasewhen the ratio a/bhas reached thedesired initial value a0/b0
for the 3D numerical simulation. The two-dimensional simulation
is also continued further in order to have a reference simulation
to analyze the 3D simulations. The linear stability analysis of the
base flow U2D is also conducted in order to find the most unstable
vertical wavenumber kzm and eigenmode U ′ [13]. The eigenmode
U ′ is normalized so that its total energy per unit vertical length
scale is equal to unity.

Space and time are non-dimensionalized respectively by the
core size a0 and by the inverse of the vorticity at the center of
each vortex τ = πa20/Γ0, where Γ0 is the circulation of each
individual vortex at time t0. The same notation is kept for the
non-dimensional variables for the sake of simplicity. The Reynolds
number is defined as Re =

Γ0
πν

and the Froude number is Fh =
Γ0

πa20N
.

The Schmidt number Sc = ν/D is set to unity.

3. Qualitative behavior of the pairing of vortices in a stratified
flow

The dynamics of the merging of two co-rotating vortices in a
linearly stratified flow has been first computed without the so-
phisticated initial condition described above. The evolution of two
gaussian vertical vortices perturbed by a low amplitude 3D white
noise has been computed in a cubic box and with a moderate reso-
lution 1283. The initial ratio between the core size ai and separation
distance bi is ai/bi = 0.15. The initial Froude number is Fh = 1.33
and the Reynolds number is Re = 2120. The size of the domain is
Lx = Ly = Lz = 10πai. Fig. 1 shows the temporal evolution of the
vertical vorticity. At the beginning of the simulation (t = 0), the
vortices are columnar and rotate one around the other at angular
velocity Ωi = Γi/(πb2i ). At time t = 478, the two vortices are dis-
placed symmetrically alternately closer and away along the verti-
cal in a direction making a well defined angle with the line joining
the vortex centers. As a result, the distance between the two vor-
tex axes oscillates along the vertical. This perturbation structure is
similar to the one associated with the zigzag instability described
byOtheguy et al. [13]. At t = 557, the pairing of the vortices has oc-
curred in layers where they were brought closer by the instability.
These layers alternate with layers where two well-separated vor-
tices are still rotating one around the other. At t = 955, merging
has eventually occurred at each vertical station. The final vortex
displays a variation of core size along the vertical resulting from
the desynchronized pairing. This modulated core is surrounded by
low intensity spiral arms (yellow contours).

The vertical wavelength that shows up spontaneously is
λ/(bFh) = 0.5with a spatial variability of about 16%, in good agree-
ment with the most unstable wavelength of the zigzag instability
λ/(bFh) = 0.64 predicted by the linear stability analysis by [13].
Furthermore, the instability manifests itself even at finite ampli-
tude, as bending deformations of the vortices in agreement with
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Fig. 1. Vertical vorticity contours obtained by DNS of two co-rotating vertical vortices for ai/bi = 0.15, Fh = 1.33, Re = 2120 and a moderate resolution 1283 . Yellow and
blue contours represent respectively 5% and 50% of the instantaneous maximum vorticity. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
the linear theory predictions. These two features indicate that the
non-linear dynamics of the pairing in a stratified flow, and in par-
ticular the associated vertical variations, is controlled by the linear
zigzag instability. Therefore, it is legitimate to limit the computa-
tional domain to one vertical wavelength and to initialize the per-
turbation by the leading eigenmode. This procedure will allow to
use a very flat box, i.e. to reduce the number of points along the
vertical for a given spatial resolution. By this way, one can achieve
larger Reynolds numbers than if cubic boxes were used.

4. Description of merging in a strongly stratified fluid

In this section, the typical 3D evolution of the vortex pair is de-
scribed for a Reynolds number equal to 2000. The horizontal size of
the computational domain is Lx = Ly = 30, which is large enough
to minimize the effects of the periodic boundary conditions. The
number of horizontal collocation points is nx = ny = 512 giv-
ing a reasonably fine mesh to resolve the vortex core and the small
scales that appear during the evolution. The time step is δt = 0.01.
The ratio between the core size of the vortices a0 and their sepa-
ration distance b0 is initially a0/b0 = 0.15. The Froude number is
Fh = 1. The vertical size of the box is adjusted to correspond to
the most unstable zigzag instability wavelength: Lz = 4.2 imply-
ing that nz = 72 since the same resolution is used in the verti-
cal and horizontal directions. The initial perturbation amplitude is
A = 0.001 corresponding to an initial horizontal vorticity with a
value of the vertically averagedmaximum(Mh = 0.007)more than
two orders of magnitude lower than the value of the vertically av-
eraged maximum of the total vorticity (Mt = 1).

Fig. 2 displays the temporal evolution of the total (left column),
vertical (central column) and horizontal (right column) vorticity
fields. The time origin is taken at the beginning of the 3D
simulation. The evolution is qualitatively similar to the one of the
randomly forced case (Fig. 1).

At t = 290, the zigzag instability has displaced symmetrically
the two vortices and driven them closer at the top and bottom of
the periodic box and farther in the central region of the domain.
The horizontal vorticity magnitude has strongly increased (Mh =

0.481) and is comparable to the vertical vorticitymagnitude (Mz =

0.488).
At time t = 350 (Fig. 2), the merging has occurred at the top

and bottom (layer thereafter called L1) where the vortices were
brought closer together by the instability whereas they keep being
well separated in the central layer (thereafter called L1/2). The
four horizontal cross-sections of the vertical vorticity field (distant
by a quarter of a wavelength from each other) shown in Fig. 3
confirm that in layer L1/2 (section S1/2 located at z = 1.81),
the two vortices are separated whereas they have merged in the
three other cross-sections. Fig. 2 at t = 350 displays a complex
entanglement of thin horizontal structures of horizontal vorticity
with a magnitude (Mh = 0.404) larger than the vertical vorticity
maximum (Mz = 0.324).

At time t = 480, vertical vorticity contours show that the pair-
ing is not yet completed in the central layer L1/2. The horizontal
vorticity field exhibits on each side of the layer L1/2 four spiraling
arms with a magnitude (Mh = 0.139) three times smaller than at
time t = 350.

At t = 750, the merging has occurred in all the layers and the
final vortex displays variations in the core size along the vertical
direction (Fig. 2). The horizontal vorticity is small (Mh = 0.045, to
be compared toMz = 0.206) but still exhibits two separated blobs.

In summary, the zigzag instability makes the merging non-
simultaneous along the vertical and creates strong horizontal
vorticity between layers before the merging is completed.

5. Analysis of a 3D stratified pairing and comparison with a 2D
pairing

5.1. Evolution of the separation distance and of the core size of the
vortices

The time-evolution of the vortex pair is analyzed by fitting
the vertical vorticity ωz(x, y, z, t) in horizontal cross-sections at
each vertical position by two gaussian vortices separated by a
distance b(z, t), with an instantaneous circulation Γ (z, t) and a
core size a(z, t). This fit of the vertical vorticity is more than 5%
accurate except just when the vortices are merging in the layer
considered showing that during their evolution the vortices keep
being gaussian.

The same fit is first performed for the 2D simulation and the
results are plotted in Fig. 4 as a plain line. We observe that
the evolution of vortices before merging exhibits several distinct
phases as previously described for example in [19–22]. Since, the
vortices are initially adapted to the strain field generated by the
companion vortex, the first phase here consists in the viscous
phase: the separation distance between the vortices b (Fig. 4b)
remains almost constant while the vortex core size a (Fig. 4a)
evolves slowly by viscous diffusion. The total duration of this
phase scales like Re2. The second phase is fast and corresponds

1 Note that the maximum of the bending deformations due to the zigzag
instability is not located at the center of the box z = 2.1 but at z = 1.8.
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a b c

Fig. 2. (a) Total, (b) vertical, (c) horizontal vorticity isosurfaces yellow and blue surfaces represent respectively 5% and 50% of the magnitude of the field considered (Mt ,Mz ,
Mh) defined as the vertically averaged maximum in each horizontal cross-section obtained by DNS of two co-rotating vertical vortices for a0/b0 = 0.15, Fh = 1, Re = 2000
and A = 0.001. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 3. Horizontal cross-sections of the vertical vorticity field (plotted in Fig. 2b) at time t = 350 and at four different vertical locations separated by a quarter of awavelength:
at z = 0.77, z = 1.8 (section S1/2), z = 2.9, z = 4.0 (section S1) for a0/b0 = 0.15, Fh = 1, Re = 2000 and A = 0.001.
to a convective process where the separation distance between
the vortices drops rapidly as they merge. Meunier et al. [21]
have shown that this convective merging is initiated when the
ratio a/b reaches the critical value (a/b)c ∼ 0.29. Cerretelli and
Williamson [22] identified a third phase (the beginning of which is
barely visible in Fig. 4b) where two vorticity maxima are present
inside the merged vortex at a distance oscillating around 0.28 b0
(indicated by a dotted line in Fig. 4b). These twomaxima inside the
vortex core eventually disappear being smoothed out by viscous
diffusion.
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Results from the three-dimensional stratified simulation for the
same Reynolds number as the 2D simulation are also reported in
Fig. 4 for the two horizontal cross-sections S1/2 (z = 1.8) and
S1 (z = 4) (respectively the center of the layers L1/2 and L1).
We consider that the vortices have merged when their separation
distance falls below the value bc = 0.28b0 indicated by a dotted
line in Fig. 4(b).We observe that in both cross-sections S1/2 and S1,
the merging occurs earlier than in the two-dimensional case but is
not simultaneous as already observed in Figs. 1–3. In a first stage,
the separation distances b1/2 and b1 between the two vortices in
the cross-sections S1/2 and S1 respectively decrease and increase
exponentially as predicted by the linear stability analysis:

b1/2(t) = b0 + Ab A exp(σ t) (7)

b1(t) = b0 − Ab A exp(σ t), (8)

where A is the initial amplitude of the perturbation given in the
caption, σ the non-dimensional growth rate of the zigzag instabil-
ity (σ ≈ a20/b

2
≈ 0.02) and Ab ≈ 6.5 is a theoretical constant

predicted with no fitting parameter giving the displacement in the
direction of the line joining the vortex centers for the normalized
eigenmode U ′.

The theoretical predictions (7) and (8), plotted as dashed lines
in Fig. 4(b), match remarkably well the observations. For b1, the
exponential decay keeps being valid until the vortices merge in S1
at time t1 ≈ 365 suggesting that the pairing in S1 is not driven by
a convective merging process as in the 2D case but by the linear
zigzag instability (Fig. 4b). In the section S1/2, the distance b1/2
starts increasing exponentially as predicted by (7) before slowing
down after the merging being completed in S1, and then rapidly
decreases leading to an anticipated merging at t1/2 ≈ 590.

The core size of the vortices a initially follows the two-
dimensional viscous evolution according to the diffusion law [23]:

a(t) =


a20 + 4νt, (9)

plotted as dashed line in Fig. 4(a). After this initial stage, the core
size a increases rapidly in section S1 (Fig. 4a) while the pairing oc-
curs (from t ≈ 300 to t ≈ 400) and than increases slowly follow-
ing nearly a viscous diffusion law as indicated by the dashed line
in Fig. 4(a). The core size in S1/2 also starts increasing at the same
time as in S1 but keeps increasing till the pairing is completed in
S1/2 (t1/2 ≈ 590). By approximating and extrapolating the vor-
tex cores evolution before and after the merging by the diffusion
law (9), we estimate an increase of the core size by a factor 1.4 in
section S1 and by a factor 2 in S1/2 (Fig. 4b) at the time when the
vortices have just merged.

Fig. 5 shows the evolution of the vortex core size a(z, t) (Fig. 5a)
and of the separation distance b(z, t) between the vortices rescaled
by b0 (Fig. 5b) as a function of time and of the vertical location. Data
of Fig. 4 correspond to the cross-sections S1/2 at z = 1.8 and S1 at
z = 4 of these surfaces. The distance b/b0 falls below the value
0.3 at time t1 ≈ 365 (Fig. 5b) simultaneously in the whole layer
L1 (from z = 0 to z = 1 and from z = 2.6 to z = 4.2) meaning
that the pairing is synchronized in the whole layer L1. The pairing
also occurs almost simultaneously around t1/2 ≈ 590 in layer L1/2
i.e. between z = 1 and z = 2.6. Sharp vertical gradients are
formed on the frontier between L1/2 and L1. The evolution of the
vortex core size (Fig. 5a) is more complex. A slow viscous diffusion
is followed by extremely fast evolutions at the frontier between
L1 and L1/2 (around t1 = 365) where the vertical shear due to
the decorrelation induced by the zigzag instability is maximum.
Subsequently, a fast evolution occurs in the middle of the layer
L1/2 just before the pairing event (t1/2 = 590).
a

b

Fig. 4. Evolution of (a) the vortex cores size a non-dimensionalized by b0 , (b) the
separation distance between the vortex centers b non-dimensionalized by b0 , for
a0/b0 = 0.15, Fh = 1, Re = 2000, A = 0.001. The solid lines represent the 2D case
and the symbols the 3D stratified case, open symbols being measured in section S1
and closed symbols in section S1/2 i.e. (a) a1 = a(z = 4, t), a1/2 = a(z = 1.8, t)
and (b) b1 = b(z = 4, t), b1/2 = b(z = 1.8, t). The viscous diffusion law
(Eq. (9)) is represented by dashed lines in (a) to fit the evolution of the initial and
merged vortices. In (b), the predictions of the linear theory of the zigzag instability
(Eqs. (7)–(8)) are representedbydashed lines and themerging criterion bc = 0.28b0
is plotted by a dotted line giving t1 ≈ 365 and t1/2 ≈ 590 for the time of merging
in sections S1 and S1/2 .

5.2. Effect of the parameters: amplitude perturbation, Reynolds
number Re and Froude number Fh

Fig. 6(a) investigates the effect of the amplitude of the initial
perturbation A for Fh = 0.5 and Re = 2000. The curves repre-
senting b are simply time-shifted in both layers so that a higher A
corresponds to an earlier merging in section S1 as well as in sec-
tion S1/2. The time delay ∆t = t1 − t1/2 between the mergings
in the different layers is almost independent of the initial pertur-
bation amplitude A and so does the maximum separation distance
between the vortices reached in S1/2. This confirms that the zigzag
instability controls the pairing in a stratified fluid. The instant t1
of the pairing in S1 may be then estimated by the instant when b1
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a

b

Fig. 5. Contours of (a) vortex core size a(z, t) and (b) separation distance between
the vortex centers b(z, t) rescaled by b0 as a function of time and of vertical location.
The contour level is 0.03 in (a) starting at a/b0 = 0.15 at t = 0. In (b), the contour
level is 0.15 starting at b/b0 = 1 for t = 0. The white color represents the larger
values. The bold horizontal lines delimit the layers L1 and L1/2 . The white vertical
lines indicate the times of merging in layers L1 and L1/2 .

given by (8) vanishes:

t1 ≈
1
σ

ln


b0
AbA


. (10)

This equation predicts that the time delay t1(A = 0.001) − t1(A =

0.005) = ln 5/σ ≈ 100 which is well verified in Fig. 6(a). Fig. 6(b)
shows the effect of the Reynolds number on the stratifiedmerging.
When the Reynolds number increases, the time t1 of the merging
in section S1 decreaseswhereas in the two-dimensional case (plot-
ted in full line for Re = 2000 and in dashed line for Re = 5000),
the time to merge increases dramatically with Re from t ≈ 800 to
t ≈ 1700 (not visible in the figure). For Re = 8000, the 2D pairing
would occur for an even larger time. The acceleration of the merg-
ing with Re in L1 is

t1(Re = 5000)
t1(Re = 2000)

≈ 0.80 (11)

and is due to the increase in the zigzag instability growth rate from
σ = 0.016 at Re = 2000 to σ = 0.019 at Re = 5000 [13] since
Eq. (10) predicts:
σ(Re = 2000)
σ (Re = 5000)

≈ 0.84. (12)

The evolution of b1 when Re is varied from 5000 to 8000 remains
almost similar since the variation of the growth rate is negligible
between these Reynolds numbers. The distance between the vor-
tices in the layer S1/2, i.e. b1/2, increases initially faster when Re
is increased form Re = 2000 to Re = 5000, again because of the
increase of the growth rate. The maximum value of b1/2 increases
with the Reynolds number but is reached at about the same time
for all Re. A rapid decrease then followswhen the pairing inS1/2 be-
gins. Because max(b1/2) increases with Re, the time t1/2 increases
also slightly with the Reynolds number. The delay∆t = t1/2− t1 in
the pairing between S1 and S1/2 increases with Re from ∆t = 85
for Re = 2000 to ∆t = 215 for Re = 5000 and ∆t = 270 for
Re = 8000.

Fig. 6(c) is similar to Fig. 6(b) but for Fh = 1. In that case, the
evolution of b1 is almost independent of the Reynolds number in
agreement with the fact that for Fh = 1 the difference between
the growth rates of the instability for Re = 2000 (σ = 0.01995)
and Re = 5000 (σ = 0.0206) is much smaller than for Fh =

0.5. In contrast, the maximum value of the distance b1/2 strongly
increases with the Reynolds number and reaches 1.6b0 for Re =

10 000. The delay ∆t = t1/2 − t1 between the mergings in S1 and
S1/2 again increases from ∆t = 225 at Re = 2000 to ∆t = 400 at
Re = 5000 and ∆t = 500 at Re = 10 000.

This strong dependence of the merging delay ∆t on Re evi-
denced both for Fh = 0.5 (Fig. 6b) and Fh = 1 (Fig. 6c) suggests
that the merging in S1/2 is viscously driven by the merging in S1.
But the viscous time scale tv = L2z/4ν – built on Lz/2 – is 26 to 100
times larger than∆t suggesting that the pairing in S1/2 involves an
interaction between viscous and inertial or buoyancy effects. In-
deed, in the next section, it will be shown that a very large vertical
shear whose intensity depends on the Reynolds number appears
between the two layers. Thus, the estimation of tv should be based
on the vertical scale characterizing this shear. Furthermore, it is no-
ticeable that once the decrease of b1/2 is initiated, the slope of this
decrease is independent of the Reynolds number.

Fig. 6(d) investigates the effect of the Froude number on the
time evolution of the separation distances b1 and b1/2. We observe
that t1 increases when the Froude number decreases. This is due
to the increase of the growth rate of the zigzag instability with
the Froude number (for Re = 2000, σ = 0.02 for Fh = 1,
σ = 0.016 for Fh = 0.5 and σ = 0.011 for Fh = 0.3) owing to
the vertical viscous dissipation. The latter indeed decreases as the
Froude number increases because the most unstable wavelength
of the zigzag instability scales like Fh [13].

To summarize, when the flow is strongly stratified, themerging
of two co-rotating vortices is induced by the growth of the zigzag
instability. In the layer L1 where the zigzag instability pushes
together the vortices, the merging time t1 is well predicted by the
exponential growth of the instability and thus depends on Fh and
Re only through the instability growth rate. The dynamics in the
layer L1/2 is more complex since the vortices start moving away
exponentially due to the zigzag instability but once the pairing is
completed in L1, the resulting vertical inhomogeneity of the flow
seems to force the pairing in that layer. The time delay∆t between
the pairings in L1 and L1/2 is a function of both Fh and Re but its
moderate increase between Re = 5000 and Re = 10 000 suggests
that it is not a simple diffusion process that drives the vertical
correlation.

Like Fig. 5b, Fig. 7 presents the evolution of the horizontal
distance b between the vortex cores as a function of z and t for a
Froude number Fh = 1 and two Reynolds numbers Re = 5000 and
Re = 10 000. In the two cases, the pairing is synchronized in layer
L1 and in the center of layer L1/2. The size of the synchronized
area in L1/2 decreases with Re and the vertical variations of b are
confined to thin layers whose thickness decreases with Re.
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Fig. 6. Evolution of the separation distances b1 and b1/2 between the vortex centers for a0/b0 = 0.15; same as Fig. 4(b) but (a) for different perturbation amplitude (◦)
A = 0.001; (▽) A = 0.005 with Fh = 0.5, Re = 2000; (b) for different Reynolds numbers (◦) Re = 2000; (△) Re = 5000; (⋆) Re = 8000 with A = 0.001, Fh = 0.5; (c) for
different Reynolds numbers (�) Re = 2000; (◃) Re = 5000; (▹) Re = 10 000 with A = 0.001, Fh = 1; (d) for different Froude numbers (�) Fh = 1; (◦) Fh = 0.5; (�) Fh = 0.3
with A = 0.001, Re = 2000. The solid and dashed lines represent the two-dimensional simulations corresponding to Re = 2000 and Re = 5000, respectively.
6. Energy and enstrophy analysis

6.1. Dissipation and small scale generation

To further analyze the dynamics of the pairing, we computed
themean total kinetic energy EK = 1/(2nxnynz)


x,y,z |u|

2 and the
mean total enstrophy Z = 1/(2nxnynz)


x,y,z |ω|

2 (Fig. 8). These
quantities have been also decomposed into vertical and horizon-
tal components. The potential energy EP = F 2

h /(2nxnynz)


x,y,z ρ2

has been also computed but its maximum is very low compared
to the maximum of the kinetic energy. The vertical velocity con-
tribution to the total kinetic energy is negligible (it appears as a
continuous line on the x-axis in Fig. 8a). The evolution of the to-
tal kinetic energy can be divided into three phases. During the first
phase (from t = 0 to t = 250), the total kinetic energy slowly
decreases as in the 2D (case plotted as a thin plain line). Around
t = 250, i.e. when the zigzag instability has reached a finite ampli-
tude, the kinetic energy decreases quickly till the pairing is com-
pleted in L1 (t1 ≈ 365). The loss of kinetic energy is about 20%
compared to the 2D case. During the third phase (from t = 250
to t = 750), the kinetic energy decreases at a slightly slower rate
than in the 2D simulation.

The vertical enstrophy (Fig. 8b) follows the same trend as
the kinetic energy: the vertical enstrophy of the 3D simulation
departs from the enstrophy of the 2D simulation around t = 250,
decreases by about 50% when reaching the time when the pairing
is completed in L1 and then decreases slightly slower than in the
2D simulation. The horizontal enstrophy (Fig. 8b) is approximately
zero at the beginning and at the end of the simulation. In between,
it bursts out and reaches twice the initial value of the total
enstrophy around t1 = 365, i.e. at the time where the vortices in
layer L1 are just merging. This generation of horizontal vorticity
comes from the vertical shear generated by the shifted positions of
the vortices between layers L1/2 and L1. Then it decreases rapidly
and vanishes after t1/2 = 590 when the positions of the vortex
centers are nearly aligned along the vertical direction.

Figs. 9(a) and 10(a) investigate the effect of the amplitude A
of the initial perturbation and show that the energy loss and the
enstrophy production are nearly independent of the value of A
but occur sooner when the amplitude is larger. The enstrophy
production is slightly smaller when the initial amplitude is smaller
because thepairing occurs later so that the vortices have beenmore
dissipated by horizontal viscous diffusion.

Fig. 9(b–c) investigate the effect of the Reynolds number for
Froude numbers Fh = 0.5 and Fh = 1. We observe that the energy
loss compared to the two-dimensional simulations is almost the
same for Re = 5000 and Re = 2000 and seems therefore
independent of the Reynolds number.

In contrast, the enstrophy maximum (Fig. 10b) is increased ap-
proximately three times for Fh = 0.5when increasing theReynolds
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Fig. 7. Same as Fig. 5(b), evolution of the distance between the vortices b (a) for
Re = 5000 and (b) for Re = 10 000.

number from Re = 2000 to Re = 5000 and is multiplied by 4
when increasing the Reynolds number from Re = 2000 to Re =

8000. Similarly, the enstrophy maximum (Fig. 10c) is multiplied
by two for Fh = 1 when increasing the Reynolds number from
Re = 2000 to Re = 5000 and is multiplied by 2.5 when increasing
the Reynolds number from Re = 2000 to Re = 10 000. Comparing
Fig. 10(b) and 10(c), the enstrophymaximum for Re = 5000 is two
times larger for Fh = 0.5 than for Fh = 1 whereas from Fig. 9(b)
and 9(c), the energy loss is only 25% larger for Fh = 0.5.

Fig. 9(d) shows the evolution of the total kinetic energy for Re =

2000 and different Froude numbers. The curves corresponding to
Fh = 1 and Fh = 0.5 nearly superimpose whereas the curve
corresponding to Fh = 0.3 exhibits a much smaller decrease in
energy. The corresponding evolution of total enstrophy is shown
in Fig. 10(d). We observe that the enstrophy evolution is almost
the same for Fh = 0.5 and Fh = 1. The curve corresponding
to Fh = 0.3 is much closer to the curves corresponding to the
two-dimensional simulation because in this case the growth rate is
much lower (σ = 0.011) and saturation of the perturbation occurs
later when about 50% of the energy has already been dissipated.

In summary, when the growth rate of the zigzag instability
is close to its invisicid value, the enstrophy production is
independent of the Froude number and increases with the
a

b

Fig. 8. (a) Mean total kinetic energy EK (t) and (b) mean total enstrophy Z(t) as
a function of time for a0/b0 = 0.15, Fh = 1, Re = 2000 and A = 0.001 (open
symbols). The horizontal and vertical parts of the kinetic energy EK and of the
enstrophy Z are represented by gray and black symbols, respectively. The kinetic
energy and enstrophy of the two-dimensional simulation, corresponding to the
same set of parameters is plotted by a solid line.

Reynolds number. Fig. 11 shows that the horizontal enstrophy
divided by the Reynolds number is approximately independent of
the Reynolds and Froude numbers and occurs at a time determined
by the initial amplitude of the perturbation. In other words, the
maximum enstrophy is approximately inversely proportional to
the viscosity like for counter-rotating vortex pairs [24]. If the
enstrophy is dominated by the vertical gradients of the horizontal
velocity, i.e. Z ∝ |∂u/∂z|2, the vertical shear ∂u/∂z increases until
the associated vertical length scale δ has reached the dissipative
scale, i.e. δ ∝ a/

√
Re. This small vertical scale δ will be clearly

evidenced in the next section but it is already visible on the
enstrophy field (Fig. 2) at the interface between the layers L1/2
and L1.

6.2. Space and time evolutions

We consider the numerical simulation described in Section 5
defined by the set of parameters (a0/b0 = 0.15, Fh = 1, Re = 2000,
A = 0.001). Fig. 12(a–b) shows the evolution of the mean total
kinetic energyEK (z, t) andmean total enstrophyZ(z, t) calculated
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Fig. 9. Evolution of the kinetic energy EK as a function of time for a0/b0 = 0.15 and for (a) for different perturbation amplitude (◦) A = 0.001; (▽) A = 0.005 with Fh = 0.5,
Re = 2000; (b) for different Reynolds numbers (◦) Re = 2000; (△) Re = 5000; (⋆) Re = 8000 with A = 0.001, Fh = 0.5; (c) for different Reynolds numbers (�) Re = 2000;
(◃) Re = 5000; (▹) Re = 10 000 with A = 0.001, Fh = 1; (d) for different levels of stratification (�) Fh = 1; (◦) Fh = 0.5; (�) Fh = 0.3 with A = 0.001, Re = 2000. The solid
and dashed lines represent the two-dimensional simulations corresponding to Re = 2000 and Re = 5000, respectively.
in each horizontal layer as a function of time and of the vertical
coordinate as

EK (z, t) =
1

2nxny


x,y

|u|
2(x, y, z, t), (13)

Z(z, t) =
1

2nxny


x,y

|ω|
2(x, y, z, t), (14)

respectively. From t = 0 to t = 150, the kinetic energy (Fig. 12a)
remains approximately homogeneous along the vertical and is
steadily dissipated by viscosity as in 2D. After t = 150, the ki-
netic energy increases in the layer L1 and decreases in layer L1/2.
This energy transfer is due to the development of the zigzag in-
stability. The energy starts decreasing in layer L1 once the pairing
is completed in this layer (after t1 ≈ 365) and up to the end of
the computation. The kinetic energy in L1/2 decreases rapidly till
t = t1 + ∆t/2 and then re-increases slightly when the pairing oc-
curs in L1/2. After the pairing is completed in layer L1/2, it seems
that the kinetic energy remains constant in the intermediate layers
between L1 and L1/2. This suggests that the shear that develops
at the frontier between L1 and L1/2 is transferring kinetic energy
from L1 to L1/2. This transfer of kinetic energy might explain that
the pairing in L1 seems to drive the pairing in L1/2 in agreement
with the observations of the separation distance between the vor-
tices in Section 5.2.

Fig. 12(d) shows that the enstrophy starts with a sinusoidal
variation along the vertical when the zigzag instability develops.
Then, it concentrates and becomes maximum at the frontier
betweenL1 andL1/2 when themerging occurs in layerL1 (around
t = t1). Enstrophy starts decreasing after the pairing is completed
in L1 (t1 ≈ 365) and is returned to its original value everywhere
after t = 450.

Fig. 12(b–c) and 12(e–f) are similar to Fig. 12(a) and 12(d),
respectively, but for higher Reynolds numbers (Re = 5000 for (b)
and (e),Re = 10 000 for (c) and (f)). The beginning of the evolutions
of the energy and enstrophy are similar for the three Reynolds
numbers since it is due to the linear development of the zigzag
instability. Then, we see that the evolution occurs on a longer time
scale when the Reynolds number is larger. The enstrophy reaches
larger values and is concentrated in thinner horizontal layerswhen
the Reynolds number is increased in agreement with the estimate
of δ discussed above. These thin layers with intense vertical shear
of horizontal velocity move slowly towards the center of the layer
L1/2 leading eventually to the pairing in that layer.
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Fig. 10. Same as Fig. 9 except that the enstrophy Z is plotted instead of the kinetic energy.
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Fig. 11. Time evolution of the horizontal part of the total enstrophy divided by the
Reynolds number for a0/b0 = 0.15, A = 0.001 and for (◦) Re = 2000, Fh = 0.5;
(△) Re = 5000, Fh = 0.5; (⋆) Re = 8000, Fh = 0.5; (�) Re = 2000, Fh = 1; (◃)
Re = 5000, Fh = 1; (▹) Re = 10 000, Fh = 1.

6.3. Search for secondary instabilities

The time evolution of the kinetic energy displayed in Fig. 9
shows that the time integrated dissipation remains approximately
constant even when the Reynolds number is increased to high
values (see also Fig. 11). This implies that the energy is transferred
towards small scales where it can be dissipated. Assuming that the
energy is dissipated only by the vertical shear, we can estimate
the characteristic vertical length scale of this shear to be of the
order of δ = a/

√
Re. The stratification can stabilize strong vertical

variations of the flow as long as their characteristic vertical length
scale is larger than the local buoyancy scale lb = aFh. This
means that the vertical shear between the layers L1/2 and L1
should be stable only if the buoyancy Reynolds number R =

(lb/δ)2 = ReFh2 is not too large. In contrast, for large buoyancy
Reynolds number some secondary instabilities might develop like
for counter-rotating vortex pairs [24–26,].

Augier and Billant [26] have shown that for sufficiently high R,
two different secondary instabilities appear almost simultaneously
in distinct regions of counter-rotating vortex pairs due to the
development of the zigzag instability. This leads to both high
shear on which the Kelvin–Helmholtz instability develops [24]
and unstably stratified regions where the convective instability
develops [25]. With the definitions of the Reynolds and Froude
numbers used in the present study, the condition for the onset of
the secondary instabilities is R > Rc ≃ 2700 in the case of a
counter-rotating vortex pair with a/b = 0.4 [24].

Even if this threshold is a priori only valid for the particular
base state used by Deloncle et al. [24], we can try to compare
it to the present simulations as a first approximation. Only two
simulations correspond to buoyancy Reynolds number above this
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Fig. 12. Kinetic energy EK (z, t) (a,b,c) and enstrophy Z(z, t) (d,e,f) as a function of time and vertical location for a0/b0 = 0.15, Fh = 1, A = 0.001 and (a,d) Re = 2000; (b,e)
Re = 5000; (c,f) Re = 10 000. The contour level of the kinetic energy is 0.0002 and the contour level of the enstrophy is 0.002. White color represents the maximum values.
threshold: Fh = 1, Re = 5000 ⇒ R = 5000 and Fh = 1, Re =

10 000 ⇒ R = 10 000. Indeed, the evolution of the enstro-
phy in these two simulations (see Figs. 10c and 12e–f) is more ir-
regular and abrupt than in the other simulations which seems to
indicate that some particular processes take place for these param-
eters. However, after a careful study of the flow fields, we have
concluded that there is none of the signatures of the secondary
instabilities that develop in the case of a counter-rotating vortex
pair. In order to investigate further this issue, we have carried out
one additional simulation at larger buoyancy Reynolds number
(Fh = 1, Re = 40 000 ⇒ R = 40 000). Such Reynolds num-
ber has been achieved without increasing too much the resolution
(nx = ny = 512, nz = 128) by adding to the Newtonian viscos-
ity a weak hyper-viscosity. This method has been validated against
DNS in the case of the transition to turbulence of a dipole in a strat-
ified fluid [27]. Surprisingly, even for this large buoyancy Reynolds
number, neither the Kelvin–Helmholtz instability nor the convec-
tive instability develops during the pairing.

Fig. 13 shows the color contours of the Richardson number

Ri =
−(g/ρ0)(∂ρtot/∂z)

|∂uh/∂z|2
(15)

in a vertical cross-section through the merging vortices. The figure
shows also contours of total density (black thin lines). The thick
gray lines are iso-lines of vertical vorticity (0.8 times the rms value)
indicating the position of the vortices. We see that in the regions
between the layers L1/2 and L1 where the vertical shear is strong
the Richardson number is relatively small but not smaller than 1/4.
Interestingly, approximately the same values of the Richardson
number are observed for Re = 10 000which seems to indicate that
when the Reynolds number is increased to very high values the
Richardson number does not drop to very small values but instead
saturates to values close to 1/4. This means that for high buoyancy
1
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Fig. 13. Snapshot of the Richardson number (colors) and total density (thin black
lines) in a vertical cross-section yz during the pairing for a0/b0 = 0.15, Fh = 1 and
Re = 40 000. The thick gray lines are iso-lines of vertical vorticity (0.8 times the rms
value) indicating the position of the vortices. The contour interval of total density is
approximately equal to 0.4. The three horizontal dotted lines indicate the positions
of the horizontal cross-sections in Fig. 14. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Reynolds number the characteristic vertical length scale of the
vertical shear scales like the buoyancy length scale lb and not like
the dissipative length scale δ. This scaling law could be explained
by the fact that the amplitude of the horizontal displacement of the
vortices due to the zigzag instability is geometrically limited to the
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Fig. 14. Snapshot of the normalized density perturbation ρ/(N2λz) in three horizontal cross-sections (z/λz = 0.1 in a, 0.25 in b and 0.42 in c as indicated by the horizontal
dotted lines in Fig. 13) during the pairing for a0/b0 = 0.15, Fh = 1 and Re = 40 000. The white contours are iso-lines of vertical vorticity (0.8 times the rms value) indicating
the position of the vortices.
initial separation distance b0 in contrast to the case of a counter-
rotating vortex pair.

The condition Ri < 1/4 somewhere in the flow is a necessary
but not sufficient condition for the shear instability of a steady
parallel inviscid shear flow [28,29,]. However, here the flow is not
steady and not parallel which can also affect the threshold for the
shear instability. In contrast to the case of a counter-rotating vortex
pair the total stratification is stable (Ri > 0) except in very small
regions explainingwhy the convective instability does not develop.

Even though the Kelvin–Helmholtz and the convective instabil-
ities do not develop, we see some small scales structures especially
in the layer L1. The horizontal energy spectrum is quite shallow,
with a slope close to −5/3 (not shown), which is consistent with
the fact that the dissipation does not decrease to zero even for very
large Reynolds numbers. Horizontal cross-sections of the density
perturbation field (Fig. 14a) in the layer L1 and above (Fig. 14b)
show multiple spirals as alternation of white and black shades
away from the center of the vortex which could be the signature
of waves produced in the regions of strong shear and propagated
away and stretched by the vortex in the layer L1. These waves are
not present in the symmetry planeL1/2 (Fig. 14b). Thewaves were
appearing in Fig. 13 as awiggling of the total density contours away
from the vortex centers. The production of these waves and the
vertical propagation of the shear layer during the pairing may also
explainwhy the Richardson number does not drop below 1/4 even
for extremely large buoyancy Reynolds number.

7. Conclusion

The merging of two co-rotating columnar vertical vortices
in a strongly stratified flow is induced by the development
of the zigzag instability. The zigzag instability displaces the
vortices closer together (layer L1) and farther apart (layer L1/2)
alternately every half a wavelength in the vertical direction. The
merging occurs first in the layer L1 at a time t1 which is only
a function of the initial perturbation and the instability growth
rate. The instability literally pushes the vortices together until they
merge.

We have observed that the pairing is nearly simultaneous in the
whole layer L1. Once the pairing is completed in L1, an intense
shear appears between the layersL1 andL1/2 where vorticeswere
initially moving apart. This intense vertical shear dissipates energy
till the pairing is completed in layer L1/2. The precise mechanism
governing the propagation of the pairing on the vertical is complex
and not fully unraveled, it seems to be mediated by emission
of internal gravity waves visible in intermediate layers (Fig. 14).
Therefore, pairing of tall vortices in a stratified fluid is different
from the 2D case: it occurs faster on a time independent of the
Reynolds number and a fraction close to 20%of the energy is lost via
an energy cascade associated with the generation of small vertical
scales of intense shear. If stratified turbulencewere associatedwith
pairing events as in 2D turbulence, this loss of energywould reduce
the upscale energy cascade and a fraction of the initial energy
would cascade towards small vertical scales.
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