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The main objective of the study is to examine the spatio-temporal instability properties of the
Batchelor g-vortex, as a function of swirl ratio ¢ and external axial flow parameter a. The inviscid
dispersion relation between complex axial wave number and frequency is determined by numerical
integration of the Howard-Gupta ordinary differential equation. The absolute-convective nature of
the instability is then ascertained by application of the Briggs—Bers zero-group-velocity criterion. A
moderate amount of swirl is found to promote the onset of absolute instability. In the case of wakes,
transition from convective to absolute instability always takes place via the helical mode of
azimuthal wave number m = — 1. For sufficiently large swirl, co-flowing wakes become absolutely
unstable, In the case of jets, transition from absolute to convective instability occurs through various
helical modes, the transitional azimuthal wave number m being negative but sensitive to increasing
swirl. For sufficiently large swirl, weakly co-flowing jets become absolutely unstable. These results
are in good qualitative and quantitative agreement with those obtained by Delbende et al.! through
a direct numerical simulation of the linear response. Finally, the spatial (complex axial wave
number, real frequency) instability characteristics are illustrated for the case of zerg-external flow

swirling jets. © 1999 American Institute of Physics. [$1070-6631(99)04306-8]

1. INTRODUCTION

Swirling jets and wakes are encountered in many situa-
tions of current engineering interest. An understanding of
their dynamics is for instance essential in the design of effi-
cient combustors and in the control of trailing line vortices
behind airplanes. Swirling jets and wakes are also ubiquitous
in numerous atmospheric phenomena such as tornadoes, dust
devils, and so forth. From a more fundamental standpoint,
the evolution of swirling jets and wakes involves strong cou-
pling between centrifugal forces associated with swirl, and
Kelvin—Helmholtz instabilities associated with axial shear.
Thus the dynamics of circular jets is profoundly altered by
moderate levels of swirl: Helical instability modes of posi-
tive azimuthal wave number with respect to the applied swirl
are very effectively quenched.2™® To the contrary, the cen-
trifugally stable inertial modes of a pure vortex may be de-
stabilized by axial shear, as demonstrated by Pedley”® and
Martin and Meiburg.’

The goal of the present investigation is to examine the
properties of the spatio-temporal instability waves supported
by the Batchelor'® or g-vortex. We seek to determine the
domains of absolute,''!? respectively convective, instability
in parameter space by directly applying the Briggs—Bers' >
zero-group-velocity criterion to the inviscid dispersion rela-
tion. The characteristics of spatial waves (complex wave
number, real frequency) are illustrated in a few typical in-

1070-6631/99/11(7)/1805/16/$15.00 1805

stances. Preliminary results have been reported in Olendraru
et al."® The study should be viewed as the analytical inviscid
counterpart of the direct numerical simulation of the impulse
response recently completed by Delbende et al.! for the same
family of Batchelor velocity profiles.

The vortex brezkdown phenomenon exemplifies
many of the subtleties involved in the dynamics of spatially
developing swirling jets and wakes. The unsteady evolution
is controlled simultaneously by the local instability proper-
ties of the underlying axial and azimuthal velocity profiles at
each axial station, and by global constraints imposed on a
large scale through upstream—downstreamn boundary condi-
tions and the applied axial pressure gradient. Previous tem-
poral instability analyses (real wave number, complex fre-
quency) of parallel columnar vortices have sought to address
the first issue. The second issue, namely global constraints in
a finite-length pipe, has recently been considered by Wang
and Rusak.'8

It should be emphasized that local and global analyses
are in fact strongly intertwined if one is willing to extend the
local framework to spatio-temporal waves (complex wave
number and frequency) and convective-absolute instability
considerations, More specifically it has been dem-
onstrated'""'9?® that the existence of a finite region of local
absolute instability promotes the onset of a global mode over
an extended axial region. Furthermore, local spatio-temporal
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waves constitute the buildings blocks of the linear global
mode structure for slow variations of the vortex core along
its axis, as in a tapered divergent duct configuration. In this
context, Wang and Rusak’s'® instability calculations can be
reduced to a combination of spatial waves and, as such, they
provide an example of a linear global mode. In the absence
of a region of local absolute instability, spatially developing
flows act as spatial amplifiers of external noise. In such
cases, the study of spatial waves is far more informative than
a purely temporal analysis, since it fully documents the re-
sponse of the flow to external forcing. To the authors’
knowledge, all previous instability analyses of columnar vor-
tices have been restricted to the temporal framework, with
the exception of the recent papers by Delbende er al.! and
Loiseleux er al.® It is our purpose here to examine spatio-
temporal waves, as a first step towards a more comprehen-
sive global mode formulation.

The Batchelor or g-vortex which is selected as basic
flow is characterized by two nondimensional parameters:
The swirl ¢ associated with the azimuthal velocity distribu-
tion and the external flow a which controls the free-stream
axial velocity (see Sec. 11 A). The Batchelor vortex is known
to provide a satisfactory representation of slowly evolving
trailing vortices as discussed by Batchelor,'® Faler and
Leibovich,?! and Garg and Leibovich.?? The latter authors
have shown that this profile provides a good fit both to the
jet-like flow upstream of vortex breakdown and to the wake-
like flow downstream of breakdown. Sarpkaya® also found
that it 18 a good approximation of the velocity field prevail-
ing upstream of vortex breakdown. As the a-parameter is
varied, the axial velocity profile evolves continuously from
““jet-like’” to ‘‘wake-like.”” In the vortex breakdown context,
local axial velocity radial distributions are typically jet-like
upstream of breakdown and wake-like downstream of break-
down. For temporal waves, the external flow parameter a
may simply be removed by a Galilean transformation, i.e., by
applying a trivial Doppler shift to the frequency. By contrast,
a has a nontrivial effect on the absolute-convective nature of
the instability as well as on the properties of spatial waves,
and calculations have to be performed for all values of inter-
est. As discussed in e.g., Huerre and Monkewitz,‘1 it is pre-
cisely in situations where Galilean invariance is broken that
absolute-convective instability issues acquire physical sig-
nificance. This happens to be the case, either when the flow
is continuously forced at a specific axial location, or when it
is spatially developing, as for the slow vortex evolution in a
divergent duct,'® or else when the no-slip boundary condition
is enforced at the walls. In such instances, the pertinent ref-
erence frame is unambiguously defined. In the present analy-
sis, 1t is therefore crucial to keep as independent parameters
both the swirl g and the external axial flow a.

The inviscid temporal instability of swirling jets and
wakes typically reduces to a classical eigenvalue problem
expressed in terms of the second-order Howard-Gupta® or-
dinary differential equation. The main results for the Batch-
elor vortex>% may be summarized as follows. For zero swirl,
the g-vortex is in effect a fully developed Gaussian jet and
only the bending modes of azimuthal wave number
m==1 are unstable where m is defined in the normal mode
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form (3). When ¢ exceeds 0.08, all positive helical modes
(m>0) become stable. For moderate swirl values, negative
helical modes (m<0) are, however, strongly destabilized,
with growth rates typically an order of magnitude larger than
for a nonrotating jet. In Delbende et al.! and Loiseleux et al.®
it was erroneously stated that the Batchelor vortex becomes
linearly stable above g~ 1.5, This is only valid for a particu-
lar subclass of inviscid modes. According to Stewartson and
Brown’s?® asymptotic study, some inviscid modes remain
unstable at high ¢ within specific ranges of swirl. To the
present day, these findings have not been confirmed numeri-
cally. The precise neutral boundary is difficult to determine
accurately: According to Leibovich and Stewartson,”’ invis-
cid instability modes with identical axial and azimuthal wave
numbers coalesce near neutrality, which impedes the conver-
gence of numerical algorithms. In the unstable swirl range,
the maximum growth rate monotonically increases with |m|
and reaches a finite value for m=—c. The maximum
growth rate over all axial and azimutha]l wave numbers is
reached at g=0.87. The effect of viscosity has been exam-
ined by Lessen and Paillet,> Khorrami,® and Mayer and
Powell.® These investigations have demonstrated the exis-
tence of distinct unstable viscous modes, with growth rates
several orders of magnitude lower than their inviscid coun-
terparts. In the present investigation, such modes are de facto
not considered since the analysis is purely inviscid.

The absolute-convective instability of swirling jets and
wakes has only recently been examined."® In the numerical
study of Delbende et al.,! the linear impulse response of the
Batchelor vortex is simulated at the particular Reynolds
number Re=667 in order to determine whether it grows in
situ (absolute instability) or is convected downstream (con-
vective instability). The introduction of a moderate amount
of swirl is found to strongly promote absolute instability
without necessarily requiring the presence of a finite coun-
terflow. The present study examines the same questions from
an aiternative point of view, by directly solving the inviscid
dispersion relation and applying the Briggs—-Bers”'l‘4 Zero-
group-~ velocity criterion. Since both methods lead to very
similar conclusions, the discussion of the results is postponed
to Sec. VI. The Briggs—Bers criterion has also been applied
by Loiseleux et al.® to the analytically derived inviscid dis-
persion relation of the Rankine vortex with superimposed
axial plug flow. Here again, the results indicate that absolute
instability is strongly enhanced by swirl: Co-flowing jets and
wakes may become absolutely unstable for moderate
amounts of swirl.

The application of the absolute-convective instability
formulation to swirling flows may be regarded as the logical
extension of the group velocity concept first introduced by
Benjamin® and Tsai and Widnall®® in the context of vortex
breakdown. Benjamin’s® criterion is based on the computa-
tion of the phase velocity pertaining to long-wavelength axi-
symmetric neutral disturbances. In this limit, waves are non-
dispersive so that phase and group velocities coincide. As the
ratio of basic azimuthal to axial velocities is varied, such
disturbances are determined to propagate either solely in the
downstream direction (supercritical flow) or both upstream
and downstream (subcritical flow). Vortex breakdown is then
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viewed as a transition between a supercritical state and a
downstream subcritical state. However, pertinent it may be
for vortex breakdown, this analysis is incomplete: (2) It does
not consider dispersive and unstable helical waves such as
bending (m=*1) or higher-order azimuthal modes; (b) it
does not examine arbitrary wavelengths, These restrictions
were partly removed by Tsai and Widnall®® for the vortex
flow in a divergent duct undergoing breakdown. The notions
of supercritical and subcritical flow states were redefined
with respect to the group velocity of neutral dispersive waves
of finite wavelength. Note, however, that the dispersive wave
propagation characteristics may be obtained analytically for
arbitrary profiles and arbitrary azimuthal wave number m in
the long wavelength approximation as demonstrated by Lei-
bovich et al®' An absolute-convective instability analysis
precisely provides the logical framework to extend the no-
tions of supercritical (i.e., convectively unstable) and sub-
critical (i.e., absolutely unstable) flow states by examining
the propagation of unstable disturbances of arbitrary axial
and azimuthal wave numbers.

The paper is organized as follows. The basic flow and
the eigenvalue problem to be solved are defined in Secs. ILA
and I B, respectively. Sec. I C considers the asymptotic be-
havior of disturbances near the axis and near infinity, and the
required contour deformation rule around critical points of
the Howard—Gupta equation. The numerical procedure lead-
ing to the dispersion relation between wave number and fre-
quency is outlined in Sec. IID. In Sec. III, we discuss the
absolute-convective nature of the instability in the plane of
control parameters a and g. The characteristics of spatial
waves are illustrated in Sec. IV for the case of zero external
flow swirling jets. Typical spatial eigenfunctions in the con-
vectively unstable range are presented in Sec. V. The main
results are summarized and compared with related studies in
Sec. VL.

1. LINEAR INVISCID INSTABILITY FORMULATION
A. Basic flow

As in Olendraru ef al."® and Delbende et al.,' the basic
swirling flow under consideration is taken to be the
Batchelor'™® or g-vortex. Let x, r, and # denote the usual
axial, radial, and azimuthal coordinates, and U, V, W the
corresponding basic velocity components. The Batchelor
vortex flow is then given by the two-parameter family

V(r)=0, W(r)=g[l—e"Vr. (1)

The above relations have been made nondimensional by se-
lecting as length scale the vortex core size R, and as velocity
scale the difference AU=U_.— U, between the centerline
axial velocity U, on the r=0 axis and the free-stream veloc-
ity U, at r=oc0, If {}. denotes the core rotation rate, the
nondimensional external fiow parameter a and swirl param-
eter g are defined as

U. QR
AU AU @

U(r)=a +e_'2,

a

In other words, a and g, respectively, provide a measure of
free-stream axial velocity and maximum core swirl velocity,
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Typical azimuthal and axial velocity profiles are represented
in Fig. 1 for increasing values of g and a. By increasing a,
one may successively study co-flowing wakes [{a<—1, Fig.
1({b)], counter-flowing jets or wakes [—1<a<0, Fig. 1{c}],
and co-flowing jets [a>0, Fig. 1{d)]. The zero-external flow
jet is recovered for =0, and the zero center line velocity
wake is obtained for a=—1. In the a— ¢ parameter plane,
the half planes a>—0.5 and a<{—0.5 will be referred to as
the *‘jet’’ side and “‘wake'’ side, respectively. Note that in
the context of the present inviscid analysis, (1) is an admis-
sible basic flow since it is a solution of the Euler equations.

B. Eigenvalue problem

The analysis is restricted to the evolution of infinitesimal
disturbances superimposed on the basic flow field (1). The
flow is assumed to be inviscid and incompressible of con-
stant density. Since the basic flow is parallel and steady,
nondimensional velocity and pressure fluctuations may be
decomposed into normal modes of the form

(H,U,W,P)=Re{{F(r),iG(r)’H(r),P(r)]ei(kx+m6—m.r)}'
(3

where the azimuthal wave number m is an integer, and the
axial wave number k and frequency w may be complex. As
shown by Batchelor and Gill*? for the pure jet case (g=0)
and Lessen et al.® for swirling jets, substitution of Eq. (3)
into the Euler equations linearized around the basic state (1),
leads to the first-order system

krF+(rG)Y +mH=0, (4a)
yG+2WHIr—P' =0, (4b)
yrH+(rW) G+mP=0, (4c)
YF+U'G+kP=0. {4d)

In the above relations a prime denotes differentiation with
respect to r and

Hr=kU(r—o+mW(r)ir. (5)

To this system, one must add the usual exponential de-
cay boundary conditions at r=%® and require that physical
quantities remain smooth, bounded, and single-valued on the
r=0 axis. As discussed in detail in Batchelor and Gill,*? the
boundary conditions appropriate to system (4) take the form

F(e)=G{w)=H(»)=P(x)=0 forallm, (6a)
F(0)=G(0)=H(0)=P(0)=0 if m?>1, (6b)
G(0Y=H(0)=0, F(0) and P(0) finiteif m=0,

(6c)

H{0Y=G(0)=0, F(0)=P(0)=0 if m=*1 (6d)

As noticed by Howard and Gupta,®* it is actually pos-
sible to recast system {4) into a single second-order
boundary-value problem for the function Z(r)
=rG(r)/ y(r). After elementary manipulations, one is led to
the system derived by Howard and Gupta®
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U -05 00 05 FIG. 1. Batchelor vortex velocity field,

(a): Azimuthal velocity profile W(r)
for §=0.5 and ¢=1.0. Axial velocity
profile U(r) for (b): Co-flowing wakes
if a<—1; (c): counter-flowing wakes/

-1.0

jets if —1<a<0; (d): co-flowing jets

if a>0.
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Z(0)=Z(=)=0. (8)

The two-point boundary value problem (7), (8} is in effect an
eigenvalue problem: For given control parameter settings
(m,a,q), nontrivial solutiocns Z exist if and only if the com-
plex frequency w and the axial wave number k are linked by
a dispersion relation of the form

D[k,e;m,a,q]=0. )]

Note that the eigenvalue problem (7), (8) being invariant
under the transformation g— —¢g, m— —m, the same prop-
erty holds for the dispersion relation (9). Unless otherwise
stated, we restrict the study to g=0 with m a positive or
negative integer. Corresponding resulis for g=<0 may readily
be obtained by changing ¢ into —¢g and m into —m.

C. Asymptotic behavior near r=0 and r=« and
critical point singularity

In order to solve numerically system (7), (8) by a shoot-
ing method, it is essential to examine the asymptotic behav-
ior of the solutions near the axis r=0 and at r=o0, and to
properly account for the critical point singularity r. defined
by y(r.)=0.

0.5 1.0 1.5 20

To investigate the behavior of Z(r) near r=90, it is as-
sumed that y(0)=k(a+1)—w+mg+#0, ie., that r=0 is
not a critical point of the ordinary differential equation [Eq.
(7] In the present spatio-temporal study, k or/and w are
complex and this assumnption has been found to always hold.
Under this cendition, it is straightforward to apply the
method of Frobenius (Bender and Orszag®) to ordinary dif-
ferential equation [Eq. (7)] near r=0 and to enforce bound-
ary condition (8). The following results are then obtained:

When m=0,

r

Z(r)=r[1+br’+ &%), Z %[2+3br2+é(r3)],

z
(10)
where
b=£[l— ‘a1, 1
8 A0y 1) 1)
When |m|=1
Z(r)=r"[ 1+ art+ @y,
(12)

AR

== 7lml+(Im|+ Dar?+ &),

where
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o, 244 442]
4(|m|+1)d=k 1+| I~ 700)
[I |- , 2m(m|~1)q
7(0) 7(0) ¥(0)

(13)

The behavior of Z(r)=rG(r)/¥(r) near r=% may be
inferred by first noticing that

R (14)

According to Lessen et al.® and Ash and Khorrami,? for large
r

G il (15)
k y
whence
zi FH' 1 yr
?‘”F'{' ;— ';' (16)

The asymptotic behavior of Z'/Z may therefore be deduced
from that of F. In the free stream, for large r, F(r) satisfies
the modified Bessel equation
F' k*ri+m?
F'+ —————F=0. (17)

r2

Assume, without loss of penerality (Huerre and
Monkewitz™*), that the wave number is restricted to the right-
hand complex k-plane k,=Re k>0. The only solution of Eq.
(16) that vanishes at r=c0 to comply with Eq. (6a) is then of
the form F(r)=K),(kr), where K (u} is the modified
Bessel function of the second kind (Abramovitz and
Stegun”). Upon substituting this solution into Eq. (16), in-
voking Eq. (17) and making use of standard recursive rela-
tions pertaining to K, and its derivative, one is led to the
following asymptotic results for large r:

When m=0,

A Ko(kl")

——

Z K\(kr)y'
When |m|=1,

(18)

z' 2mgq

—

Z mgr+(ka—w)r

k[1+m% (K2 r?))K | (kr)
37 (mlkr) K (k) ¥ K -1 (k7Y
(19)

The second-order differential equation [Eq. (7}] displays
regular singular points (Bender and Orszag®) or so-called
critical points r. at complex r locations such that y(r)=0,
The present inviscid analysis breaks down in the vicinity of
critical points. Furthermore, by analogy with the large Rey-
nolds number asymptotic theory of the Orr—Sommerfeld
equation (Lin,”® Wasow,?” Drazin and Reid*®), the inviscid
solutions of Eq. (7) are expected, in the limit of vanishing
viscosity, to become invalid approximations to their viscous
counterparts in specific *‘viscous’” sectors emerging from r,
in the complex r-plane. In the process of solving Eq. (7), one
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must, therefore, select an integration path in the complex
r-plane that scrupulously avoids the viscous sectors emerg-
ing from r,, so as to preserve the validity of the inviscid
approach. A contour deformation rule analogous to the
Rayleigh—Orr—Sommerfeld equation case has been proposed
by Lessen ef al.® in the strictly temporal (k real, @ complex)
framework: If there exisi a complex critical point r, such
that ¥(r.)=0 with y'(r_)#0, the original integration path
along the real r axis may have to be deformed in order to lie
below r. when Re y'(r.)>0 and above r, when Re ¥'(r,)
<.0. Under this condition, the integration path does not cross
the viscous sector located in the upper half-plane Imr
=Im r, (respectively, lower half-plane Im r<Imr_). The in-
viscid eigenvalues thus obtained are then ensured to be the
limits of their viscous counterparts as the viscosity tends to
zero. The generalization of the contour deformation rule to
arbitrary complex values of k and e of interest here is highly
nontrivial, even in the Rayleigh—Orr~Sommerfeld case re-
cently examined by Le Dizes e al.* According to Fig. 1 of
Le Dizes et al.,’? the critical point y_ of the Rayleigh equa-
tion, which lies on the real y axis for neutral waves (k and o
real) gradually moves into the complex y plane as k and w
become complex. Concurrently, the viscous sector of angle
2m/3 issuing from y,, which for neutral waves is located
entirely in the upper or lower half y plane, experiences a
rotation of angle arg /3. Thus, for sufficiently moderate val-
ues of k;=Imk and &;=Im w, the viscous sector safely re-
mains in the same half-plane above or below y, and it is
legitimate to use the same contour deformation rule as for
ternporal waves {(k real, w complex). We assume that a simi-
lar reasoning remains valid for instability waves in swirling
flows: The contour deformation rule of Lessen et al.® is pre-
sumed to hold for k and @ complex. Note that the same path
deformation rule follows by invoking causality within a
strictly inviscid framework (Case™®): For purely spatial
waves (w real, k complex) real frequencies should be ap-
proached by letting their imaginary part tend to zero from
positive values. This requirement results in identical pre-
scriptions.

As shown in the Appendix, the equation ¥(r)=0 gives
rise, for the Batchelor velocity profiles (1), to zero, one or
two nonzero complex critical points r.; and r.; with
Rer.=0,

This completes the examination of the properties of sys-
tem (7), (8) necessary to numerically determine the complex
solutions of dispersion relation (9).

D. Numerical procedure

Equation (7) may be rewritten as the following first-
order system for Z(r) and Y(r)=dZ/dr:

Z'=Y, (20a)
1 29 2k%r m?+k*?r  2m ( W)'
Y'=—| -4 —— aliia i
rY miEd? r yr
amk*w 2kW oWy -mun|z. o)
- r —-m
—yr(m2+k2r2) 72 2
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FIG. 2. Contour deformaticn rule in complex r plane; viscous sectors are
indicated in gray. (a): Imr ; Re[¥'(r. )]>0, j=1.2, purely real integra-
ton paths C_ and C,. (b): Imr. <O, Re[¥'(r.)]>0; Imr >0,
Re[ ¥’ (r,2)]>0, integration paths C_ and C, located in same lower half r
plane. {c): Imr <0, Ref ¥'(r.1)]1>0; Imr, >0, Re{y'(r.2)]1<0, inte-
grations paths C._ and €, located in lower and upper half r planes, respec-
tively.

Such a system is to be solved for given parameter set-
tings (m, a, g), subject to the conditions that Y/Z=Z'/Z
behaves as Eqs. (10) or (12) for small r, and as Eqgs. (18} or
(19) for large r. Consider two real numbers e<1 and R
» 1, respectively, small and large enough to apply the near-
axis approximation formulas (10) or {12) for Z'(e}/Z(e),
and the far-field approximation formulas (18) or (19) for
Z'(R)/Z(R). A natural procedure then consists in integrat-
ing system (20) on the real r axis, from r=¢ and r=R to-
ward a common real matching point r=# with e<<h<<R. As
sketched in Fig. 2(a), this approach amounts to matching in
the complex r plane along two straight line segments C_ and
C that lie on the real r axis and meet at r=h. For arbitrary
values of k and w, two distinct values of Z'(h™)/Z{h~) and
Z'(h™)/Z(h*) are thereby gencrated on either side of the
matching point r=Ah. In order for a complex pair (k, w) to be
a solution of the dispersion relation (9), the associated
Wronskian

Wk, wim,a,q)=2'(h1)Z(h")—-Z(kNYZ'(R7) (2D

must vanish. In practice, a realistic guess value (kg ,wg) is
specified and the Wronskian W is numerically brought to
zero by changing one of the elements in the complex pair
(k,w) via a Newton—Raphson algorithm.

From the discussion of Sec. II C, integration along the
real r axis, as described above, is legitimate only when there
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are no critical points, or the viscous sectors issuing from the
critical points r.; and r.,, remain entirely within the same
half r plane as r.; and r, , without ever being crossed by the
real r axis, as in Fig. 2(a). According 10 the contour defor-
mation rule of Lessen ef al.,’ such a real integration path
holds either when Rer, R, j=1,2 (critical points lying
outside the integration domain), or when Imr_; Re y'(r. ;)
>0 for both j=1 and j=2 [viscous sectors located in same
upper or lower half r plane as r,;, Fig. 2(a)]. In all other
cases, integration must proceed along a rectangular path in
the complex r plane that complies with the contour deforma-
tion rule in order to avoid the viscous sectors. Typical situ-
ations are iltustrated in Figs. 2(b) and 2(c). If Imr,;<0,
Re ¥'(r.1)>0 and Imr >0, Re ¥'(r.5)>0, the configu-
ration shown in Fig. 2(b) holds: The contours C . and C_ are
then chosen to lie in the lower half r plane at an elevation
Imr=— & and the matching point M where the Wronskian
(21) has to be brought to zero, is taken to be at r=h—i8,
6>0. If Imr. <0, Re¥'(r.)>0 and Imr. >0,
Re ¥'(r.,)<0, the configuration shown in Fig. 2(c) holds:
The contours C, and C_ are chosen to lie in the lower and
upper half r plane, at elevations Imr=—4 and Imr=§,
respectively, and the matching point M remains on the real r
axis at r=nh.

The above numerical procedure is practically imple-
mented by resorting to readily available IMSL routines, as in
Pavithran and Redekopp.*! If the integration is to be per-
formed along complex contours such as those in Fig. 2(b)
and 2(c), an appropriate change of variable r is applied to
system (20). The IMSL routine DIVPAG is then used to
integrate the first-order system from r=e¢e and r=R to the
matching point M located at r=~Fh [Figs. 2{(a) and 2(c}] or
=h—-id [Fig. 2(b)]. A value of the Wronskian (21) is
thereby generated for a given complex pair (k,w). The
IMSL routine DNEQNF is then used to bring the Wronskian
W to zerc via a Newton—Raphson algorithm. Realistic guess
values (kg ,wg) are inferred by exploiting the temporal re-
sults of Lessen et al.® as described at the end of this section.
The location of potential critical points r. , and r, , such that
Rer. ;=0 and ¥(r.;)=0 is estimated by applying the
Newton—Raphson DNEQNTF routine to the complex function
v. Critical points for the bending modes m= %1 are readily
deduced by continuation from the zero-swirl case g =0. The
guess value rg =1 is chosen as input for all higher-order
helical modes |m|>1. In a few instances, convergence
failed, which indicated the presence of another critical point,
as discussed in Sec. IV.

Numerical calculations were performed with e=1072
and R=15. Khorrami ef al.*? note that the value R=3 se-
lected by Lessen et al.® is somewhat low. The present value
R =15 was deemed to be sufficiently large for the asymptotic
estimates (18), (19) of Z'/Z to remain valid over a wide
range of the complex argument kR. Finally, for most runs,
the clevlation of the deformed contours was chosen to be
d=107".

When a converged eigenvalue pair has been obtained,
the corresponding eigenfunction is easily retrieved by per-
forming one last integration run of the system (20) for Z(r)
and Z'(r), along the rea! r axis from r= e to r=R. Accord-
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ing to the original first-order system (4), the eigenfunctions
F, G, H, and P for all physical quantities are then calculated
from the following relations:

{(m/r) [k W) —mU' 1 —kry'}Z— ykrZ’

= 5 22
m2+kir? @)
=Xz, (23)
r
KmU'—k(rWw)']— NZ—ymZ'
H={ [m (rw)' 1—mvy'}Z—ym ' (24)
m?+k2r?
p=—X 1, '—l[krzU’+m(rW}"] Z+ryZ'
m2+k2r? LA [al)
(25)

The radial distribution of F, G, H, and P computed in this
manner remain uniform approximations of the true eigen-
functions as long as there is no critical point on the real r
axis and the viscous sectors of Fig. 2 do not contaminate part
of the real r axis. If this is not the case, the computed eigen-
functions are only valid large-Reynolds-number approxima-
tions outside the viscous sectors.

The present investigation relies in large measure on the
effective calculation of generalized spatial branches whereby
w is assigned a given real or complex value and k{w) is a
complex unknown. Spatial branches in the strict sense then
correspond to  real and k complex. In all cases, a realistic
guess value (kg,w) is needed in order to initiate the
Newton—Raphson algorithm and to ensure successful con-
vergence to an eigenvalue pair (k,w)}. Such guess values are
inferred from the temporal results of Lessen et al.:* A known
temporally growing mode (k real, w complex) with w;>0 is
used as a starting point to generate by continuation a spatial
branch k(e) for the same value of w; and varying values of
w, . In other words, the locus of the spatial branch k(w) is
effectively represented in the complex & plane as a level
curve @;=const. Level curves for successively increasing
and decreasing values of w, are also obtained by continua-
tion. The particular level curve w,;=0 then corresponds to
the conventional spatial branch k complex, w real. The nu-
merical code is found to experience convergence difficulties
in the vicinity of neutral conditions (k real, w real) as ex-
pected from the analyses of Leibovich and Stewartson®’ and
Mayer and Powell®® (see Sec. I). The Newton—Raphson al-
gorithm is then prone to skipping from one mode to another.

1l. ABSOLUTE-CONVECTIVE NATURE OF THE
INSTABILITY

The absolute-convective nature of each azimuthal wave
aumber m is ascertained by analyzing the behavior of spatial
branches k(w;m,a,q) in the vicinity of saddle points
(kg,wq) of the dispersion relation (9) for given settings of
the swirl ¢ and external flow parameter a. The reader is
referred to Huerre and Monkewitz!! for a survey of these
concepts and to Huerre and Rossi'? for a detailed presenta-
tion. According to the criterion established by Briggs'® and
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Bers,' saddle points [ko(m,a,q),wo(m,a,q}] of the disper-
sion relation (9) are formally defined by imposing the zero-
group-velocity condition

dw
E(ko;m,a,q)=0, wo= a(kg;m,a,q). (26)

Pertinent saddle points necessarily involve pinching of two
distinct spatial branches k*(w;m,a,q) and k™ (w;m,a.q)
which, for large enough w;>0, are entirely located in the
distinct half k-planes k;>0 and k;<0, respectively. If this
essential pinching condition is satisfied, kg, and wg qualify
as the complex absolute wave number and frequency, respec-
tively, the quantity wg;=1Im w, denoting the absolute growth
rate. When wg;>0, the basic flow is said to be absolutely
unstable [absclute instability (AI)] for the particular m under
consideration. When wg;<0, it is convectively unstable
[convective instability (CI)] for azimuthal wave number m.
For given m, the AI-CI transition curve in a—g space is
formally given by wg;(m,a,q)=0. In order to determine the
overall AI-CI transition curve, the above reasoning must be
repeated for different values of m. The strictly spatial ap-
proach (k complex, w real) is known to be pertinent only
when the flow is CI: The spatial branches k*{w;m,a,q) and
k™ (w;m,a,q) are then associated with the ‘‘right-hand
side” (x=>0) and ‘‘left-hand side” (x<0) response to a
time-harmonic excitation of frequency w located at x=0
(signalling problem). More specifically, in the case of jets
[a>—0.5, Fig. 1{d)], the flow is predominantly directed to
the right: k* and k™ are then conveniently referred to as the
“‘downstream’” (x>>0) and *‘upstream’” branch (x<<0), re-
spectively. A contrario, in the case of wakes [a<—0.5, Fig.
1(b)], the flow is predominantly directed to the left: ¥ and
k™ then switch denominations and become the upstream (x
>0) and downstream (x <() branch, respectively.

Since the AI-CI transition curve is defined by the real
absolute frequency condition wg(m,a,q)=0, it is natural to
seek its determination by resorting to a straightforward spa-
tial approach (& complex, w real). As discussed for instance
in Huerre and Rossi,'? in the purely spatial instability con-
text, an AI-CI transition point is signalled by the appearance
of a cusp singularity in the curves of spatial growth rate
—kf(w;m,a.q} and wave number k:’(w;m,a,q) versus real
frequency w. For given settings of g and m, we therefore,
choose to detect the presence of a cusp singularity in the
spatial instability characteristics as the external flow param-
eter a is varied.

A typical example is illustrated in Fig. 3 for the
m==1 modes in the case of a zero-swirl (g=0) jet: As a
decreases from a= —0.35 to a= ~0.37 (increasing external
counterflow |a|), the spatial growth rate curve
~k!(wim,a,q) gradually exhibits a cusp singularity at the
real absolute frequency wg,~0.04. A more accurate evalua-
tion yields a/= —0.371, where the j superscript stands for
the “*jet side”” AI-CI transition point. It can subsequently be
checked that at the parameter values m==*1, al=-0371,
g =0, the real frequency wy, giving rise to the cusp is indeed
associated with pinching of distinct spatial branches k¥ and
&~ at the saddle point ky: Isocontour levels w;=const. cor-
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FIG. 3. Effect of increasing external counterfiow |a| on the spatial instabil-
ity characteristics of zero-swirl (g=0) jets: Spatial growth rate —k,-* of
helical modes m= =1 versus real frequency w, as external flow parameter
decreases from a=—0235 o0 a=—0.37. Note appearance of cusp for
a=—0.37 at wy,~0.04, —k¢;~0.5.

responding to the k* and k™ branches are displayed in Fig.
4. As w; decreases to zero, both sets of curves pinch at the
saddle point kg. As w; increases above zero, they gradually
recede into their respective half-planes 4,>0 and k;<0),
thereby satisfying the Briggs—Bers criterion. A genuine
pinching point has, therefore, been found for a real absolute
frequency (wg;=0). Thus, for zero swirl g=0,
al=—0.371 is indeed an AI-CI transition point of helical
modes m=*]1. A similar procedure may be used to deter-
mine the AI-CI nature of the same helical modes m=*1,
for other values of the external flow parameter a on the line
g=0 (see Fig. 5). By drawing contour maps similar to those
of Fig. 4, one may establish the following results: When a
>al, the pinching point kg (m=*1, a, g=0) persists, but it
is now obtained for a negative absolute growth rate wy,; (m
==*1, a, g=0)<0, thereby indicating that the flow is CL
Conversely, in the range a!’ <a<a!, where a}’= — 0.825 re-
fers to a second AI-CI transition value on the wake side, wq;

T T T
0.5 4
N /
k'- 0.01
~05 2.4
L2 i P 2 - 1
4"‘0'0 \‘\ k+
AL T SN — k
o =2
[ meeee e
-1.5 i L " T = L
0.0 0.5 1.0 1.5 2.0
k

FIG. 4. Ilustrative loci of spatial branches k(w) in complex & plane for
m==*], a=a{=-—0.371, ¢=0. Level curves w;=0], o;=001, w;
=0.00. Solid lines: k*{w); dashed lines: ¥~ (w). Note pinching of k* and
&~ branches at k; as w; decreases to zero.
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FIG. 5. Al-CI nature of helical mode m=—1. Domains of stability (S),
convective instability (CI), and absolute instability {Al} in a—g parameter
plane. Curve WEF | F,J indicates AI-CI transition curve of mode
m=—1. Curve a}'Fa] indicates Al--CI transition curve of mode m=1.

(m=2x1, a, g=0)>0 and the flow is Al Finally, when a
<ay, wg; (m==*1, a, ¢=0)<0 and the flow returns to CI.

The same methodology may be applied for successively
increasing values of the swirl ¢ to generate the entire AI-CI
transition boundary of helical modes m==*1 in the a—gq
plane, as shown in Fig. 5. Moderate amounts of swirl are
seen to increase the a-interval leading to Al. As the swirl
approaches the stability boundary g~ 1.5 for this particular
mode, the range of a-values where Al prevails gradually
shrinks, presumably to a point. The present shooting method,
however, is unable to track the AI-CI boundary beyond the
nearly neutral points marked J and W in Fig, 5 for reasons
previously alluded to.

The AI-CI transition curves pertaining to higher-order
helical modes m=—2 and m=—3 may be determined by
following the same steps as for m==* 1. Typical isocontour
levels w,; = const. near a pinching point are displayed in Fig.
6 for m=-2, a/=0.0022 and ¢=0.6. As in Fig. 4, the
Briggs—Bers criterion is clearly satisfied. Computed AT-CI
transition boundaries for m=*1, m=—2 and m=—3 have
been overlaid in the 2 — g plane in Fig. 7. This plane may be
divided into three distinct regions: A stable (S} domain (with
respect to these modes only for swirl values above the hori-
zontal line g~1.5, an absolutely unstable (AI} bubble, and
two convectively unstable {CI) outer-domains located on the
jet side and wake side respectively. The AI-CI transition
boundary for each m is composed of jet side and wake side
curves. The overall AI-CI transition boundary for the Batch-
elor vortex flow then consists of the *‘outermost’’ transition
curves pertaining to individual helical ‘modes.

The “‘state’” diagram of Fig. 7 sums up the main results
and, as such, deserves to be commented on in detail. In the
absence of swirl (g=0), the fully developed Gaussian axial
velocity profile (1) undergoes a transition to AT with respect
to m=*1 for a sufficiently strong counterflow —0.825<a
< —0.371. The application of a moderate amount of swirl
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FIG. 6. Illustrative loci of spatial branches k(w) in complex k- plane for
m=—2, a=al=00022, ¢g=06. Level curves w;=04, w=01
=001, w,;=0.0. Solid lines: k*(w); dashed lines: k™ (w). Note pinching of
k* and k= branches at kg as o; decreases to Zero.

0<q<0.7 is seen to promote absolute instability by signifi-
cantly increasing the g-interval over which Al takes place.
For higher swirl levels ¢>0.7, the Al domain gradually
shrinks as g exceeds about 1.5. The mode of transition to Al
is significantly different on the wake and jet sides.

On the wake side (a<—0.5), the critical transitional
mode is always m=—1. As soon as the swirl exceeds g
=0.135, Al may take place even for co-flowing wakes
a<—1.

On the jet side (a>—0.5), the critical transitional mode
is quite sensitive to swirl and it may have different azimuthal
wave numbers m= — 1,~2,—3. When g—0, Al takes place
via the m=—1 mode, as in the zero-swirl case. When

Wakes " Jets
with
counterflow

with
coflow

FIG. 7. AI-CI nature of the instability for the Batchelor vortex. Domains of
stability (S}, convective instability (C1), and absolute instability (Al) in a
—g parameter plane, AI-CI transition curves for helical medes m= X1,
m=—72 and m=—3 are labeled on the figure. Shaded region indicates
outermost boundaty of Al region.
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0<g<0.5, the mode m=—3 becomes critical, whereas, for
0.5<g<0.7, it is replaced by m=—2. When ¢>0.7, the
mode m=—1 is again critical. Note that, in the range
0.134<g<0.704, the Batchelor vortex jet may be Al even
when a=0, i.e., for co-flowing jets.

According to Fig. 7, Al is, for the most part, circum-
scribed to negative helical modes. When ¢=0, positive and
negative helical modes cannot be differentiated: they exhibit
identical instability characteristics as a result of the reflec-
tional symmetry 6— - 8. When g#0, the reflectional sym-
metry is broken and Al preferentially occurs for m<0. This
feature is fully consistent with the temporal instability results
of Lessen et al.’ and Mayer and Powell®*: According to these
studies, only negative helical modes remain unstable at mod-
erate values of g. As seen from Fig. 7, the only positive
helical mode undergoing Al in the presence of a small but
finite positive swirl is m=+1. As g increases above 0.08,
the pocket of Al for m=+1 disappears and this mode is
never critical in triggering CI-Al transition except for g
=0. '

Finally, note that the AI-CI transition curve for m=1
and g>0 (solid line labeled a;'F a{ in Fig. 5) is the mere
reflection with respect to the a axis, of its counterpart for
m=—1 and ¢g<0 (dashed line labeled aEal in Fig. 5).
This property follows from the invariance of the dispersion
relation under the transformation g— —¢ and m—=m.

The loci of the complex absolute wave number kg and
associated critical point(s) 7, as g and a vary along the
AI-CI transition curves, are displayed in Figs. 8(a), 8(b),
9(a), 9(b), 10(a), and 10(b) for helical modes m=-—1,—2,
and — 3, respectively. The swirl g has been selected as the
parameter along each AI-Cl transition curve and its value
appears next to each point of the plots.

Consider first the case of the m=—1 mode. As (a.4)
moves along the m=—1 AI-CI transition curve WEF | FyJ
of Fig. 5, the complex absolute wave number k, follows the
paths that are similarly labeiled in Fig. 8(a). Empty circles
refer to the portion WEF | and full circles to the portion FaJ.
The trajectory of k remains smooth over the part WEF |,
but as (a,q) changes from F| to F, in Fig. 5, the pinching
point ky of Fig. 8(a), is seen to experience a sharp jump in
location. This unusual feature has been explored in detail and
it is further documented in Sec. IV, in connection with the
spatial instability characteristics. When the (a.,q) setting
changes from F, to F; in Fig. 5, i.e., as the swirl varies from
¢=0.68 10 ¢=0.70, it is observed that two neighboring
k*-branches meet at a resonance point and subsequently
switch to become two new hybrid k*-branches. One of the
hybrid k*-branches then pinches at F, (g=0.70) with a
&k~ -branch. This pinching point labeled F; in Fig. 8(a) quali-
fies as an absolute wave number and it is located a finite
distance away from its counterpart at F. As (a,q) travels
from F, to J, the absolute wave number follows again a
smooth trajectory, as indicated by the full circles in Fig. 8(a).
Finally, note that the three points W.E, and J give rise 10
nearly neutral modes with kq;<1. There is always a single
critical point for the m=—1 mode, as represented in Fig.
8(b). The discontinuity in the r-trajectory as the swirl
crosses the value g=0.8 is only apparent. As shown in the
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FIG. 8. Helical mode m=—1. (a): Locus of absolute wave number k, as g
and a trave] along AI-CI transition curve of Fig. 5. (b): Locus of critical
point r, as g and a travel along AI-CI transition curve of Fig, 5. WEF, (O)
and F,J (@) portions of trajectory. Number next to each point refers to
corresponding value of swirl g.

Appendix, the critical point equaticn y(r)=0 may be writ-
ten in the form I'(r?)=0. Thus roots come into pairs (r,
—r.). Since we have assumed Rer =0, one must switch
from r, to —r_., as r_. approaches the vertical axis Rer,
=0, This feature accounts for the jump along the path WEF,
in Fig. 8(b).

The kg and r-trajectories pertaining to the m=—2 and
m= -3 modes are represented in Figs. 9(a), 9(b), 10(a), and
10(b). Empty circles refer to the wake side and full circles to
the jet side of the AI-CI transition curves in Fig. 7. The loci
of ko do not display any particular feature. The m=—2 he-
lical mode always admits a single critical point as shown in
Fig. 9(b). For m= — 3, a single critical point is present on the
jet side but two distinct critical peints r.; and r, ; coexist on
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FIG. 9. Helical mode m= —2. (a): Locus of absolute wave number kg as ¢
and a travel along AI-CI transition curve of Fig. 7. (b): Locus of critical
point r, as g and g travel along AI-CI transition curve m=—2 of Fig. 7.
“Wake" side () and *'jet"’ side (@) portions of trajectory. Number next
1o each point refers to corresponding value of swirl 4.

the wake side of the AI-CI transition curve, as seen in Fig.
10(b).

The existence of two critical points for the m= ~—3 mode
on the wake side is further illustrated by the spatial instabil-
ity results presented in Fig. 11. The flow is taken to be a
co-flowing wake at a=—1.05 and g=0.7, which is located
on the CI side of the transition curve for m=—3 in Fig. 7.
The spatial amplification rate k; of the downstream branch
(x<0) is plotted as a function of real frequency o in Fig.
11(a). The loci of the associated critical points r, and 7,
as w varies, are displayed in Figs. 11({b) and 11{(c), respec-
tively.

In all cases, the contour deformation rule was systemati-
cally enforced, according to the prescription stated in Sec.
nc.
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FIG. 10. Helical mode m = — 3. (a): Locus of absolute wave number k; as g
and a travel along AI-CI transition curve of Fig. 7. (b): Locus of crtical
point r, as g and a travel along AI-CI transition curve m=—3 of Fig. 7.
“Wake'" side (O) and “'jet’’ side (@) portions of trajectory. Number next
10 each point refers to commesponding value of swirl g.

V. SPATIAL INSTABILITY OF ZERO EXTERNAL FLOW
SWIRLING JETS

In this section, we choose to illustrate the spatial insta-
bility characteristics (k complex, w reat) by examining the
case of zero-external-flow (a=0) swirling jets. Attention is
restricted to downstream k7 -branches which are the only
ones 10 become spatially amplified (—k;" >0) in a finite fre-
guency range. As discussed in the introduction, the axisym-
metric mode m=0 is known to be always stable whatever
the value of g, and only negative helical modes remain un-
stable at moderate values of g. In the following, we deter-
mine the effect of increasing swirl g on the first three nega-
tive helical modes m=—1,—2,—3. Please note that for
given swirl settings higher-order negative helical modes may
reach larger amplification rates than the first three modes, as
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FIG. 11. Helical mode m=—3, co-flowing wake at a=—1.058, 4=0.7.
Example of k™ -spatial branch with two distinct critical points r_; and r. 5.
(a): Spatial growth rate k; versus real frequency w; (b): Locus of critical
point r., with varying w; (c): Locus of critical point r.; with varying .

shown by Lessen et al.,’ Mayer and Powell,?> and Delbende
et al.! Furthermore, Leibovich and Stewartson*’ have dem-
onstrated that the maximum growth rate increases with |m|
and tends to a value which is velocity profile dependent.
Growth rate trends with increasing swirl g are, however,
qualitatively similar for all m<0.

The evolution with increasing swirl g, of the spatial am-
plification rate —k; and real part of the wave number &, ,
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FIG. 12. Helical mode m=— 1, zero-external-flow swirling jet a=0, Evo-
lution of spatial instability characteristics with increasing swirl 4. (a): Spa-
tial growth rate —k; versus real frequency w; (b): Real part of wave num-
ber &, vs w. Swirl value ¢ is indicated next to each curve.

has been documented for helical modes m=~ 1 (Figs. 12
and 13), m=~2 (Fig. 14) and m=—3 (Fig. 15).

As seen from Fig. 12(a), the helical mode m= —1 js
unstable for zero swirl and so is m=1. These are the only
unstable modes for g=0. As swirl increases to g=04, m
=—1 becomes further destabilized, while increasing swirl
beyond g =0.4 leads to an overall decrease in spatial ampli-
fication rates. The bending mode m=+1 (not shown) is sta-
bilized by minute amounts of swirl g~0.08. Recall that, for
each m, there are infinitely many spatial branches. The spa-
tial branch displayed in Fig. 12 has been obtained by con-
tinuation from the temporal mode m=—1 identified by
Lessen efal.,’ and it is the most amplified for moderate
amounts of switl. However, as ¢ increases from 0.6 to 0.8,
this spatial branch experiences a sudden metamorphosis:
Note in particular that at g=0.7, according to Figs, 12(a) and
12(b) —k;" and k} no longer vanish at the origin as  tends
to zero. In order to understand this feature, let us follow the
fate of the spatial branches k] and k3 , indicated by a solid
and dashed line, respectively, in Fig. 13. As g reaches 0.7,
ki and k; actually switch to become two new hybrid
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FIG. 13. Helical mode m= — 1, zero-external-fow swirling jet a= (. Spatial
growthrate —k" vs frequency w. Interaction of two spatial branches kY (w)
(solid line} and k¥ (w) (dashed line) as g increases through 0.7, Swirl value
q is indicated next to each curve. -

k* -branches which persists for higher g. Only the most am-
plified hybrid mode at g=0.8 has been represented in Fig.
13. This event persists for nonzero a as discussed in the
determination of the AI-CI transition curve of the m=-—1
mode in Sec. IV. Finally, it should be emphasized that, ac-
cording to Fig. 5, the m=—1 mode remains CI on the g
=0 axis for arbitrarily large swirl levels g: the k™ spatial
instability properties documented in Figs. 12 and 13 effec-
tively characterize the downstream response (x>0) of the
Batchelor vortex to a time-harmonic excitation of frequency
w.

Corresponding results are shown in Figs. 14 and 15 for
the m=-2 and m=-3 mode, respectively. The helical
mode m=—2, which is stable for zero swirl g=0, experi-
ences a drastic increase in spatial growth rate as g ap-
proaches 0.5. The cusp appearing at g=0.5 indicates a tran-
sition from CI to AI which is consistent with the results of
Sec. II: As scen from the state diagram of Fig. 7, the Batch-
elor vortex with zero external flow a=0 becomes Al to the
m=—2 mode in the range 0.5<4=<0.7. The signalling prob-
lem is then ill-posed: Spatial instability branches {(dashed
lines in Fig. 14) lose their physical significance in the sense
that they do not describe the response of the flow to a time-
harmonic localized excitation. As g exceeds 0.7, the mode
m=—2 returns to CI and increasing swirl has a stabilizing
influence. Similar features prevail for m= =3, as indicated
in Fig. 15, The helical mode m= =3, which is stable for ¢
=0, is destabilized by swirl as q increases to 0.2. In the
range 0.2<¢<0.5 (see Fig, 7), the flow is Al to m=—3 and
spatial branches (dashed lines in Fig. 15) are meaningless.
Finally, as g increases above 0.5, the flow returns to CI and
the m=—3 mode becomes gradually less unstable.

V. SPATIAL EIGENFUNCTIONS

In order to confirm the validity and accuracy of the
present numerical method, the computed eigenfunctions have
been compared in Fig. 16 with those calculated by Duck and
Khorrami®* for a neutral mode at m=1, a=0, ¢=0.7, w
=0.0425, and k=0.6. In both instances the normalization
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FIG. 14. Helical mode m= —2, zero-external-flow swirling jet a=0. Evo-
lution of spatial instability characteristics with increasing swirl g. (a): Spa-
tial growth rate —k;" versus real frequency w: (b): Real part of wave num-
ber k, vs w. Swirl value g is indicated next to each curve. Dashed lines
vorrespond to Al range of ¢.

condition G(0)=1 has been selected. Excellent agreement is
obtained. One should mention, however, the presence of a
critical point at r.=4.058, outside the range represented in
Fig. 16, which induces in its vicinity large variations in the
eigenfunction derivatives. Note that P(r} is nearly zero over
all radial distances.

Three typical sets of spatial eigenfunctions amplitudes
are represented in Fig. 17. The normalization condition has
been specified by requiring that the maximum-—maximorum
over all radial distances and for all |F|, |G|, |H|, and |P] be
unity. The selected eigenfunctions are associated with con-
vectively unstable flow conditions indicated by the three full
circles in Fig. 7. Figure 17(a) refers to the most amplified
downstream k&~ -wave for the m= —1 mode of a co-flowing
wake (a=—1.268), just outside the comesponding CI-Al
transition curve of Fig. 7. Figure 17(b) pertains to the most
amplified downstream & *-wave for the m=—1 mode of a
co-flowing jet (a=0.01), just outside the corresponding
CI-AI transition curve of Fig. 7. Finally, Fig. 17(c) is asso-
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FIG. 15. Helical mode m=—3, zero-external-flow swirling jet a=0. Evo-
lution of spatial instability characteristics with increasing swirl ¢. (a): Spa-
tial growth rate —k;" vs real frequency w; (b): Real part of wave number &,
vs ©. Swirl value g is indicated next to each curve. Dashed lines correspond
to Al range of ¢.
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FIG. 16. Eigenfunction amplitudes |F(r}. |G(r). [H(r)l, and |P(#)] for
neutral mode at m=1, a=0, g=0.7, ©=0.0425, and k=0.6, with normal-
ization condition G(0)=1. Continuous or dashed lines: Present approach;
(Q) inviscid results obtained by Duck and Khorrami (Ref. 43).
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FIG. 17. Spatial eigenfunction amplitudes [F(r)|, |G(r}|, |H(r)|, and
{P(r)|. (a): Co-flowing wake, m= —1, a= — 1.268, ¢=10.6, most amplified
downstream &~ -spatial wave at w=—0.78, k=(0.454,1.276), r,=(0.065,
—0.485). (b): Co-flowing jet m=—1, a=0.01, g=0.6, most amplified
downstream k*-spatial wave at w=02, k=(0.761,— 0.336), r,=(0.622,
—0.528). (¢): Zero-extemal flow jet m= =3, a=0, g=0.1, most amplified
downstream & *-spatial wave at w=0.01, k=(0.506,~0.139), r.=(1.005,
—0.283).

ciated with the most amplified downstream k*-wave, for the
m=—73 helical mode of a zero external flow swirling jet on
the vertical axis of Fig. 7. For all three selected eigenfunc-
tions, the critical point is located well into the lower half
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FIG. 18. AI-CI transition curves for azimuthal wave numbers m=*1, m
=—2 and m=—3. Dashed lines; results of Delbende er al, (Ref. 1) for
Re=667. Solid lines: Present inviscid investigation. Number next to curves
refers to the azimuthal wave number.

plane, as indicated in the figure caption and the real r axis
was chosen as integration path, as sketched in Fig. 2(a).

VI. CONCLUDING REMARKS

The main results of the inviscid instability analysis are
summarized in Fig. 7. Swirl is seen to promote absolute in-
stability by greatly extending the range of external fiow pa-
rameters over which Al prevails. The transitional helical
mode is very sensitive to the wake-like or jet-like nature of
the flow as well as to the level of swirl. On the wake side
{(a< —0.5), the transitional mode is always m= —1, which
is fully consistent with the results of Monkewitz* for bluff
body wakes, whereas on the jet side (a> —0.5), it succes-
sively takes the values m=—1,—3,—2,—1 as g is gradually
increased. Note that higher-order helical modes (|m[>3)
may slightly shift the AI-CI outer boundary, as documented
by Delbende er al.' Co-flowing wakes a<—1 may become
Al as soon as the swirl exceeds ¢=0.135. Similarly, co-
flowing jets (@a>0) may become AI for swirl levels in the
range 0.134<g<(.704,

The AI-CI transition curves of this study have been de-
rived by applying the zero-group velocity criterion of
Briggs'® and Bers,!* directly to the inviscid dispersion rela-
tion (9). In Fig. 18, these results have been compared with
those obtained in Delbende et al.! by applying a suitable
decomposition procedure to the computed viscous linear im-
pulse response at the finite Reynolds number Re
= (AUR/v) =667. A blow-up of the transition curves in the
vicinity of zero-external flow jet axis a=0 is presented in
Fig. 19. Both sets of curves are in good qualitative and quan-
titative agreement, Finite viscous effects are seen to lead to a
slight contraction of the pocket of absolute instability, espe-
cially near the upper stability boundary where viscous diffu-
sion is likely to stabilize modes that are only weakly unstable
on an inviscid basis. In particular, viscosity at Re=667 is
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FIG. 19. Magnification near a=0 of the transition curves for m=—2 and
m= -3 displayed in Fig. 18. Dashed lines: Results of Delbende ef al. (Ref.
1} for Re=667. Solid lines: Present inviscid investigation. Number next to
curves refers to the azimuthal wave number.

seen to be sufficient to push the inviscid AI-CI transition
curves on the jet side (a>0) slightly to the left, into the
half-plane a<<0. As a consequence, co-flowing jets (a>0)
are no-longer capable of sustaining an absolute instability at
Reynolds numbers of the order of 667. By contrast, co-
flowing wakes (a< —1) remain absolutely unstable for suf-
ficiently large swirl at Re=667. The numerical method used
in the present work presents both advantages and disadvan-
tages when compared with the impulse response decomposi-
tion procedure of Delbende et al.! The shooting method
leads to very accurate results which are in excellent agree-
ment with those of Duck and Khorrami,43 but convergence
relies heavily on the availability of realistic guess values,
such as those generated by the impulse response calculations
of Delbende ef al.!' In near-neutral situations, where many
modes are expected to coalesce, the shooting method expe-
riences convergence difficulties.

The results of the present investigation may also be com-
pared with the inviscid instability analysis of the Rankine
vortex with axial flow recently performed by Loiseleux
et al.® As readily seen by comparing Fig. 7 with Fig. 20 of
Loiseleux et al., the overall shapes of the Al regions in the
a—g plane are qualitatively similar. In both instances, coun-
terflow does not remain a prerequisite for Al at sufficiently
high swirl levels. For moderate swirl, the transitional mode
on the wake side (a<<—0.5) is m= —1 for both basic flows.
On the jet side (a>—0.5), Al of the Rankine vortex may be
induced through various negative helical modes, as for the
Batchelor vortex. The Al region for the Rankine vortex re-
mains open on the high g-side. According to the viscous
caleulations of Delbende er al.,! the Al region for the Batch-
elor vortex is closed above g~ 1.5. There remains to estab-
lish whether this feature persist in the inviscid limit. The
present study has not conclusively settled this question. Fi-
nally, the Rankine vortex undergoes Al on the jet side at
very low ¢ through the axisymmetric mode m=0. This pos-
sibility is obviously ruled out in the case of the Batchelor
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vortex, since it remains stable to axisymmetric disturbances.
According to several theoretical investigations (Chomaz
et al.,’® Monkewitz ef al.,** LeDizés et al?0), the existence
of a finite pocket of absolute instability in spatially develop-
ing shear-flows is known to favor the onset of self-sustained
oscillations or so-called global modes. In this regard, the
present work provides further support for the conjecture
made by Delbende ef al.’: The application of swirl provides
an efficient means of promoting global mode onset in wakes
and jets. In jets, swirl is likely to lead to preferential selec-
tion of a variety of helical pattems m=—-1,—2,—3. In
wakes, the bending mode m= —1 should be singled out.
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APPENDIX

The objective of this appendix is to prove that the critical
point equation y(r)=0 given by (1) and (5) admits at most
two nonzero complex roots with Rer=0 as soon as mg
#0. The same statement is true when mqg=0. provided that
(k,w)#(0,0).

Upon making the change of variable u=r?, Eq. (5) may
be written as

mq

Fuy=s—w+k[lat+e "]+ -u—(l-—e_")=0. (Al)

Assume that, for a given pair (k,w), there exist three
distinct nonzero complex roots i, us, #3 of Eq. {Al). In

such a case, the complex pair (k, ) satisfies the set of linear
equations

w-—k[a+e""l]=?—q(l—e'"l), (A2)

1

w-kate )= 2 (1-¢™), (A3)
2

w—k[a+e‘“3]=2ﬁ(l—e"“3). (A4)
3

Since i, #uy, Egs. (A2), and (A3} may readily be solved for
k and w-to yield

k=k{u),us)= mal(l —E_uz)u;]_(lme_u!)u;l].

e Mr—gTH
(A5)

_ mq -
w=w(uy,u)=k(u;,u)ate )+ ‘u_‘(l"e “1.
1

(A6)
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If mg+#0, then, according to Eq. (A5), k0. The pair
(k,w) specified in (A5) and (A6) also satisfies Eq. (A4) pro-
vided that
ate M=a+te™™,

(1—e""Yu;=(1—e "uy. (A7)

These conditions necessarily imply that &, =u,. Thus, the
equation I'(#)=0 admits at most two distinct roots &, and
u,. Since u=r?, the original critical point equation ¥(r)
=0 also admits at most two distinct roots . and r, , with
Rerz=0.

Consider now the case mqg=0. According to Eqgs. (A5)
and (A6), one necessarily has (k,w)=(0,0) and the system
(A2)-(A4) is then identically satisfied. If one insists that
(k,w)# (0,00, Eq. (A1) has at most one root, which con-
cludes the proof.

'1. Delbende, J. M. Chomaz, and P. Huerre, **Absolute/convective insta-
bilities in the Batchelor vortex: a numerical study of the linear impulse
response,’’ J. Fluid Mech. 355, 229 (1998).

R, L. Ash and M. R. Khorrami, **Vortex stability,” in Fluid Vertices,
edited by Sheldon 1. Green (Kluwer Academic, Dordrecht, 1995), pp.
317-372.

*M. Lessen and F. Faillet, *“The stability of a trailing line vortex, Part 2,
Viscous theory,”" J. Fluid Mech. 65, 769 (1974).

*M. Lessen and P. J. Singh, “'The stability of axisymmetric free shear
layers,”" J. Fluid Mech. 60, 433 (1974).

5M. Lessen, P. J. Singh, and F. Paillet, “*The stability of a trailing line
vortex, Part 1, Inviscid theory,”” J. Fluid Mech. 63, 753 (1974).

ST, Loiseleux, J. M. Chomaz, and P. Huerre, “*The effect of swirl on jets
and wakes: Linear instability of the Rankine vortex with axial flow,””
Phys. Fluids 10, 1120 (1998).

’T. J. Pedley, “*On the instability of rapidly rotating shear flows to non-
axisymmetric disturbances,” -J. Fluid Mech. 31, 603 (1968).

T. I. Pedley, “'On the instability of viscous flow in a rapidly rotating
pipe.”’ I. Fluid Mech. 35, 97 {1969).

1. E. Martin and E. Meiburg, ‘‘Nonlinear axisymmetric and three-
dimensional vorticity dynamics in a swirling jet model,’” Phys. Fluids 8,
1917 (1996).

G. K. Batchelor, **Axial flow in trailing line vortices,” J. Fluid Mech. 20,
645 (1964).

"'P. Huerre and P. A. Monkewitz, “Local and global instabilities in spa-
tialty developing flows,”” Annmu. Rev, Fluid Mech, 22, 473 (1990).

12p. Huerre and M. Rossi, **Hydrodynamic instabilities in open flows,”” in
Hydrodynamics and Nonlinear Instabilities, edited by C. Godreche and P.
Manneville {Cambridge University Press, Cambridge, 1998}, pp. 81-294.

YR. G. Briggs. Electron-Stream Interaction with Plasmas (Cambridge Uni-
versity Press, Cambridge, 1964).

" A. Bers, “*Space-time evolution of plasma instabilities-absolute and con-
vective,”” in Handbook of Plasma Physics, edited by M, N. Rosenbluth
and R. Z. Sagdeev (North- Holland, Amsterdam, 1983), Vol. I, p. 451.

15C. Olendrar, A. Sellier, M. Rossi, and P. Huerre, **Absolute/convective
instability of the Bawchelor vontex,”” C. R. Acad. Sci., Ser. Hb: Mec.,
Phys., Chim., Astron. 323, 153 (1996).

13, Leibovich, ““The swucture of vortex breakdown,”” Annu. Rev. Fluid
Mech. 10, 221 (1978),

g Leibovich, *‘Vortex stability and breakdown: Survey and extension,”
AIAA J. 22, 1192 (1983).

Qlendraru et af.

185, Wang and Z. Ruzak, **On the stability of an axisymmetric rotating flow
in a pipe,’” Phys. Fluids 8, 1007 (1995).

1%]. M. Chomaz, P, Huerre, and L. G. Redekopp, “*A frequency selection
criterion in spatially developing flows,'” Stud. Appl. Math. 84, 119 (1991),

20g. LeDizés, P. Huere, J. M. Chomaz, and P. A. Monkewitz, *‘Linear
global modes in spatially developing media,’” Philos. Trans. R. Soc. Lon-
don, Ser. A 354, 169 (1996).

213, H. Faler and . Leibovich, **Disrupted states of vortex flow and vortex
breakdown,”” Phys. Fluids 20, 1385 (1977).

A K. Garg and S. Leibovich, *'Spectral characteristics of vortex break-
down flowfields,’* Phys. Fluids 22, 2053 (1979).

BP. G. Sarpkaya, *‘On stationary and traveling vortex breakdown,” J. Fluid
Mech. 45, 545 {1971).

2L N. Howard and A. S. Gupta, “On the hydredynamic and hydromag-
netic stability of swirling fows,”” J. Fluid Mech. 14, 463 {1962).

*E, W, Mayer and K. G. Powell, *'Viscous and inviscid instabilities of a
trailing line vortex,”” J. Fluid Mech. 245, 91 (1992).

¥y Stewartson and S. N. Brown, ‘*Near-neutral center-modes as inviscid
perturbations to a trailing line vortex,” I. Fluid Mech. 156, 387 {1985).

3. Leibovich and K. Stewartson, **A sufficient condition for the instability
of columnar vortices,” J. Fluid Mech. 126, 335 (1983).

%M. R. Khorrami, **On the viscous modes of instability of a trailing line
vortex," J. Fluid Mech. 255, 197 (1991).

*T. B. Benjamin, **Theory of the vortex breakdown phenomenon,” J. Fluid
Mech. 14, 593 (1962).

*C..Y. Tsai and S. E. Widnall, *‘Examination of a group-velocity criterion
for breakdown of vortex flow in a divergent duct,”” Phys. Fluids 23, 864
(1980},

IS Leibovich, S. N. Brown, and Y. Patel, “*Bending waves on inviscid
columnar vortices,” J. Fluid Mech. 173, 595 (1986).

3G, K. Batchelor and A. E. Gill, **Analysis of the stability of axisymmetric
jets,”” J. Fluid Mech. 14, 529 (1962).

3¢, M. Bender and S. A. Orszag, Advanced Mathematical Methods for
Scientists and Engineers (McGraw-Hill, New York, 1978).

3P Huerre and P. A. Monkewitz, **Absolute and convective instabilities in
free shear layers,” J. Fluid Mech. 159, 151 (1985).

M. Abramowitz and 1. A. Stegun, Handbook of Mathematical Functions
{Dover, New York, 1965).

3C. C. Lin, Hydrodynamic Stability {Cambridge University Press, Cam-
bridge, 1955).

W, Wasow, *'The complex asymptotic theory of a fourth-order differential
equation of hydrodynamics,”” Ann. Math. 49, §52 (1948},

3P, G. Drazin and W. Reid, Hydrodynamic Stabiliry (Cambridge University
Press, Cambridge, 1981).

33 Le Dizes, P. A. Monkewitz, and P. Huerre, **Viscous structure of plane
waves in spatially developing shear flows,"” Phys. Fluids 7, 1337 (1995).

K. M. Case, **Stability of inviscid ptane Couette flow,’* Phys. Fluids 3,
143 (1960).

418, Pavithran and L. G. Redekopp, *‘The absolute-convective transition in
subsonic mixing layers,” Phys. Fluids A 1, 1736 (1989).

#M. R. Khorrami, M. R. Malik, and R. L. Ash, “‘Application of spectral
collocation technigues to the stability of swirling flows,” J. Comput. Phys.
81, 206 (1989).

4p. W. Duck and M. R. Khorrami, **A note on the effects of viscosity on
the stability of a trailing-line vortex,’" J. Fluid Mech. 245, 175 (1992).

“Pp. A. Morkewitz, “'A note on vortex shedding from axisymmetric biuff
bodies,”” J. Fluid Mech. 192, 561 {1988).

4P, A. Monkewitz, P. Huerre, and J. M. Chomaz, **Global linear stability
analysis of weakly non-parallel shear flows,”'J. Fluid Mech. 251, 1 (1993).



