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Abstract

A class of low-order models for vortex-induced vibrations is analyzed. A classical van der Pol equation models the

near wake dynamics describing the fluctuating nature of vortex shedding. This wake oscillator interacts with the

equation of motion of a one degree-of-freedom structural oscillator and several types of linear coupling terms modelling

the fluid–structure interaction are considered. The model dynamics is investigated analytically and discussed with

regard to the choice of the coupling terms and the values of model parameters. Closed-form relations of the model

response are derived and compared to experimental results on forced and free vortex-induced vibrations. This allows us

to set the values of all model parameters, then leads to the choice of the most appropriate coupling model. A linear

inertia force acting on the fluid is thus found to describe most of the features of vortex-induced vibration

phenomenology, such as Griffin plots and lock-in domains.

r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Vortex-induced vibrations (VIV) are a well-known phenomenon to engineers. Several kinds of structures subjected to

wind or water currents may experience VIV: common posts, chimneys, suspended cables for bridges, power

transmission lines in air, and pipes, risers, towing cables, mooring lines in water. In some cases, this has to be taken into

account in their design as a potential cause of fatigue damage, such as for offshore structures.

Nominal two-dimensional (2-D) vortex shedding and consecutive VIV have been considered in earlier studies as the

simplest form of the problem. Focusing onto crosswise VIV, phenomenological models have been developed in the

1970s following the idea of a wake oscillator (Birkoff and Zarantanello, 1957; Bishop and Hassan, 1964). The near

wake dynamics was described by a single flow variable modelling the fluctuating nature of the vortex shedding. This

variable was assumed to satisfy a van der Pol or Rayleigh equation which models a self-sustained, stable and nearly

harmonic oscillation of finite amplitude. This elementary wake oscillator was naturally coupled with the motion

equation of a one degree-of-freedom (1dof) elastically supported rigid structure, namely a structure oscillator. Some

major features of the near wake vortex shedding and VIV have been thus qualitatively and quantitatively described,

using analytical and numerical methods. For a comprehensive review see for instance Parkinson (1989).

Increasing computational resources have made possible the direct numerical simulation (DNS) of incompressible

Navier–Stokes equations on 2-D domains around a fixed, forced or free structure profile: this has provided more

detailed flow field analysis to compare with experimental observations.

Three-dimensional (3-D) features naturally arise in the VIV problem as the real domain is explicitly considered as

spanwise extended: elastic structures like tensioned cables and beams are characterized by their eigenmodes, wake flows
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show secondary instabilities and the environment may impose shear flow. From a numerical point of view,

computational limits arise for flow-field direct numerical simulation capability in modeling 3-D domains with large

aspect ratio: simulations of VIV on flexible tensioned cables and beams have been performed for Reynolds number, Re,

up to 103 and aspect ratio of about 103 (Lucor et al., 2001).

Phenomenological models based on wake oscillators may again be useful in describing such problems. Allowing

accessible analytical considerations, they help in the understanding of the underlying physics. This explains several

recent improvements in this approach. The original kernel in the form of van der Pol or Rayleigh equation has been re-

interpreted by Balasubramanian and Skop (1997), Skop and Luo (2001), Krenk and Nielsen (1999), Mureithi et al.

(2000) and Plaschko (2000), and then applied in its 3-D version. Wake oscillators have been continuously distributed

along the spanwise extent of a slender structure and allowed to interact directly, in order to describe 3-D features of

vortex shedding from stationary structures (Noack et al., 1991; Balasubramanian and Skop, 1996) and VIV of slender

structures in uniform and shear flows (Balasubramanian et al., 2000; Facchinetti et al., 2001, 2002b; Kim and Perkins,

2002). Moreover, other low-order models have also been proposed in the literature for the 3-D wake dynamics behind

stationary or vibrating (forced) slender structures, such as nonlinear circle map oscillators (Olinger, 1998) and the

complex Ginzburg–Landau equation (Park and Redekopp, 1992; Albar"ede and Provansal, 1995; Monkewitz et al.,

1996).

Considering this large variety there is definitely a need to have a critical analysis in terms of the fundamental behavior

associated with the simplest forms of the model. In the present paper a class of low-order models for transverse VIV of 1

dof structures in stationary uniform flow is investigated. The basic van der Pol kernel is selected as a generic model

(Section 2). In order to keep the model as simple as possible, only linear coupling terms for the fluid–structure

interactions are considered. The model dynamics is investigated analytically and discussed with respect to the type of

coupling and the value of its parameters. This allows us to compare the basic dynamics of old coupling models of the

literature with the proposed new one, which considers a linear inertial action of the structure on the near wake. The

constant values of all model parameters are first estimated from experimental data considering a forced wake oscillator,

modelling the vortex shedding behind a structure whose movement is imposed (Section 3). The dynamical properties

associated with the different coupling models are expressed in closed form and then compared for both forced and fully

coupled wake and structure oscillators (Section 4). While the qualitative dynamics of the coupling models proposed by

other authors is recovered from these solutions, a new linear inertial coupling is shown to be the most effective in

describing, qualitatively and in some aspects quantitatively, the main features of 2-D VIV phenomenology. Discussion

and conclusions are finally developed (Sections 5 and 6).

2. VIV model

2.1. Structure oscillator

Let us consider a 1 dof elastically supported rigid circular cylinder of diameter D; constrained to oscillate transversely

to a stationary and uniform flow of free stream velocity U ; Fig. 1. The dimensional in-plane cross-flow displacement Y
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of the structure is described by the linear oscillator

m .Y þ r ’Y þ hY ¼ S ð1Þ

referred to as the structure oscillator in the sequel, where ð�Þ means derivative with respect to the dimensional time T :
The mass m takes into account both the mass of the structure ms and the fluid-added mass mf ; which models inviscid

inertial effects (Blevins, 1990), and reads

m ¼ ms þ mf ; mf ¼ CMrD2p=4; m ¼ ðms þ mf Þ=rD2; ð2Þ

where the fluid density is r; m is a dimensionless mass ratio and CM is the added mass coefficient. In Eq. (1) the linear

damping r models both viscous dissipations in the support rs and the fluid-added damping rf (Blevins, 1990), namely

r ¼ rs þ rf ; rf ¼ gOrD2; ð3Þ

where g is a stall parameter (see Balasubramanian and Skop, 1997; Skop and Luo, 2001) and O a reference

angular frequency. In still fluid O is the angular frequency of the structure motion and g is a function of the

oscillation amplitude, related to the mean sectional drag coefficient of the structure CD (Blevins, 1990). In our

case of cross-flow O is the vortex-shedding angular frequency, O ¼ Of ¼ 2pStU=D; where St is the Strouhal

number, and g is again related to CD (Blevins, 1990). For the sake of simplicity g is here assumed to be a constant.

This is equivalent to the model proposed by Balasubramanian and Skop (1997). In Eq. (1) the stiffness h only

relates to external effects. In order to develop a 2-D model for VIV, all mass, damping and stiffness parameters are

defined per unit length. Following Govardhan and Williamson (2000) hydrodynamic actions on the structure are here

decomposed in two parts: the basic fluid effects, mf and rf ; are directly included in the structure oscillator through m

and r; Eqs. (2) and (3), while the effects of vortices are modelled by the right-hand side forcing term S; to be discussed

later. Defining the structural angular frequency Os ¼ ðh=mÞ0:5 and the structure reduced damping x ¼ rs=ð2mOsÞ; Eq. (1)
becomes

.Y þ 2xOs þ
g
m
Of

� �
’Y þ O2

s Y ¼ S=m: ð4Þ

2.2. Wake oscillator

The fluctuating nature of the vortex street is modelled by a nonlinear oscillator satisfying the van der Pol equation

(Nayfeh, 1993)

.q þ eOf ðq2 � 1Þ ’q þ O2
f q ¼ F ð5Þ

referred to as the wake oscillator in the sequel. The dimensionless wake variable q (Fig. 1) may be associated to the

fluctuating lift coefficient on the structure, as for most of the models in the literature since the pioneering work of

Hartlen and Currie (1970). It may alternatively be considered as a hidden flow variable related to a weighted average of

the transverse component of the flow (Blevins, 1990), or assumed to be proportional to the transverse velocity of a

representative near wake fluid mass (Krenk and Nielsen, 1999). It has also been associated to the mean transverse

displacement of the local near wake fluid layer with respect to the mean streamwise axis (Noack et al., 1991). The right-

hand side forcing term F models the effects of the cylinder motion on the near wake. When F ¼ 0 and 0oe51; the
wake oscillator (5) is known to provide a stable quasi-harmonic oscillation of finite amplitude qo ¼ 2 at the angular

frequency Of (Nayfeh, 1993). Note here that considering a viscous term in the form eOf ð ’q2 � 1Þ ’q; then referring to a

Rayleigh equation as first proposed by Hartlen and Currie (1970), or a combination of both van der Pol and Rayleigh

forms eOf ðq2 þ ’q2 � 1Þ ’q as considered by Krenk and Nielsen (1999), does not affect the capability of modelling a self-

sustained stable quasi-harmonic oscillation of finite amplitude at the angular frequency Of ; namely a limit cycle in the

phase portrait.

2.3. Coupling of wake and structure oscillators

Introducing the dimensionless time t ¼ TOf and space coordinate y ¼ Y=D; Eqs. (4) and (5) lead to the coupled

fluid–structure dynamical system

.y þ 2xdþ
g
m

� �
’y þ d2y ¼ s; .q þ eðq2 � 1Þ ’q þ q ¼ f ; ð6Þ
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where d ¼ Os=Of is the reduced angular frequency of the structure, also related to the reduced flow velocity Ur by

d ¼
Os

2pStðU=DÞ
¼

1

StUr

; Ur ¼
2p
Os

U

D
ð7Þ

and the dimensionless coupling terms read

s ¼
S

DO2
f m

¼ S
D

4p2 St2 U2m
; f ¼

F

DO2
f

¼ F
D

4p2 St2 U2
: ð8Þ

Overdots now mean derivative with respect to the dimensionless time t: System (6) is the basic form of the

phenomenological models of VIV using van der Pol oscillators, as considered in this paper. Several ideas have been

proposed since Hartlen and Currie (1970), in order to model the fluid–structure coupling terms on the right-hand side.

Adding nonlinearities on the left-hand side was also explored, as an attempt to match the model dynamical behavior

with experimental results. For the most recent developments, see Balasubramanian and Skop (1997), Skop and Luo

(2001), Krenk and Nielsen (1999), Mureithi et al. (2000), Plaschko (2000).

In order to keep the model as simple as possible, the fluid–structure coupling terms on the right-hand side are here

limited to be linear functions of q and y and their time derivatives. No other nonlinearity is added in system (6), so that

the only one is that of the van der Pol wake oscillator.

Since Hartlen and Currie (1970), the action s of the fluid near wake on the structure is usually considered as a

fluctuating lift force. In dimensional variables, it reads

S ¼ 1
2
rU2DCL: ð9Þ

Note here that CL does not correspond to the total instantaneous sectional lift coefficient on the structure because of S

represents the forcing caused only by vorticity in the wake. Following Govardhan and Williamson (2000), in the sequel

we will refer to CL as the vortex lift coefficient and to Ctot
L as the total lift coefficient. The fluid variable q is then

interpreted as a reduced vortex lift coefficient q ¼ 2CL=CLo; where the reference lift coefficient CLo is that observed on a

fixed structure subjected to vortex shedding. The ratio K ¼ q=2 ¼ CL=CLo therefore describes the vortex lift

magnification with respect to a fixed structure experiencing vortex shedding. In dimensionless form action (9) reads

s ¼ Mq; M ¼
CLo

2

1

8p2St2m
: ð10Þ

Since m is a mass ratio, Eq. (2), M is essentially a mass number and scales the effect of the wake on the structure.

Conversely, several choices may be considered for the action f of the structure on the fluid wake oscillator.

Hartlen and Currie (1970) have first taken ‘‘rather arbitrarily’’ (as stated in their original paper) a velocity

coupling f ¼ A ’y; A being a parameter, as later assumed by Skop et al. (1973), Landl (1975), and more

recently by Mureithi et al. (2000), Plaschko (2000). Krenk and Nielsen (1999) have suggested another model

based on energy considerations: enforcing a direct flow of energy from the wake oscillator to the

structure, in formulation (6) they derived a displacement coupling f ¼ Ay: As a third choice, we propose here a

linear inertial effect of the structure on the fluid, namely an acceleration coupling f ¼ A .y: The latter coupling has been

previously considered in the literature, but only in combined models of VIV and galloping (see Parkinson, 1989;

Blevins, 1990).

3. Values of model parameters

In this section all parameters of the class of models presented above are estimated through experimental data

on free and forced vortex shedding behind cylinders. In order to compare the dynamical behavior of the three

coupling models on a common basis, model parameters are fixed to the same constant values for the three coupling

models.

In the dynamics of the structure oscillator, Eq. (6), the reduced damping x is a given parameter. The

reduced frequency d; Eq. (7), is also a given parameter that depends only on the Strouhal number St and the

reduced velocity Ur: It is common practice to assume St ¼ 0:2 in the sub-critical range, 300oReo1:5� 105

(Blevins, 1990; Pantazopoulos, 1994). Similarly, the mass ratio m is directly derived from the structure and fluid

masses, Eq. (2), assuming a constant-added mass coefficient CM derived from potential flow theory (Blevins, 1990): in

the case of a circular cross section it reads CM ¼ 1: The mass number M is then derived by Eq. (10). The reference lift

coefficient CLo being usually taken as CLo ¼ 0:3 in the large range of Re (Blevins, 1990; Pantazopoulos, 1994), using
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(10) we therefore have

M ¼ 0:05=m: ð11Þ

The only remaining parameter to be determined in the equation of the structure oscillator is the fluid-added damping

coefficient g; which is directly related to the mean sectional drag coefficient of the structure through (Blevins, 1990)

g ¼
CD

4pSt
: ð12Þ

For stationary cylinders in the sub-critical range, 300oReo1:5� 105; we assume CDo ¼ 1:2 (Pantazopoulos, 1994).

A drag magnification depending on the structure transverse motion may be taken into account in the form ð1þ 2yoÞCDo

(Blevins, 1990; Pantazopoulos, 1994), yielding a nonlinear term in the structure oscillator, but for the sake of simplicity

we assume here a constant amplified drag coefficient CD ¼ 2:0; so that from Eq. (12)

g ¼ 0:8: ð13Þ

For the wake oscillator dynamics, Eq. (6), we only need to set values of the van der Pol parameter e and the scaling of

the coupling force f ; namely A: This is done here by analyzing the effects of an imposed motion of the structure on the

near wake dynamics. Experiments since those of Bishop and Hassan (1964) show that the lift force acting on the

structure, namely q; is magnified by an imposed structure motion y; particularly at resonance. When the frequency of

the forcing is close to the natural vortex shedding frequency, the vortex street deviates from Strouhal’s law and

synchronizes onto the forcing frequency, defining a lock-in state. Moreover, the phase shows an overall jump of about p
when passing through lock-in, y and q being in-phase at low Ur and out-of-phase at high Ur; as confirmed by recent

investigations on vortex shedding timing (Lu and Dalton, 1996; Carberry et al., 2001).

Considering an harmonic motion of dimensionless amplitude yo and angular frequency o; namely y ¼ yo cosðotÞ; the
wake oscillator in (6) is forced by f which reads depending on the coupling model

f ¼ Ayo cosðotÞ; f ¼ �Aoyo sinðotÞ; f ¼ �Ao2yo cosðotÞ; ð14Þ

in the case of displacement, velocity and acceleration coupling, respectively. Defining a reduced velocity based on the

forcing frequency as

Ur ¼
2p
oOf

U

D
¼

1

o St
; ð15Þ

the response of the wake oscillator is now analyzed for the three models of coupling in the parameter space ðUr; yoÞ:
Enforcing the hypothesis of harmonicity and frequency synchronization, the response is sought in the form q ¼
qo cosðot þ cÞ; where qo and c are time-independent amplitude and phase, respectively. Substituting in the wake

oscillator, Eq. (6), and considering only the main harmonic contribution of the nonlinearities, elementary algebra yields

the amplitude of the transfer function of the wake oscillator

q6o � 8q4o þ 16 1þ
o2 � 1

eo

� �2
" #

q2o ¼ 16
jjf jj
eo

� �2

; ð16Þ

where jjf jj is the amplitude of the forcing. Defining a reference lock-in state by o ¼ 1 at Ur ¼ 1=St; Eq. (15), the vortex
lift magnification factor with respect to a stationary structure experiencing vortex shedding, K ¼ qo=2; is derived as the

unique real root of the bi-cubic polynomial of qo; Eq. (16), and reads

K ¼
X

36

� �1=3

þ
4

3X

� �1=3

with X ¼ 9
A

e
yo

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9

A

e
yo

� �2

�48

s
: ð17Þ

In the literature, forced oscillation results are usually presented in terms of the total lift coefficient Ctot
L ; which is related

to the vortex lift coefficient CL by the added mass effect

Ctot
L ¼ CL � CM2p3St2 .y; ð18Þ

so that for a harmonic evolution the total lift magnification factor K tot reads

K tot ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K cos cþ

CM

CLo

2p3

U2
r

yo

� �2

þ K sin cð Þ2

s
: ð19Þ

The particular choice of the coupling model does not affect the value of K because at the reference unitary angular

frequency o ¼ 1; so that in all cases we have jjf jj ¼ Ayo: Conversely, the relation between K tot and K does depend

on the phase c; and thus on the particular coupling model, as it will be discussed in the next section. In order to set
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the value of the parameters e and A once for all for the three coupling models, the approximation Ctot
L BCL is here

applied. This implies a shift for the values of the parameters, but does not modify the basic dynamical behavior of the

models: the comparison between them is thus made easier on a common basis. A further discussion on the value of e
and A is provided in Section 5.

Under this approximation, the value of the combined parameter A=e is first derived by matching the model response

(17) to experimental data on total lift magnification from the literature Vickery and Watkins (1962), Bishop and Hassan

(1964), King (1977), Griffin (1980), Pantazopoulos (1994). The value of A=e ¼ 40 is proposed from a least-squares

interpolation, Fig. 2. Note that at higher imposed structure motion amplitudes, yo > 0:5; experiments show that the lift

magnification K becomes a decreasing function of yo (Vickery and Watkins, 1962; Bishop and Hassan, 1964; King,

1977; Griffin, 1980; Pantazopoulos, 1994). This occurs when yo becomes too large with respect to the natural crosswise

spacing of the near wake vortex street, as discussed in Saffman (1992). This feature may not be explicitly described by a

van der Pol wake oscillator forced by the structure motion, as the amplitude of its stable limit cycle grows indefinitely as

a function of the forcing amplitude. Note also that K might depend on other parameters than the structure oscillation

amplitude and frequency, but this is not considered in our approach.

Let us now consider the influence of the structure oscillation amplitude on the extent of lock-in. At both low and high

Ur; the response amplitude qo; Eq. (16), is smaller than the amplitude of the natural limit cycle qo ¼ 2; so that Ko1: The
free wake oscillator response, o ¼ 1; qo ¼ 2; is then supposed to prevail on the forced response, defining a lock-out

state. Looking for the K ¼ 1 boundary from polynomial (16) in the (Ur; yo) plane, the lock-in domains are represented

for the three coupling models in Fig. 3. The velocity coupling model shows a lock-in domain almost symmetric with

respect to the reference reduced velocity Ur ¼ 1=St; whereas for displacement and acceleration the lock-in range extends

at higher and lower Ur; respectively. The difference in the dynamical behavior is obviously due to the factor o in jjf jj;
Eq. (14). Keeping the ratio A=e constant at the chosen value of A=e ¼ 40; the parameter e and therefore A may now be

chosen by matching the model response (16) to experimental data on lock-in extension in the literature, Stansby (1976),

Blevins (1990), higher values of e and A meaning a wider lock-in domain. The values e ¼ 0:3 and A ¼ 12 may therefore

be reasonably proposed for all the three coupling models (Fig. 3).

4. Dynamical behavior of the coupled model

In this section, the dynamical behavior of the coupled system is analyzed and its solutions are investigated in the

scope of differentiating the influence of the choice of the coupling model. For the displacement and velocity couplings,

some of the dynamics have been described in Krenk and Nielsen (1999) and Balasubramanian and Skop (1997),

respectively. The parameters M; g; e;A are fixed now at the values obtained in the previous section, namely

M ¼ 0:05=m; g ¼ 0:8; e ¼ 0:3;A ¼ 12:
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Fig. 2. Lift magnification K as a function of the imposed structure motion amplitude yo: The model response (17) is fitted to

experimental data: }; Vickery and Watkins (1962); �; Bishop and Hassan (1964); �, King (1977); &; Griffin (1980); J;
Pantazopoulos (1994). Model parameters: ?; A=e ¼ 30; —, A=e ¼ 40 (proposed value); - -, A=e ¼ 50:
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Fig. 3. Lock-in domain in the (Ur; yo) plane looking for K ¼ 1 boundary in the polynomial (16) for the different coupling models:

(a) displacement; (b) velocity; (c) acceleration. Experimental data: v ; x ; Stansby (1976), Blevins (1990). Model parameters: ?;
e ¼ 0:2; —, e ¼ 0:3 (proposed value); - -, e ¼ 0:4:
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4.1. Forced wake oscillator

Let us first come back to the case of an imposed motion of the structure on the near wake dynamics, i.e., to forced

vortex shedding as in the preceding section. The phase of the transfer function of the wake oscillator may be analytically

derived as for its amplitude counterpart (16) and reads

c ¼ y; c ¼ yþ
p
2

ð20Þ

with

tan y ¼
eo

o2 � 1

q2o
4
� 1

� �
ð21Þ

for the displacement, velocity and acceleration coupling models, respectively. In Fig. 4 it appears that the acceleration

model seems more effective in describing the phase between the imposed structure motion and the fluctuating lift as

observed in experiments (Bishop and Hassan, 1964; Bearman, 1984; Carberry et al., 2001): y and q are found to be in-

phase at low Ur and out-of-phase at high Ur:

4.2. Coupled system

Let us now consider the coupled fluid–structure system given by (6). To the leading order, a solution is sought in the form

yðtÞ ¼ yo cosðotÞ; qðtÞ ¼ qo cosðot � jÞ; ð22Þ

where the structure and fluid signals admit time-independent common angular frequency o; amplitudes qo; yo and relative

phase j: Substitution in the structure oscillator equation yields the amplitude and phase of the linear transfer function

between the structure displacement and the fluid variable

yo

qo

¼ M½ðd2 � o2Þ2 þ ð2xdþ g=mÞ2o2
�0:5; tan j ¼
�ð2xdþ g=mÞo

d2 � o2
: ð23Þ

Substituting now in the wake oscillator equation and considering only the main harmonic contribution of the

nonlinearities, elementary algebra finally yields two equations on the amplitude qo and the angular frequency o

qo ¼ 2 1þ
AM

e
C

ðd2 � o2Þ2 þ ð2xdþ g=mÞ2o2

" #0:5

; ð24Þ

o6 � ½1þ 2d2 � ð2xdþ g=mÞ2
o4 � ½�2d2 þ ð2xdþ g=mÞ2 � d4
o2 � d4 þ G ¼ 0; ð25Þ
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acceleration. Experimental data: �, Bishop and Hassan (1964); �; Carberry et al. (2001); J; Bearman (1984).
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where the coefficients C and G depend on the particular coupling model f : For the displacement coupling it reads

C ¼ �ð2xdþ g=mÞ; G ¼ AMðd2 � o2Þ ð26Þ

for the velocity coupling

C ¼ d2 � o2; G ¼ AMð2xdþ g=mÞo2 ð27Þ

and for the acceleration coupling

C ¼ ð2xdþ g=mÞo2; G ¼ AMðo2 � d2Þo2: ð28Þ

The angular frequency o directly arises as a solution of the bi-cubic equations (25), yielding one or three positive real roots.

The amplitudes yo; qo and the relative phase j then derive accordingly, via Eqs. (24) and (23), respectively. Distinct roots

are associated to hysteretic behavior. We may now explore these various solutions depending on the particular choice of the

coupling models, when the reduced velocity is varied. In order to illustrate this, we shall consider the case of a uniform

pivoted cylinder experiencing transverse VIV in uniform flow (Balasubramanian et al., 2000), for which x ¼ 3:1�
10�3;M ¼ 2� 10�4: In order to assess the stability of all solutions, the dynamical system (6) has been numerically treated

by standard centered finite difference in time and integrated by a second order accurate time explicit scheme.

Let us first consider the appearance of the lock-in phenomenon which we define here as a deviation of the wake and

structure common frequency o from Strouhal law, namely o ¼ 1: For all the three models of coupling, the system

angular frequency resulting from (25) is found to be locked onto the structure angular frequency o ¼ d ¼ 1=ðSt UrÞ
around Ur ¼ 1=St (Fig. 5). Actually, the basic resonance state o ¼ 1 ¼ d for which Ur ¼ 1=St is not an exact solution

for the velocity coupling, as it is for displacement and acceleration models. Out of lock-in, the coupled system is

synchronized onto the vortex shedding angular frequency o ¼ 1: For the acceleration coupling, hysteretic behavior

occurs at both lock-in boundaries, whereas for displacement and velocity models the whole lock-in domain is

characterized by hysteresis. Moreover, for displacement and acceleration couplings, lock-in is nearly symmetric with

respect to a reference resonance slightly higher than Ur ¼ 1=St: Conversely, the dynamical response of the velocity

model is asymmetric: the unique lock-in branch develops only at reduced velocities higher than Ur ¼ 1=St; while at

lower reduced velocities there exist only lock-out states.

Let us now consider the amplitude yo of the structure motion, derived from the frequency solutions o using Eqs. (24)

and (23) (Fig. 6). For all the three coupling models, the lock-in condition is found to yield a magnification of the

structure motion, whereas at lock-out the structure is almost at rest, yo51: The displacement coupling model displays a

very weak motion amplitude even at lock-in, at least of an order of magnitude less than those of velocity and

acceleration coupling models. Moreover, the displacement coupling model shows two independent lock-in branches, as
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may also be seen in Krenk and Nielsen (1999), which are not a simple prolongation of a common resonance kernel

around Ur ¼ 1=St; as it is for velocity and accelerations couplings.

Considering now the wake variable amplitude qo (Fig. 7), the displacement coupling model does not succeed in

describing the lift magnification during lock-in. In fact, as noted by Krenk and Nielsen (1999), this coupled system is

adiabatic: an increase of the structure oscillation amplitude is allowed only by a decrease in the wake oscillation

amplitude. Conversely, for velocity and acceleration couplings, a lift magnification is observed. Out of lock-in, system

(6) simply models vortex shedding from a stationary structure: the wake oscillator sets itself on the limit cycle of

amplitude qo ¼ 2; the structure being almost at rest, yo51; see Fig. 6.
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For all the three coupling models the phase j between the structure and wake oscillators, Eq. (23), shows an overall

phase jump of p passing through lock-in, Fig. 8. This is qualitatively consistent with results in the literature concerning

the change in vortex shedding timing that occurs when passing through the lock-in domain (Khalak and Williamson,

1999; Govardhan and Williamson, 2000; Carberry et al., 2001). Actually, the jump in the lift phase observed in

experiments is very abrupt, for both forced and freely vibrating structure. This later feature is not well represented by

the acceleration coupling model, which shows a phase jump at both lock-in boundaries.

Considering the results of Figs. 5–8 on the dynamics of the coupled system (6) when Ur is varied, we may now say

that the displacement coupling model fails in describing two major features of lock-in, namely large structure oscillation

and lift magnification, whereas the velocity and acceleration coupling models yield results that differ between them,

namely concerning the location of the lock-in domain, but are both qualitatively consistent with experimental data.

4.3. Oscillation amplitude at lock-in

The maximum structure displacement amplitude at lock-in is typically expressed in the literature as a function of a

single combined mass-damping parameter, namely the Skop–Griffin parameter SG ;

SG ¼ 8p2 St2 mx ¼
CLo

2

x
M

; ð29Þ

yielding the so-called Griffin plot (Khalak and Williamson, 1999). Let us now derive an explicit relation between the

maximum structure displacement amplitude and SG for the coupled system (6), to be compared to experimental data.

For the displacement coupling model, the reference resonance state defined by o ¼ d ¼ 1 at Ur ¼ 1=St satisfies

polynomial (25) but it is not exactly associated to the maximum structure displacement amplitude, see Fig. 6a.

Nevertheless, this provides a qualitative information on the system dynamical behavior at lock-in. Combining Eqs. (23),

(24) and (29) yields the structure displacement amplitude at o ¼ d ¼ 1

yM ¼
CLo=2

SG þ 4p2St2g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

A

e
CLo=4

SG þ 4p2 St2 g

s
: ð30Þ

The lift magnification factor with respect to the case of vortex shedding from a stationary structure, KM ¼ qM=2;
correspondingly reads

KM ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

A

e
CLo=4

SG þ 4p2 St2 g

s
: ð31Þ
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As observed previously in this section, the displacement model does not succeed in describing the lift magnification

during lock-in, see also Fig. 7a. The lift magnification factor KM is always smaller than one and is even not defined

when SG is smaller than the critical value

ðSGÞc ¼
A

e
CLo

4
� 4p2St2g ¼ 1:7: ð32Þ

Eqs. (30) and (31) provide real positive amplitudes yM and KM for SG > ðSGÞc only. For smaller values of SG ; the
reference resonance state o ¼ d ¼ 1 is not allowed and the basic resonance between structure and wake oscillators is

suppressed. In this case, system (6) simply models vortex shedding as from a stationary structure: the wake oscillator

sets itself on the limit cycle of amplitude qo ¼ 2 and frequency o ¼ 1; as in the absence of any forcing, and the structure

is almost at rest, yo51: In terms of Griffin plot (Fig. 9), the displacement coupling model clearly fails to qualitatively

match experimental data.

For the velocity coupling model, the maximum structural displacement amplitude is located almost at the upper Ur

boundary of the lock-in domain, which corresponds to the exact solution o ¼ dMa1; see Fig. 5b. Solving (25) under

this condition yields

SGd
3
M þ ð4p2 St2 gÞd2M � SGdM � 4p2 St2 g� A

CLo

4

� �
¼ 0: ð33Þ

The corresponding structure oscillation amplitude yM and the lift magnification factor KM arise from (23) and (24) as

KM ¼ 1; yM ¼
ACLo

2ðSGdM þ 4p2 St2 gÞdM

: ð34Þ

The Griffin plot derived from the velocity coupling model (Fig. 9) is found to underestimate the structure oscillation

amplitude, when using the values of parameters proposed in the preceding section. Yet, the qualitative influence of the

Skop–Griffin parameter is recovered. Particularly, the asymptotic self-limited response amplitude at low SG is assured

by the fluid damping g:
For the acceleration coupling model a reference resonance state is defined by o ¼ d ¼ 1 at Ur ¼ 1=St: It satisfies the

frequency equation (25) and yields almost the maximum structure displacement amplitude, as previously shown in Fig.

6c, even if the maximum occurs at a value of Ur slightly higher than 1=St: Combining Eqs. (23), (24) and (29), the

structure displacement amplitude at o ¼ d ¼ 1 reads

yM ¼
CLo=2

SG þ 4p2 St2 g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

A

e
CLo=4

SG þ 4p2 St2 g

s
: ð35Þ
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The lift magnification factor KM correspondingly reads

KM ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

A

e
CLo=4

SG þ 4p2St2g

s
: ð36Þ

In terms of Griffin plot (Fig. 9) this yields results similar to the velocity coupling model.

We may therefore state that, as in the preceding section, the displacement coupling model fails in describing even

qualitatively the trend of experimental data of the Griffin plots, whereas the velocity and acceleration coupling models

yield similar results, qualitatively consistent with experiments.

4.4. Extension of lock-in

Although the maximum structure displacement yM and the corresponding lift magnification factor KM at lock-in are

determined by the single combined mass-damping parameter SG ; as verified for the three coupling models in the

previous section, the range of lock-in is known to be a function of both MðmÞ and x separately (Govardhan and

Williamson, 2000). At low values of the mass-damping parameter, SG ¼ 0:01; the model dynamical behavior is now

discussed in terms of the recent investigations of Govardhan and Williamson (2000). Another analysis on particular

limits in the case of vanishing stiffness may be found in Leonard and Roshko (2001) and Shiels et al. (2001).

The lock-in domain is here considered at a constant SG value as a function of the mass ratio MðmÞ only, which is

rewritten for the sake of comparison with the literature as

m� ¼
4

p
m� CM ¼

0:2

pM
� CM : ð37Þ

Experiments show the existence of a critical mass ratio m�
c ¼ 0:54; under which large structure oscillation persists for

high reduced velocities, at least to the limits of experimental facilities, and the oscillation frequency increases indefinitely

with the flow velocity, meaning unbounded lock-in domain at higher Ur:
Let us define the range of lock-in, at given values of m� and SG; by an oscillation amplitude threshold,

namely yoðUrÞ > yM=2; where the maximum amplitude yM is given in the preceding section. For the displacement

coupling model, the lock-in state is simply defined by yo > 0:04; as yM is not defined for low SG values. The

extension of the lock-in domain as a function of Ur and m� is derived and plotted in Fig. 10 for the three coupling models,

respectively. For the displacement coupling model, Fig. 10a, as m� tends to zero a constant structure oscillation amplitude

persists at high Ur: Note that amplitudes are not really of significant magnitude and as SGoðSGÞc; Eq. (32), no real

positive oscillation amplitudes are allowed around Ur ¼ 1=St: The velocity coupling model, Fig. 10b shows a lock-in

domain that enlarges only to a finite reduced velocity range, as m� tends to zero. Conversely, for the acceleration coupling

model, Fig. 10c, as m� tends to zero the widening of the lock-in domain is clearly unbounded and significant structure

oscillations persist at high Ur: This latter result is quite consistent with experimental data of Govardhan and Williamson

(2000).

It appears that, in terms of extension of lock-in, the three models yield quite different results, particularly at low mass

ratio. In this range, only the acceleration coupling model is able to describe the phenomenon of persistent lock-in. This

is illustrated in Fig. 11a by plotting the structural oscillation amplitude yo as a function of the reduced velocity Ur; at a
value of m� ¼ 0:52 lower than the critical mass ratio m�

c ¼ 0:54 found by Govardhan and Williamson (2000). For the

displacement coupling model, a lock-out zone exists around Ur ¼ 1=St as we have here SGoðSGÞc: this is clearly

inconsistent with experiments. For the velocity coupling model, as observed by Hartlen and Currie (1970), the

computed response sharply decreases after the maximum is reached. Only the acceleration coupling model is found to

follow the trend of experiments. This is further confirmed by the evolution of frequency in Fig. 11b, where the results of

the acceleration coupling model are consistent with experimental data. For the sake of comparison, the dimensionless

frequency f � ¼ o=d is considered in this figure.

We may therefore state that only the acceleration coupling model is able to describe at least qualitatively the main

features of VIV at low Skop–Griffin parameter SG and mass ratio m�:

4.5. Effective added mass

A consideration valid for all the three coupling models may finally be drawn, concerning the effective added mass

exerted on the structure oscillator. In Fig. 8 the phase j between the structure displacement y and the lift q is observed

to jump of p passing through the lock-in domain. This qualitatively models the changes of vortex timing, lift force phase

and then the sign of the lift force in phase with the structure acceleration, referred to as an effective added mass in the

literature (Khalak and Williamson, 1999). All this has already been observed experimentally for forced (Carberry et al.,
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2001) and free vibrations (Govardhan and Williamson, 2000), and also simulated by 2-D, CFD (Lu and Dalton, 1996;

Blackburn and Henderson, 1999). As described in Section 3, at low Ur vortices are shed at the structure

peak displacement on the external side and the fluctuating lift force is in-phase with respect to the structure

displacement, leading to a positive effective added mass. Conversely, at high Ur vortices are shed at the structure peak

displacement on the internal side and q; y are then out-of-phase, leading to a negative effective added mass. In the

structure oscillator (6), the added mass deriving from the fluctuating lift force in phase with the structure acceleration

reads

CA ¼
CLo

4p3 St2 M
ðd2 � o2Þ ð38Þ

and depends on the particular coupling model through the value of o as a function of Ur; Eq. (25), see Fig. 5. The

so-called effective added mass coefficient CM þ CA is plotted in Fig. 12 as a function of Ur: the three coupling models

give similar results, in good agreement with experimental data from Vikestad et al. (2000).
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5. Discussion

Within a class of low-order models based on a van der Pol wake oscillator, three coupling models have been

systematically examined and compared in terms of their ability to describe, qualitatively and quantitatively, the main

phenomena observed in 2-D VIV. The first two models, referred to as displacement and velocity coupling, have been

partially analyzed before in the literature, while the third, referred to as acceleration coupling, is a new model. The

acceleration coupling model is shown to perform noticeably better than both the velocity and displacement coupling

models.

A physical insight for the effectiveness of the acceleration coupling in modelling VIV may be offered by the following

kinematic considerations: (a) a static transverse displacement y of the structure in a uniform flow does not modify the

fluctuating nature of the near wake, and therefore the coupling should not depend on y; (b) a transverse displacement of

the structure at a constant velocity ’y only changes the angle of attack of the flow. This affects the hydrodynamic

damping resulting from the drag, already taken into account in through the parameter g (Blevins, 1990), but leaves

unchanged the lift fluctuations, and therefore the coupling should not depend on ’y; (c) finally, only the structure

acceleration .y is expected to affect the wake dynamics. Some parallel may be drawn with the case of a mass–spring

oscillator subject to base oscillations, which is equivalent to an inertial excitation in the relative frame moving with the

support. We may consider here the near wake as a van der Pol oscillator attached to the moving structure.

Another interesting observation comes from energy considerations. The near wake variable q being directly related to

the lift coefficient CL; the energy transfer from the wake to the structure is expressed by
R

q ’y dt: In the freely oscillating

coupled system, a positive energy transfer is assured by the phase condition 05� j=p51; which is satisfied by all the

three coupling models for all reduced velocities. This unidirectional energy flow is a necessary condition for free

vibrations to occur. Moreover, for forced oscillations the corresponding phase condition 05c=p51 is satisfied only by

the acceleration coupling model and, for Urb1=St; by the velocity coupling model. Thus, only for these cases significant

free structure oscillations and near wake fluctuations may occur simultaneously, whereas for the displacement coupling

model, weak structure oscillations are allowed only by a decrease in the wake fluctuation amplitude.

The dynamics of the three coupling models have been analyzed (Section 4) upon the choice of common values of all

parameters, and particularly the van der Pol parameter e and the coupling force scaling A (Section 3). In this approach,

we have chosen to estimate the near wake parameters e and A from experimental data on forced vortex shedding only,

so that only the dynamics of the near wake is involved, as these parameters are related to the intrinsic wake dynamics.

Note that these parameters may also have been estimated by considering experimental data on free VIV, i.e., from

Griffin plots and lock-in diagrams. This would allow a better fit on the structure oscillation amplitude, but a degraded

fit on the dynamics of forced wakes, Fig. 9, as the corresponding value of A=e would be higher.

It should also be reminded that the values of e and A have been fixed comparing the vortex lift force to experimental

data on the total lift force, namely under the approximation Ctot
L BCL; in order to allow a comparison between the
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different coupling models. For the acceleration coupling model, the fit of experimental data in Figs. 2 and 3 may be

done using the total lift magnification K tot instead of the lift magnification K ; Eq. (19). At the basic resonance state,

from Eq. (19) we have K tot > K ; which would lead to a smaller ratio of A=e; say A=e ¼ 10: Note that while the lock-in

domain associated to K is clearly asymmetric with respect to Ur ¼ 1=St; Fig. 3c, that of K tot would be symmetric.

Nevertheless, this leaves almost unchanged e; yielding e ¼ 0:3:

6. Conclusions

Considering a wake oscillator coupled with a structure oscillator, we have analyzed the ability of generic forms of

coupling to qualitatively and quantitatively describe the main phenomena observed in 2-D VIV. This has been done by

first estimating the values of all parameters from comparison with experimental data on forced vortex shedding (Section

3), then by deriving analytical and numerical results on the fully coupled system (Section 4). These results have been

systematically compared with experimental data from the literature such as oscillation amplitude at lock-in, extension

of lock-in and effective added mass. The following conclusions may be drawn from this analysis:

(a) The displacement coupling fails in modeling the lift phase in forced vortex shedding, the lift magnification at lock-

in and all VIV features at low SG numbers.

(b) The velocity coupling fails in modelling the lift phase in forced vortex shedding and the range of lock-in at low SG

numbers.

(c) The acceleration coupling succeeds in modeling all features of VIV analyzed in this paper, qualitatively and, in

some aspects, quantitatively.

The recommended coupled model reads, in dimensional form

ms þ 1
4
pCMrD2

� 	
.Y þ ½rs þ g2pStðU=DÞrD2
 ’Y þ hY ¼ 1

4
rU2DCLoq;

.q þ e½2pStðU=DÞ
ðq2 � 1Þ ’q þ ½2p St ðU=DÞ
2q ¼ ðA=DÞ .Y;
ð39Þ

where the parameters CM ; St; g;CLo; e;A fix the system dynamics following closed form relations.

Because of its simplicity, the van der Pol wake oscillator model may be easily extended to other 2-D and 3-D aspects

of vortex shedding and vortex-induced vibrations. It has been shown to be able to model VIV of two cylinders in

tandem arrangement (Facchinetti et al., 2002a), cellular vortex shedding in shear flow (Balasubramanian and Skop,

1996; Facchinetti et al., 2002b), suppression of vortex shedding behind sinuous cylinders (Facchinetti et al., 2002b), and

vortex-induced waves along cables (Facchinetti et al., 2001, 2002c, d). Such a model becomes really useful when

computational limits arise for flow-field numerical simulations, particularly for 3-D domains with large aspect ratio and

at high Reynolds numbers. Moreover, phenomenological models based on wake oscillators allow accessible analytical

considerations and thus help the understanding of the physics of VIV.
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