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Phoretic mechanisms, whereby gradients of chemical solutes induce surface-driven flows, have recently
been used to generate directed propulsion of patterned colloidal particles. When the chemical solutes
diffuse slowly, an instability further provides active isotropic particles with a route to self-propulsion by
spontaneously breaking the symmetry of the solute distribution. Here we show theoretically that, in a
mechanism analogous to Bénard—Marangoni convection, phoretic phenomena can create spontaneous
and self-sustained wall-driven mixing flows within a straight, chemically-uniform active channel. Such
spontaneous flows do not result in any net pumping for a uniform channel but greatly modify the
distribution and transport of the chemical solute. The instability is predicted to occur for a solute Péclet
number above a critical value and for a band of finite perturbation wavenumbers. We solve the
perturbation problem analytically to characterize the instability, and use both steady and unsteady
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numerical computations of the full nonlinear transport problem to capture the long-time coupled
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1 Introduction

The rapid development of microfluidics has motivated extensive
research aiming at the precise control of micro-scale fluid flows."
The standard approach to drive flows uses macroscopic mechanical
forcing, namely a pressure difference imposed between inlet and
outlet channels, which is sufficient to overcome viscous resistance
over the entire length of the microchannel.” Yet, another possibility
resides in a local forcing of the flow directly at the channel wall, as
realized, for example, in biological systems through the beating of
active cilia anchored at the wall that generate a net fluid pumping
which is critical to many biological functions.’

Generating similar wall forcing synthetically by mimicking
biological cilia is a difficult task, which requires complex
assembly of flexible structures and yet another macroscopic
driving (e.g. magnetic).® Phoretic phenomena have emerged as
alternatives to micro-mechanical forcing able to generate a
local forcing on a fluid flow near surfaces without relying on
complex actuation. Instead, they exploit the emergence of sur-
face slip flows resulting from local physico-chemical gradients
within the fluid phase above a rigid surface.”*° These gradients
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dynamics of the solute and flow within the channel.

can be that of a chemical (diffusiophoresis), thermal (thermo-
phoresis) or electrical field (electrophoresis). While phoretic
flows have long been studied under external macroscopic
gradients, they can also arise locally when the surface mobility
is combined with a physico-chemical activity that provide the
wall with the ability to change its immediate environment. This
combination, often termed self-phoresis, has received much recent
interest for self-propulsion applications.'*™* Self-phoresis has
also recently been considered as a potential alternative to
macroscopically-actuated phoretic driving in microchannels.'*
Whether they are used to drive fluid within a microchannel
or to propel a colloidal particle, phoretic flows require the
presence of physico-chemical gradients. To achieve phoretic
transport, the system must therefore be able to break the
directional symmetry of the field responsible for the phoretic
forcing. For self-propulsion three different routes have been
identified for setting a single colloid into motion, namely (i) a
chemical patterning of the surface,"" (ii) a geometric asymmetry
of the particle,"””'® and (iii) an instability mechanism resulting
from the nonlinear coupling of a solute dynamics to the phoretic
flows when diffusion is slow.'® The first two approaches are
intrinsically associated with an asymmetric design of the system,
and have already been explored for generating phoretic flows in
microfluidic setups.’*®*® The focus of our paper is on the
ability of instabilities to generate spontaneous flows in phoretic
microchannels. The instability exploits the nonlinear coupling of
physical chemistry and hydrodynamics through the convective
transport of solute species by the phoretic flows, and provides
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Fig. 1 Phoretic instability and convection in a uniform phoretic channel. Left: Motionless steady state with no phoretic flow. Center: Perturbed initial
state, with an upward plume of solute-rich fluid. Right: Phoretic flows at the active wall can either decrease the initial perturbations (case with mobility
M < 0, top) or exacerbate them, leading to an instability and self-sustained convective flow (case with mobility M > 0, bottom).

isotropic systems (e.g: a chemically-homogeneous spherical particle)
with a spontaneous swimming velocity.'® The purpose of the present
study is to determine whether such instability exists in a channel
configuration and the characteristics of the flow and solute transport
it can generate (e.g. pumping or mixing flow).

We focus throughout the manuscript on diffusiophoresis
where the physico-chemical field of interest is the concentration
of a solute species consumed or produced at the active wall. Yet,
the conclusions of this work are easily extended to other phoretic
phenomena. In that context, the “isotropic” system consists in
the most typical microfluidic setting, namely a rectilinear micro-
fluidic channel with chemically-homogeneous walls. An active
wall (e.g. releasing a chemical solute which is absorbed at the
opposite wall, transported or degenerated within the channel)
generates an excess solute concentration in its immediate vicinity
and thus, a normal solute gradient. In a purely isotropic setting, the
solute concentration is homogeneous in the streamwise direction,
thus generating no slip forcing at the wall and no flow within the
channel.

However, when the solute diffuses slowly, a small perturba-
tion of the concentration at the wall will generate a net slip flow
either away or toward a region of excess solute content. In the
latter case (so-called positive phoretic mobility), the resulting
convective flow is expected to transport and accumulate more
solute in that region, resulting in a self-sustained flow within
the channel (Fig. 1). This mechanism is akin to the classical
Bénard-Marangoni convection in a thin-film,>** which is
driven by a temperature difference between the two opposite
surfaces and for which perturbations in the temperature dis-
tribution at the free surface generates a Marangoni flow which
can drive a net convection.

Similarly to the classical Bénard-Marangoni convection, we
demonstrate in this paper that phoretic phenomena can lead to
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a spontaneous local symmetry-breaking of the solute distribution
and the creation of a self-sustained convective flow in the channel.
The flow does not pump a net amount of fluid in the streamwise
direction but it does significantly impact the distribution of solute
across the channel and its transport. Using analytical calculations
and numerical computations we characterize the channel phoretic
instability and its long-time saturated regimes, drawing a clear
physical parallel to Bénard-Marangoni convection in thin films.

The paper is organized as follows. Section 2 describes the
simplified model considered here for the active micro-channel.
The linear stability of the steady state is then analyzed in
Section 3, and the resulting saturated regime and its properties
are characterized in Section 4. Our findings are finally summarized
in Section 5, where we also offer some further perspectives.

2 Model

2.1 Problem formulation

We investigate here the spontaneous emergence of phoretic
flows within an infinite two-dimensional channel of depth H
with walls of homogenous chemical properties, namely (i) a
chemically passive upper wall (y = H) that also maintains a
uniform solute concentration Cy, and (ii) an active bottom wall
(y = 0) with homogeneous chemical activity .4 and phoretic
mobility M. We use D to denote the diffusivity of the solute
whose concentration is denoted by C(r) throughout the channel.
The two chemical properties of the bottom wall translate into
boundary conditions for the chemical concentration and flow
field, namely a fixed diffusive flux per unit area A = —Dn-VC
and a phoretic slip uy = M(I —mn) - VC with n the unit vector
normal to the surface and pointing into the fluid phase. The flow
is assumed to be dominated by viscous effects so the fluid velocity

This journal is © The Royal Society of Chemistry 2020
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satisfies the incompressible Stokes equations. Rewriting this two-
dimensional incompressible flow in terms of a single scalar
streamfunction ¥, u = (0y/dy)e, — (Oy/0Ox)e,, Y must therefore
satisfy the biharmonic equation, V*(V*) = 0.>*

Scaling lengths by H, relative concentration ¢ = C —Cy by
|A|H/D, fluid velocities by V = |AM|/D and times by H/V,
the equations for the flow field (biharmonic equation for the
dimensionless streamfunction ) and solute transport (the
advection-diffusion equation for the dimensionless relative
concentration c) are given by

VA(VH) = 0, &
dc Oy oc O oc 5
Pel —4+ 21— _“T7") = , 2
e(az toyox 8x8y) Ve @)
with boundary conditions

c=0, %:1//:0 fory=1, (3)

Jdc B ay . Oc o
ay_ 7‘4’ l// - Q07 Fy_Max fory _07 (4)

and where we have introduced the Péclet number for the solute
transport, Pe = |[AM|H/D?. Here A = +1 and M = +1 are the
dimensionless activity and mobility of the active bottom walls.

The constant Q, is the net volume flux through the channel,
a dimensionless constant. In the following, we assume that the
problem is periodic in the streamwise direction with period L.
Using the reciprocal theorem for Stokes flows, this total volume
flux Qo can in fact be obtained directly in terms of the phoretic
slip at the wall u, as*

=—| wus-f'dx, 5
0= G

where f* is the auxiliary traction force corresponding to a
Poiseuille flow forced by a unit pressure gradient in the same
channel geometry with no-slip boundary conditions, and the
integration is performed on all the side walls of the periodic
channel. Here uy is strictly zero at the top wall, and at the

0
bottom wall, f* = e,/2 and us = Ma—i(x, 0)e,, and therefore,

since ¢ is periodic in x, we obtain

M r 9 . 0)dx = 0. (6)

Qozi \ox

For uniform mobility, it is therefore not possible to drive any
net flow along the channel, regardless of the activity of its walls.

2.2 Solution to the hydrodynamic problem

While eqn (1)-(4) form a non-linear system for the coupled
dynamics of ¢ and y, the streamfunction itself is a linear and
instantaneous function of ¢ since inertia is negligible, i.e.
¥ = Z|[c] with & a linear and instantaneous operator. For a
given distribution of concentration at the active boundary, the
problem for y can be solved for analytically in Fourier space.

Specifically, denoting by /(k,») = [*_f(x,y)e **dx the Fourier

This journal is © The Royal Society of Chemistry 2020
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transform in x of any field f(x,y) in real space, we see that y and
¢ follow

2 2,
Y(k,0) =0, %(k,o) = ikMé(k,0), (8)
N, _
a_y(kv ]) - l//(kv 1) - 07 (9)

whose unique solution is given by
(k) = kMW (k) x 6(k,0),

k(y — 1) sinh ky — ysinh ksinh[k(y — 1)]
sinh 2k — k2 '

(10)

(11)

lp(kvy) =

This means that we can write formally the streamfunction as a
convolution of the solution concentration

Yix,y) = M[x K(x—X\)e( 00y, (12)
. "
K(u,y) = EJ }k‘l’(k,y)el “dk. (13)

3 Linear stability analysis of the steady
state

The system in eqn (1)-(4) admits a steady solution which
corresponds to pure diffusion of the solute across the channel
and no flow through the entire channel (concentration is uni-
form in x), i.e.

t=4(1-y), ¥=0. (14)

3.1 Linearized equations

We first focus on the linear stability analysis of this system
around the steady state from eqn (14). Decomposing ¢ = ¢ + ¢’
and = Y/, the linearized problem for ¢’ is obtained as

aC/ 72 31#’
PCE = V d—A Peg7 (15)
¢ (x.1) = G (x.0) =0, (16)

and v’ is directly obtained from ¢’ using eqn (10). Searching for
normal modes of the form ¢’ = C(k,y)e!*™"** with growth rate o,
the values of ¢ and C(k,y) satisfy an eigenvalue problem (for
given k) given by

>C

—— —I*C = —kK*AM Pe x ¥(k,y),

9? 17)

€ k,0) =0,

(18)

with & = k*+ Peo.
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Fig. 2 Neutral stability curve of the channel phoretic instability. Depen-
dence of the critical Péclet number, Pe., on the wavenumber of the
Fourier mode of the perturbation, k, for AM = 1.

3.2 Stability threshold

We first seek for the stability threshold by looking for neutrally-
stable modes with ¢ = 0 (so that k = k). The general solution of
eqn (17) is given by

AM Pefosinh[k(y — 1)] + pcoshky + G(k, y)]

Clk,y) = 4(sinh 2k — k2) » (19)
G(k,y) = ky* sinh kcosh[k(y — 1)] + k(y — 1) sinh[ky]
— k*(y — 1) cosh[ky] — ysinh ksinh[k(y — 1)]. (20)
. e
Imposing C(k,1) = 0 and 8_y(k’ 0) = 0 leads to
sinh 2k + k?
p = —ktanhk, = " Jcoshk (21)

Finally, normalising the eigenfunction such that C(k,0) = 1
provides the values Pe,(k) for which a neutrally-stable mode of
wave number k exists, namely

[ 4\ k(sinh%k — k?)

Pe. (k) = (m) tanhksinh %k — k3 (22)

When AM = 1, Pe.(k) > 0 and its dependence on & is plotted in
Fig. 2. Solute advection is the driving mechanism of any
potential instability. Thus, when Pe is small, the solute
dynamics is dominated by diffusion which induces an over-
damped relaxation of any perturbation, and all modes are
linearly stable. Unstable modes can only develop (i) for small-
enough diffusion (i.e. above a critical Pe > Pe.) and (ii) only if
AM =1 so that local concentration perturbations are reinforced
by the resulting phoretic advection. When AM = —1, all the
modes are linearly stable regardless of the Péclet number. In
what follows, we focus exclusively on the case AM = 1 that can
potentially lead to an instability, and thus set A = M = 1.

As seen in Fig. 2, above a critical value of the Péclet number,
Pe > Pe, ~ 14.8, the equation Pe (k) = Pe admits two distinct
solutions k; < k, and all the modes with k;, < k < k, are
linearly unstable, while those with k£ < k; or k > k, are linearly
stable. This finite wavelength instability is not surprising
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Fig. 3 (top) Vertical structure of the neutrally-stable eigenmode for three
different values of k. (bottom) Concentration perturbation and resulting
streamlines for the neutrally-stable eigenmodes of increasing k. Lighter
(resp. darker) color depicts a positive (resp. negative) concentration
perturbation. Note that the corresponding value of the Péclet number is
therefore different for each k, namely Pe. = 29.4, 148 and 32 fork =1, k =
2.6 ~ ko and k = 8 respectively. In all cases, AM = 1.

physically, and its origin is similar to the physical mechanisms
underlying the classical Bénard-Marangoni instability. Pertur-
bation modes with high £, i.e. when the channel width is much
larger than the wavelength, are damped by diffusion in the
streamwise direction. In contrast, modes with low k correspond
to very elongated rolls for which the channel width is too small
for any significant longitudinal gradient to develop and drive a
net flow. This damping of the small- and large-k modes is
confirmed by the divergence of Pe(k) in both limits. Indeed, we
have asymptotically

2
fork — 0, Pe. k)~ k—g, (23)
for k > o, PeJfk) ~ 4k. (24)

The minimum value, Pe, ~ 14.8, has an associated wavenum-
ber ky, ~ 2.57, and is the critical Péclet number below which no
instability can develop.

The structure of the corresponding neutrally-stable eigen-
mode, Fig. 3, shows the emergence of regions of increased
concentration along the active bottom wall, leading to a net
phoretic slip (i) toward the regions of higher concentration
(light color) where the flow is oriented upward, and (ii) away
from regions of reduced concentration (dark color) where the

This journal is © The Royal Society of Chemistry 2020
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Fig. 4 Unstable modes of channel phoretic flow. Growth rate, o, of a
Fourier mode with wavenumber, k, for increasing values of Péclet number,
Pe, in the case AM = 1.

flow is oriented downward. The vertical structure of the eigen-
mode depends on its wavenumber, k, and hence the aspect
ratio of the counter-rotating flow cells. For long waves (k < k),
the concentration perturbation varies monotonously across the
width of the channel while for shorter waves (k 2 k) the
maximum perturbation amplitude is reached at a finite dis-
tance from the wall.

3.3 Growth rate of unstable modes

Away from the critical Péclet number, it is important to consider
the general eigenvalue problem in eqn (17) and (18) and its solution
for k # k (ie. ¢ # 0). The generic solution for C is given by

K2 AM Pe [oc sinh[k(y — 1)] + Bcosh ky + Gk, y)]

C(k,y) = S 7
(25)
with
Gk, y) = 2k? cosh(ky) —(;k SiI;i;CZCOSh[k(y —1)]
(26)

k(y — 1) sinh(ky) — ysinh k sinh[k(y — 1)]
(E)
Note that the solution above is valid regardless of the sign of & and

when © < 0, £ is imaginary and one finds the solution using
sinh(iz) = isinz and cosh(iz) = cosiz.

The conditions C(k,1) = 0 and (Z—S(k, 0) = 0 impose respectively
Gk, 1) 1 9G

=— L 0= —= ~—(k,0),
b cosh k kcoshkay( )

(27)

and finally C(k,0) = 1 provides an equation for & (and o) as a
function of k and Pe which is solved numerically.

The dependence of the growth rate, ¢, on the wavenumber,
k, is shown for increasing values of the Péclet number, Pe, in
Fig. 4. These results confirm the existence of a minimum value
Pe, ~ 14.8, below which all modes are stable. For Pe = Pe,,

This journal is © The Royal Society of Chemistry 2020
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Fig. 5 Dependence of the wavenumber of the most unstable mode, Kqpt,
i.e. the one with the largest growth rate, with the Péclet number, Pe, in the
case AM = 1. The line is solid when this mode is unstable and dashed when
it is stable (the red cross corresponds to the bifurcation point (ko Peg)).

a single wave number is neutrally stable (k, &~ 2.57). For
Pe > Pe,, an increasing range of unstable wavenumbers is
found, and the most unstable wavenumber k,p; increases with
Pe (see Fig. 5).

3.4 Stability analysis in a periodic channel

When a periodic channel is considered (with lengthwise period L),
only a discrete set of modes can be found, namely &; = 2mj/L with
j € N. For a fixed length (e.g L = 10), the most unstable wave
number will vary as k oc Pe as the Péclet number is increased
(Fig. 6). For small L, the value of the instability threshold, ie. the
minimum Pe beyond which at least one mode is unstable, can be
significantly different from Pe, (infinite domain), while for suffi-
ciently large L it is well reproduced.

4 Nonlinear dynamics in a periodic
channel

The results of the previous section identified a critical Péclet
number beyond which the steady state corresponding to a
uniform distribution of the concentration along the channel
wall becomes unstable, following a mechanism similar to the
classical Bénard-Marangoni instability. For Pe > Pe,, when a
small perturbation is introduced to the steady state solution, a
finite range of eigenmodes with finite k and positive growth
rates are expected to grow exponentially, with one of the modes
(that with maximum growth rate) becoming dominant over the
slower-growing other modes. When perturbations to the steady
state are no longer negligible, the nonlinear advection of the
concentration perturbation by the phoretic flows is expected to
set in and drive the nonlinear saturation of the instability into a
steady state where the phoretic flows along the bottom wall
greatly modify the structure of the concentration field. In this
section, we solve the full nonlinear problem for the concen-
tration and flow field, eqn (1)-(4), within a periodic channel of
non-dimensional length L (scaled by the channel width)
numerically.

Soft Matter, 2020, 16, 1259-1269 | 1263
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Fig. 6 Unstable modes of phoretic flow for a periodic channel. Depen-
dence of the growth rate of the mode of order n (i.e. with n periods) in a
channel of longitudinal period L = 2 (top) and L = 10 (bottom), in the case
AM = 1. The red cross indicates the position of the instability threshold in
an infinite domain (Peg ~ 14.8).

4.1 Numerical solution of the time-dependent and
steady-state problems

Two types of numerical simulations are performed to analyze the
nonlinear solute-flow dynamics: (i) a time-dependent evolution
of the steady state, eqn (14), from a small perturbation, and (ii) a
direct search of the steady solutions of the full problem. The
methods considered in each case are outlined below.

4.1.1 Unsteady simulations. The Stokes flow problem
is linear and instantaneous and, at each instant, the stream-
function y/(x,y,t) can be expressed analytically in Fourier space
in terms of the wall concentration, ¢(x,0,t), using eqn (10). The
time-dependent advection-diffusion problem, eqn (2)-(4),
can therefore be rewritten formally as a nonlinear partial
differential equation (PDE) for ¢

ac
—+N()=0 28
N () =0, (28)
where N is a nonlinear spatial differential operator that
accounts for convective and diffusive transport. This unsteady
PDE is marched in time using second-order centered finite
differences to evaluate the spatial derivatives in N, while

1264 | Soft Matter, 2020, 16, 1259-1269
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time-integration is handled using a fourth-order Runge-Kutta
scheme.

For each value of the Péclet number considered, and unless
specified otherwise, the simulation is initiated by adding a
random perturbation to the steady state ¢ = 1 — y, in the form
c(xy,t = 0) = t(y) + e&(x)(1 — y*), with &(x) an O(1) random
perturbation.

4.1.2 Steady simulations. In addition to the initial-value
time-dependent computations described above, we have also
implemented a direct solver that searches for non-trivial steady
states of eqn (1)—(4) after dropping the Oc/0t term from eqn (2),
i.e. that identifies the solutions ¢ of N'(¢) = 0 in eqn (28). This is
especially useful given the co-existence of distinct cellular states
at the same parameter values as will be reported in Fig. 7 and 8.
Spectral methods were used and Fourier-Chebyshev colloca-
tion methods were constructed and implemented in order to
compute the different spatial derivatives involved in A in the x
and y directions, respectively. Spatial periodicity renders such
treatments spectrally accurate in both the x and y discretiza-
tions, and the resulting algorithms are highly accurate
and efficient. Fourier and Chebyshev differentiation matrices
were used to produce a large system of nonlinear equations
for the unknown stream function and concentration fields at
the collocation points. (As mentioned earlier, nonlinearity
arises due to convective coupling at non-zero Pe.) The resulting
system was solved using a Newton-Raphson iteration, coupled
with a continuation method to construct bifurcation diagrams
of non-trivial solutions as Pe varies such as that given in
Fig. 9.

Our computational search generically resulted in the
coexistence of multiple states at the same Péclet number. Not
all of these are stable, however, and so the stability of all
computed branches was also determined by linearizing the
time-dependent problem eqn (28) around each identified
steady solution ¢, as follows

aoc

—+J@) =0

ot (29)

with ¢’ = ¢ — ¢ a small perturbation and J(¢) the Jacobian of A/
evaluated at ¢. Analogous discretization methods were used
and the stability equation, eqn (29), was thus recast into a
computational generalized eigenvalue problem. This enables
us to classify stable and unstable states and in particular to
investigate whether different states emerging at the same Péclet
number can be stable simultaneously as discussed in the
results of Fig. 7 and 8.

4.2 Phoretic convection in a uniform periodic channel

We show in Fig. 7 the time-evolution of the concentration and
flow fields within the channel above the critical Péclet number.
Initially, a finite random perturbation is added to the steady
state, leading to a complex, weak flow pattern near the
active wall.

Starting from the perturbed steady state with no fluid
motion, the first phase of evolution is characterized by (i) the
rapid diffusion-driven damping of the shortest wavelengths of

This journal is © The Royal Society of Chemistry 2020
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Fig. 7 Evolution of the concentration (color) and streamlines (red lines) in a periodic uniform phoretic channel with AM = 1, Pe = 20 and L = 10. The initial
c

condition is a small random perturbation of the steady state ¢ =1 — y.

Fig. 8 Same as Fig. 7 with a different initial random perturbation to the steady state ¢ =1 — y.

the perturbation and (ii) the accumulation of solute in the
convergence regions of the slip flow along the active boundary.
This results in the emergence of counter-rotating cells, driven
by the phoretic forcing at the bottom boundary, with O(1)
aspect ratio, ie. their longitudinal wavelength approximately
scales with the channel width. Each flow cell appears to be
limited in the streamwise direction by a local maximum and
minimum of the surface concentration along the active wall

This journal is © The Royal Society of Chemistry 2020

and is driven by the unidirectional phoretic slip joining them,
which in turn sets the bulk flow into motion. Near maxima in
solute concentration, the convergence of the phoretic forcing
leads to an upward flow that drives fluid with higher solute
content into the bulk region, while near local concentration
minima the divergence of the phoretic forcing results in a
downward flow that reduces the y-averaged concentration
across the channel at that location. In a second (much slower)
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Fig. 9 Dependence of wall flow magnitude, A, with Péclet number, Pe, in
the steady-state solutions for AM = 1 and L = 10 as obtained from the
steady-state search described in Section 4.1.2. The dashed line segments
correspond to the values of Pe at which the bifurcation is predicted by the
linear stability analysis in a channel of finite size ratio (see Fig. 6). The open
circles denote a linearly stable branch, while stars denote an unstable
branch.

phase, these cells interact by the convective flows they generate
until a steady state is reached with a finite number of cells, a
final state that is quite robust with respect to the initial
perturbation.

In Fig. 7, the length of the channel (ie. its imposed periodicity)
was set to L = 10 while the Péclet number is Pe = 20. For this
combination of parameters, the linear stability analysis predicts
that modes with n = 5 cells have the largest growth rate and are
therefore expected to dominate the dynamics at least initially. This
is indeed observed here as the final state includes an integer
number of roughly similar concentration and flow patterns with
n = 5. Importantly, this selection of the final nonlinear pattern
overlooks the complexity imposed on such a system by the final
longitudinal size of the domain, a feature that is well-known to
be a generic property of Rayleigh-Bénard-Marangoni-type flows.
Indeed, as shown on Fig. 8, when we consider the same domain
with a slightly different initial perturbation of the steady state,
we obtain a final steady state that is fundamentally different in
structure (here 4 pairs of rotating cells when 5 pairs were
obtained in Fig. 7). This results is not simply a transient regime,
before the system would converge again to five pairs of cells.
Instead, it suggests the existence of multiple steady solutions, a
result that is confirmed in the next section. The selection by the
system of one of those steady solutions depends sensitively on
the nonlinear interactions between the different modes in the
saturation process.

4.3 Steady state flows and modified solute transport

To analyze this question further, we now turn to a direct search
of the steady state solutions of the system, as described in
Section 4.1.2. The bifurcation diagram obtained from our
steady simulations is plotted on Fig. 9 where the intensity of
each solution is characterized by a single measure, 4, defined
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Fig. 10 (a) Evolution with the Péclet number, Pe, of the mean concen-

tration within the channel C,, (solid blue) and flow magnitude (as measured
along the active wall by A in eqn (30), dotted red) in a periodic uniform
phoretic channel with AM = 1 and L = 10g ~ 24.4 () is the wavelength of
the mode of optimal growth rate at the threshold Pe = Peg). For each value
of Pe, 20 different simulations are performed with random initial perturba-
tions of the steady state and the resulting standard deviation of both
quantities is shown in shade. (b) Evolution with Pe of the x-averaged
concentration within the channel, C(y), for the same configuration.

as the mean square value of the phoretic slip velocity u, along
the active wall,

1t
ZJO U |y:0dx.

These calculations confirm the result of the linear stability
analysis with the successive emergence of a new non-trivial

A= (30)

solution for the critical value of Pe identified in Fig. 6, and an
increasing number of pairs of counter-rotating flow cells, n,
starting with n = 4. It also confirms the existence of multiple
stable branches with n = 4 and n = 5, and thus the possibility to
obtain different steady states depending on the particular
initial conditions considered, as observed in Fig. 7 and 8.

Yet, despite their differences, the two final steady states
illustrated on those figures share some similar macroscopic

This journal is © The Royal Society of Chemistry 2020
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Fig. 11 Concentration (color) and streamlines (red lines) in a periodic uniform phoretic channel with AM = 1, L = 10 and increasing Péclet number, Pe, for
the final steady state solution associated with 5 regular cells. The same scales are used for all panels for both concentration and streamfunction levels.

characteristics. In the following, we focus on two particular
measures of the effect of phoretic convection. The first one, 4
introduced in eqn (30), is a measure of the intensity of the
resulting (mixing) flow field forced by the active boundary. The
second measure is the mean concentration within the entire
channel, Cy,.

The dependence of the flow magnitude, 4, with the Péclet
number, Pe, is plotted in Fig. 9 for each steady state branch,
while its average over several independent unsteady simula-
tions is also shown on Fig. 10(a). Increasing the value of Pe
beyond the instability threshold results in an intensification,
and saturation, of the periodic flow cells in response to the
convective accumulation of solute concentration at definite
regions along the active boundary (Fig. 11). As Pe is increased
(in particular for Pe > 25), a strong variability of the steady-
state value of A is observed between simulations initiated from
different random perturbations.

In turn, this enhanced phoretic flow for larger values of Pe
profoundly modifies the solute distribution both along and
across the channel. Indeed, as a result of the phoretic flow
generated at the bottom active boundary, an upward (resp.
downward) convective transport of solute-rich (resp. solute-
depleted) fluid is observed in the regions of maximum (resp.
minimum) solute concentration at the boundary, resulting in a
vertical convective transport of solute from the active to the
passive boundary. The total chemical flux across the channel is
imposed here by the fixed-flux chemical boundary condition in
eqn (4) along the active boundary. At steady state, the total solute
flux across any horizontal surface is therefore independent of y
and it includes both a diffusive and convective contribution. The
latter vanishes at the top and bottom boundaries (where v = 0)
but can be significant in the bulk of the channel. For large
convective transport (large value of Pe and strong A), a reduction
of the diffusive flux is therefore expected, which results in an

This journal is © The Royal Society of Chemistry 2020

overall reduction of the contrast between the solute concen-
tration at the top (passive) and bottom (active) boundaries. The
reference concentration of the upper wall is imposed here, and a
net increase in convective transport results therefore in a net
reduction of the mean solute content within the channel, as
quantified by the second measurements presented on Fig. 10(a),
namely the average Cy, of ¢(x,y) over the entire channel.

Further, the relative magnitude of diffusive and convective
transport (and its impact on the concentration distribution) is
not uniform across the channel due to the concentration of the
flow cells driven by the active bottom boundary in the bottom
half of the channel width. Specifically, the phoretic flow and
resulting convective transport is greater in the bottom region
(but away from the active wall where v = 0), resulting in
enhanced convective transport and reduced diffusive flux for
0.25 < y < 0.5. As a result, for increasing Pe, the vertical
gradient of horizontally-averaged concentration C(y) is reduced
in that region (Fig. 10b). In contrast, within the top half of the
channel and in the immediate vicinity of the bottom wall, the
convective vertical flux of solute is almost negligible (v ~ 0) and
the vertical gradient of solute remains essentially unchanged.

It should be noted that the concentration distribution and
flow field are specific to each steady state solution. With the
present system exhibiting multistability, the final steady state
observed numerically depends on the initial and periodic
boundary condition imposed. The results presented in Fig. 10
are thus obtained for a set of 20 different random perturbations
of the base state, and their statistical mean and standard
deviation are shown for each value of Pe considered. Never-
theless, we observe that the global quantities A and C,,, depend
only weakly on the precise configuration of the final steady
state (i.e. number of rotating cells), and the same holds for the
vertical variations of C(y), which confirms the generality of the
results presented on Fig. 10.
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5 Conclusions

In this work, we demonstrated the emergence of spontaneous
convective flows within a straight phoretic channel whose active
wall drives a fluid flow in response to self-induced gradients of a
chemical species. This mechanism, which is similar to a Bénard-
Marangoni instability, identifies therefore a new route to the
emergence of phoretic flows within a chemically-active micro-
channel, in addition to asymmetric designs in chemical activity'®
or wall geometry,'* similarly to the dual problem of emergence
of self-propulsion for phoretic colloids.

A major difference between phoretic particles and channels
need to be emphasized. While chemical and phoretic asymmetry are
observed to generate net fluid transport (i.e. self-propulsion of the
colloid or net pumping above the active wall), the phoretic instability
which enables isotropic phoretic particles or active droplets to swim
cannot drive a net pumping flow through the straight channel. In
essence, driving a net flow through the channel or self-propulsion of
a colloid requires a left-right symmetry-breaking of the concentration
distribution along the active wall which should be maintained by the
resulting phoretic flow in order to obtain a self-sustained regime.
This was possible around a colloidal particle due to its surface
curvature, which enables the formation of a solute-rich wake under
the influence of advection. Such a mechanism is however not
possible along an infinite flat wall.

Although no net flow is driven through the channel, the
activity of the wall and the resulting phoretic instability allow
for the development of steady and coherent convective cells
that profoundly modify the transport and distribution of solute
within the micro-channel. In the present formulation, the
total flux of chemical through the channel width is fixed by
the wall catalytic activity, hence convective transport reduces
the magnitude of the diffusive one and thus the concentration
contrast of the channel with the constant level imposed by the
passive wall. This effect has the same origin as the enhance-
ment of the thermal flux across a fluid gap undergoing a
Bénard-Marangoni instability when the temperature levels of
the lower and upper walls are prescribed.

Furthermore, the effect of the nonlinear advective coupling
between chemical transport and phoretic flows could poten-
tially drastically modify the saturated dynamics of an active
channel with a (weak) design asymmetry (e.g. either non-
symmetric geometry'® or chemical patterning of the wall*®),
with a potential opportunity to significantly enhance the net
pumping of such asymmetric designs. A parallel could indeed
be drawn here with the self-propulsion of an almost isotropic
spherical particle (e.g. an active spherical particle with a small
inert patch). The swimming velocity of such particles is small in
the diffusive limit (Pe = 0), typically scaling with the degree of
asymmetry of the system; yet, for finite Pe, a finite O(1)
swimming velocity is achieved due to the nonlinear coupling
of solute transport and phoretic flows.>*

The results in our paper were obtained within the simplified
chemical framework of a fixed rate of release/consumption of
solute at the active boundary and a steady and uniform
concentration at the passive wall. Our analysis could be
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generalized to more complex chemical kinetics, leading to
additional dimensionless characteristics of the problem, such
as a reaction-to-diffusion ratio. One such example is a first-
order reaction at the active wall where the rate of consumption
of solute is proportional to its local concentration, thereby
allowing for an additional self-saturation of the chemical reac-
tion when diffusion is not sufficiently fast to replenish the solute
content near the active wall. This particular case has been
considered in the case of self-propulsion of active colloids.***”
Similarly, the approach in our paper could be generalized also to
analyze a different combination of activity and mobility on both
of the channel walls (e.g., one wall with activity but no mobility
and the other with mobility only, or both walls with the two
properties). Although quantitative results would then depend on
the exact physico-chemical model for the surface chemistry and
the relative activity and mobility of the two walls, the emergence
of spontaneous convective phoretic flows and resulting modifi-
cation of the convective transport reported here are expected to
hold generically. Finally, we note that the present analysis is
based on short-ranged interactions of the solute molecules with
the channel walls and, as a result, the flow forcing is expressed
as a slip velocity of the concentration gradient at the wall. If the
interaction thickness is no longer negligible in comparison with
the channel width, the present approach could be generalized by
directly including the solute-wall interaction forces in the
momentum balance.”*°
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