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Abstract

The equilibrium state of a flexible fiber settling in a viscous fluid is examined using a combina-

tion of macroscopic experiments, numerical simulations and scaling arguments. We identify three

regimes having different signatures on this equilibrium configuration of the elastic filament: weak

and large deformation regimes wherein the drag is proportional to the settling velocity as expected

in Stokes flow and an intermediate elastic reconfiguration regime where the filament deforms to

adopt a shape with a smaller drag which is no longer linearly proportional to the velocity.
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I. INTRODUCTION

The motion of flexible slender bodies in viscous fluids is of fundamental importance in

various fields such as biopolymer (e.g. DNA or actin microfilaments) or polymer science [1–3]

and pulp and paper or textile engineering [4, 5]. When these flexible filaments are submitted

to a fluid flow or to external forces such as gravity, the interplay between the internal elastic

forces of the deformable body and the hydrodynamic forces can lead to complex deformation

and motion, which may have strong consequences on their macroscopic transport [6]. Flow-

induced fiber deformation is also a model system to investigate the influence of flexibility

on the drag experienced by an object; indeed, the drag is modified since the filament shape

becomes a function of its velocity, and can actually be reduced, both at high [7, 8] and

low Reynolds number [9, 10], although the latter regime has received less attention. The

present work focusses on one of the simplest flow situation by considering the deformation

of a flexible fiber in response to forces which act upon it when settling under gravity in a

quiescent viscous fluid.

A long uniform flexible fiber settling in a viscous fluid deforms dynamically in response

to the viscous stresses which act upon it. This deformation arises solely because of nonlocal

hydrodynamic interactions along the fiber; hydrodynamic interactions with adjacent parts

of the fiber are stronger near the middle than near the ends, causing the middle of the fiber

to settle faster than its ends. As a result of this deformation, the flexible fiber experiences

a torque which orients it toward a horizontal position, i.e. with its long axis perpendicular

to the direction of gravity regardless of its initial configuration, as evidenced in Fig. 1, and

eventually adopts a more or less pronounced ‘U’ shape. This has been shown analytically and

numerically using slender-body theory [11–13] but also confirmed numerically using discrete

modeling of the filament as a string of connected beads interacting by elastic and repulsive

forces with different degrees of sophistication [9, 14–16]. To the best of our knowledge, no

experiments were reported.

In this paper, we focus on the equilibrium state of a flexible fiber settling in a viscous

fluid using a combination of macroscopic experiments, numerical simulations, and scaling

arguments. In particular, we identify three different regimes depending on the relative

magnitude of gravitational and elastic forces. We explore the signature of these regimes on

the shape and velocity of the filament.
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(a) (b) (c)

FIG. 1. Experimental chronophotographies of an elastic filament settling in a viscous fluid for dif-

ferent initial conditions. Note that the fiber is not perfectly homogeneous, resulting in a systematic

slight asymmetry of the shape.ADD TIME STEP

II. PHYSICAL MECHANISMS AND SCALING ARGUMENTS

We consider a fiber, of length 2` and radius a, settling in a quiescent viscous fluid, driven

by a gravitational force Fg. The fiber experiences a viscous drag such that, at equilibrium,

Fdrag = Fg. An elastic fiber deforms in response to the viscous stresses (of magnitude
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(a) (b) (c) (d) (e) (f)

FIG. 2. Experimental chronophotographies in the stationary state, where the fiber shape and

velocity remain constant. All filaments have similar material properties (a, ρs, EI) such that the

settling velocity of an equivalent rigid filament U⊥ is the same. From a) to f), the length of the

fiber increases, i.e. B increases (B = 57, 111, 207, 222, 329, 439, 549). The time between successive

photos is 10a/U⊥; a difference in travelled distance thus indicates a difference in velocity.

Fdrag, thus at equilibrium Fg) and bends along its length in a “U-shape”, to adopt a typical

curvature 1/2`. Balancing the torque applied on the fiber, Fg 2`, and the typical resisting

elastic torque, EI/2`, where E is the Young modulus and I = πa4/4 is the second moment

of inertia, gives a dimensionless elasto-gravitational number,

B =
Fg(2`)

2

EI
. (1)

While the driving force (simply the fiber weight) is known and constant, the expression

of the drag force Fdrag is not known a priori and depends on the shape of the filament, thus

on its elastic deformation. The deformation of the fiber, and thus its velocity, are controlled

by B (for a given fiber aspect ratio κ−1 = `/a); the relative magnitude of gravitational and

elastic forces increases with B and the filament deformation increases, as exhibited in Fig. 2.

At small B, the fiber is only weakly deformed, see Fig. 2 (a). Its shape remains close to

that of a rigid fiber settling perpendicularly to the direction of gravity. We thus expect
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the drag to be well approximated by the drag on a rigid filament of same dimension and

characteristics. For a rigid filament, the viscous drag is proportional to the filament velocity

and length and depends on the filament orientation. A slender fiber, of length 2` and radius

a, thus of aspect ratio κ−1 = `/a, settling at a velocity U⊥ in a fluid of viscosity µ with its

long axis perpendicular to the direction of gravity experiences a drag,

Fdrag⊥ = C⊥µU⊥2`, (2)

with a coefficient C⊥ which solely depends on κ−1 [17] and reads

C⊥ =
4π

ln(4κ−1)− 1/2
at order 1/(lnκ−1)2, (3)

' 4π

lnκ−1
at leading order 1/(lnκ−1). (4)

Balancing this drag and the gravitational force, Fg = ∆ρg πa22` (where ∆ρ = ρs− ρf is the

density difference between the solid filament and the fluid), yields the settling velocity,

U⊥ =
∆ρga2 [ln(4κ−1)− 1/2]

4µ
(5)

' ∆ρga2 lnκ−1

4µ
at leading order. (6)

The deformation increases slightly with increasing B, while the velocity remains close to

U⊥, see Fig. 2 (a)-(b). The typical deflection δ due to viscous forces is given by a balance

between the torque applied on the fiber by the viscous drag, Fdrag 2`, and the bending torque

for small deformations δ, EIδ/(2`)2, such that

δ

`
∝ B. (7)

In this regime, the parameter B can be expressed as

B =
Fdrag(2`)

2

EI
= C⊥

µU⊥(2`)3

EI
= C⊥V , (8)

where we introduce the elasto-viscous number V = µU(2`)3

EI
(here with U = U⊥).

As B is further increased, the deflection and the velocity of the fiber increases, see

Fig. 2 (b)-(e), to reach a large deformation regime where the filament adopts a saturated

U shape, i.e. nearly folds onto itself, as shown in Fig. 2 (f). In that regime, the deflection is

constant,
δ

`
' 1. (9)
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The two branches of the U are aligned with the flow; we thus expect the drag to be close

to that of two rigid fibers of length ` settling parallel to gravity, i.e. the total drag should

approximately be

Fdrag = 2C‖µU`, (10)

with a coefficient C‖ which solely depends on κ−1 as [17]

C‖ =
2π

ln(4κ−1)− 3/2
at order 1/(lnκ−1)2, (11)

' 2π

lnκ−1
at leading order 1/(lnκ−1). (12)

The drag is smaller than that of a fiber settling perpendicular to gravity, such that the

ratio C⊥/C‖ ' 1.5 − 1.7 for 70 < κ−1 < 300 and the settling velocity is higher, since

U‖/U⊥ = C⊥/C‖. In this regime, B can be expressed as

B = C‖V . (13)

For intermediate values of B, both the deflection and the velocity increase. Indeed, as the

filament adopts a more pronounced U-shape, the viscous drag decreases since larger portions

of the filament are aligned with the flow. This increase of velocity with flexibility, as the

filament deforms to adopt a shape with a smaller drag, is reminiscent of the reconfiguration

observed at large Reynolds number [8], but here in a low Reynolds number regime rarely

explored. In this intermediate reconfiguration regime, the drag force is not known and can

not be approximated by either the drag on a perpendicular fiber, or on vertical fibers; it

indeed depends on the shape of the fiber, i.e. on an apparent length `app that is not the simple

length of the fiber as for the cases discussed above but is given by the fiber deformation.

This latter deformation is controlled by the typical bending torque, denoted as the stiffness

S = EI/2` and the viscous force, i.e. `app = `app(µU,S). Simple dimensional analysis gives

a scaling for the apparent length `app ∼ (S/(µU))1/2, and thus implies a new scaling for the

drag,

Fdrag ∼ µU`app ∼ (µU)1/2S1/2. (14)

We note that, contrary to the weak or strong deformation regimes where the drag is propor-

tional to U , the drag here is proportional to U1/2 with a weaker exponent characteristic of a

drag reduction regime since the apparent length depends on U . In this regime, the settling
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Fluid 1 Fluid 2 Fluid 3

Mixture Silicon Oil 50% water + 50% Ucon Oil R© 60% water + 40% Ucon Oil R©

ρf (kg.m−3) 970 1074 1061

µf (Pa.s) 0.97 0.96 0.30

TABLE I. Main characteristics of the fluids used in the experiments.

velocity, given by Fdrag = Fg, is not a mere constant but varies as

U

U⊥
∼ U

Fdrag/(µ2`)
∼ µU2`

(µU)1/2S1/2
, (15)

∼
[
µU(2`)3

EI

]1/2
≡ V1/2.

The deflection, given by Fdrag2` ∼ EIδ/(2`)2, is thus

δ

`
∼ V1/2. (16)

In this regime, we also obtain

B ∼ V1/2. (17)

We thus have three regimes with different signatures on the equilibrium configuration of

the elastic filament. The dimensionless deflection δ/` scales as V in the weak deformation

regime, as V1/2 in the reconfiguration regime, and is constant ≈ 1 in the large deformation

(or saturation) regime. Similarly, the velocity is given by U/U⊥ ' 1 for small deformation,

U/U⊥ ∝ V1/2 at intermediate deformation, and U/U⊥ ≈ 1.6 for large deformations. In

the following, we present experimental and numerical results to assess these three different

scalings.

III. EXPERIMENTAL TECHNIQUES

Experiments are carried out using the experimental setup depicted in Fig. 3. We use two

different containers: a small tank (L1 = 20 cm, L2 = 20 cm, L3 = 50 cm) and a larger

tank (L1 = 40 cm, L2 = 60 cm, L3 = 80 cm) to avoid wall effects. The transparent tanks

are filled with two different types of liquids (water-based Ucon oil and silicon oil) of various

densities and viscosities as indicated in Table I.
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0

FIG. 3. Experimental setup. The filament is initially maintained at the center of the tank and

aligned with the plane defined by the dotted line. The shaded area corresponds to the plane of

view of the camera.

Fibers are fabricated from a silicon-based elastomer (Zermak Elite double 8) molded

in capillary tubes. The density is tuned by adding iron powder in different proportions,

which also slightly modifies the Young modulus. The Young modulus is determined for each

solution by standard traction measurements. The properties of the elastomeric filaments

are highly sensitive to storage conditions, and may vary depending on the fluid they are

stored in. In particular, the elastomer swells in silicon oil; new filaments are casted every

day to ensure constant properties (we have verified that, when immersed in silicon oil, the

filaments properties remained unchanged for several days, but we imposed a shorter time

of use, typically 24 hours, to ensure reproducibility). In water-based fluids, no swelling is

observed and filaments can be extracted and kept in air. Under these conditions, aging

and solvent evaporation may cause changes in properties from fabrication (in particular,

hardening can be observed). The properties of the filaments are then measured at their

time of use in the experiments. The properties of the filaments are presented in Table II.

Two independent sets of data have been collected: filaments of batch P settling in fluid

1 inside the large tank, and filaments of batch M settling in fluids 2 and 3 inside the

8



Batch P Batch M

Fe %w/W ρs(kg.m−3) E (kPa) a (µm) B(-) Fe %w/W ρs (kg.m−3) E (kPa) a (µm) B(-)

10 1166 218.3
128.9 16-1090

10 1166 198
138 373-430

229.6 60-1030 232 65

18 1254 243.0
128.9 22-1410

20 1295 220
140 221-555

229.6 33-445 232 187-203

20 1295 251.5
128.9 24-1560

30 1450 1100
500 40

229.6 57-550 285 88

40 1617 226
137 120-286

232 56-110

TABLE II. Main characteristics of the filaments used in the experiments. The length of the filament

varies between 2 cm < 2` < 8 cm.
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FIG. 4. Image analysis (typical profiles obtained experimentally): the instantaneous shape y(x)

of the filament is extracted from the images (a), the deformation d(s) is measured along the arc

length (b) and the maximum deflection dmax, as well as the velocity u are followed with time (c).

The final stationary shape (inset in (c)) is symmetric, and has a maximum deflection δ and an

end-to-end distance λ.

smaller tank. The elasto-gravitationnal number, B, spans a large range to cover all regimes,

60 <∼ B <∼ 1200. The Reynolds number, Re = U`ρf/µ, is always smaller than 0.01 for

experiments done in fluids 1 and 2 but can reach 0.2 for the less viscous fluid 3.

A pair of reversed action mechanical tweezers placed at the center of the container enables
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to hold and to release the fiber while minimizing the surface of contact with the filament and

any undesired torsion or tension. A specially designed pool having a rectangular opening at

its bottom has been alternatively used in the smaller tank experiments. The filaments are

thus released in a plane perpendicular to the wall of the container (indicated by the dotted

area in Fig. 3). The shape and position of the filament are recorded (typically at 0.1-0.5 fps)

with a high-resolution digital camera having a wide-angle lens in order to image the entire

settling dynamics (see the shaded area in Fig. 3). We verify that the settling is planar with

a second camera placed perpendicularly to the observation plane.

The shape y(x) of the fiber is extracted thanks to standard image processing functions,

see a typical example in Fig. 4 (a). On this shape, we measure the deflection d(s) along the

length of the fiber (s denotes the arc length) and we extract the maximum deflection dmax

on each shape, see Fig. 4 (b). In addition, we record the position of the center of mass of the

filament at each time step in order to evaluate the instantaneous vertical velocity u(t). We

then follow the evolution of dmax and u as the filaments settles, see Fig. 4 (c). The deflection

increases to reach a constant value δ while simultaneously the settling velocity saturates at

a constant value U , indicating that the filament has reached its equilibrium configuration.

This procedure is automatized using an in-house custom code, and for each experiment we

record the stationary values of the velocity, U , the maximum deflection, δ, and the end-to-

end distance, λ. In the following, we report averaged measurements of these quantities over

several runs (typically 4-5 for batch M and 1-2 for batch P) and the uncertainties on these

measurements are taken as the standard deviations over these runs.

It is important to stress that there are some unavoidable difficulties in performing these

experiments at low Reynolds numbers that result in scatter in the data. First, a small

convection current due to a weak thermal gradient is always present across the tanks. This

convection current which is typically of the order of 1µm/s affects the trajectory of the

flexible filament and its velocity, in particular in water-based fluids. Second, the bottom

and side walls of the tanks may also influence the dynamics of the filament by slowing them

down (in particular in the smaller tank, i.e. for experiment with batch M). These effects

result in an increased uncertainty on the settling velocity, while not affecting the shape of the

filament, as the latter is determined by the velocity difference between the settling filament

and the fluid.

The two experimental set-ups are thus complementary. The use of water-based fluids is
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more amenable for a larger number of experiments to be performed as individual filaments

can be used repeatedly, whereas the use of silicon oil in a large tank results in a better

resolution on the settling velocity. We will discuss all three sets of data obtained with these

two set-ups throughout the paper.

IV. THEORETICAL MODELING

A. Slender-body model

This model, first proposed by Xu and Nadim [11] and later revisited in [12, 18], is based on

slender-body theory [17] and considers the weak deflection of a long filament. It is therefore

limited to the regime of small values of B.

The hydrodynamic force acting on a long rigid filament settling in a viscous fluid per unit

length of the centerline can be expressed as,

fH(x) = 2πµU⊥

{
− 2

lnκ
− 1

(lnκ)2

[
1 + 2 ln 2 + ln

(
1−

(x
`

)2)]
+O

(
1

(lnκ)3

)}
. (18)

While this viscous force is constant along the length at first order, at second order the

force increases near the ends of the filament due to non-local effects, leading to the U-shape

observed in the experiments.

The velocity is equal to U⊥ and is given by the balance of the viscous and gravitational

forces,

∆ρg πa22` =

∫ `

−`
fH(x) dx =

8πµU⊥`

ln 4κ−1 − 1/2
, (19)

' 8πµU⊥`

lnκ−1
at leading order, (20)

as defined earlier in Sec. II.

For small deformation, the force applied on the filament remains equal to Eq. (18) and

the deformation is given by Euler-Bernoulli beam theory [11]. The stationary shape of the

filament y(x) is then given by

EI
d4y

dx4
= f(x), (21)

where f is the net force per unit length acting on the fiber, i.e.

f(x) = fH(x)− 1

2`

∫ `

−`
fH(x) dx. (22)
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The deformation is given by the second order 1/(lnκ−1)2 terms. Replacing f(x) in Eq. (21),

and rescaling with X = x/` and Y = y/y0, leads to

d4Y

dX4
= 2 ln 2− 2− ln

(
1−X2

)
, (23)

with a typical deflection,

y0 =
2πµU⊥`

4

EI(lnκ)2
, (24)

' B`
16 lnκ−1

at leading order. (25)

We can solve (23) with boundary conditions Y (0) = 0, Y ′(0) = 0 at the center of the beam

and Y ′′(1) = Y ′′(−1) = 0, Y ′′′(1) = Y ′′′(−1) = 0 at the free ends, to obtain the profile

Y (X) =
1

24

[
X2 +

13

6
X4 + 2 ln 2(6X2 +X4)− (X − 1)4 ln(1−X)− (X + 1)4 ln(1 +X)

]
.

(26)

Note that this solution is given in [11] with a typo (3/16 instead of 13/6) and in [12] with a

different typo, while a correct form is given in [18]. The maximum deflection δ is given by

Y (|X|= 1). For the stationary shape given by Eq. (26), we find Y (|X|= 1) = 0.0074 which

gives for the maximal amplitude of deformation

δ

`
= 0.0074

y0
`
≈ 0.0046

lnκ−1
B. (27)

In this small deformation regime, we recover the linear scaling δ/` ∝ B with U = U⊥. Note

that there is also a dependence on aspect ratio, κ−1.

B. Bead-spring model

To tackle all regimes of B (i.e. in particular to encompass the large-B range which is not

described by the slender-body model presented in the previous Sec. IV A), we also choose to

use a discrete modeling wherein the filament is treated as a chain comprising N = κ−1(= `/a)

spherical beads of radius a connected by springs, as illustrated in Fig. 5. This model has

been used extensively in the literature with different degrees of approximation and refinement

[9, 14–16].

The beads interact through multi-body hydrodynamic interactions and elastic forces.

The force balance on each sphere (neglecting particle inertia) can be framed into a mobility
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FIG. 5. Sketch of the bead-spring model wherein the filament is modeled as a chain of spherical

beads connected by spring.

problem. The velocity ṙα of the sphere α located at position rα and interacting with other

spheres β located at position rβ is given by

ṙαi =
∑
β

Mαβ
ij

(
F β
j −

∂U
∂rβj

)
, (28)

where U is the elastic potential and Fβ is the external force due to gravity on each particle

which is precisely balanced by the Stokes drag and is thus = 6πµaUS where µ is the fluid

viscosity and US the Stokes settling velocity. Following the approach developed in [14], the

elastic potential U stems from a discrete version of the worm-like chain model and is written

as

U =
∑
γ

[
aS

(
rγ,γ+1

2a
− 1

)2

+
B

2a

(
1− cos θγ,γ+1

)]
, (29)

where, for an isotropic elastic cylinder, the stretching and bending moduli are S = Eπa2

and B = Eπa4/4, respectively, with E the Young modulus and where rγ,γ+1 = rγ+1 − rγ

is the distance between neighboring spheres γ and γ + 1 and θγ,γ+1 the angle between

neighboring bonds rγ,γ−1 and rγ,γ+1. The mobility tensor Mαβ
ij is the distance-dependent

tensor which accounts for hydrodynamic interactions between spheres. We choose to use the

Rotne-Prager-Yamakawa tensor,

Mαβ
ij =

1

6πµa

3

4

 δij
rα,β

a

+

rα,βi rα,βj
a2

( r
α,β

a
)
3

+
3

2

 δij

3 ( r
α,β

a
)
3 −

rα,βi rα,βj
a2

( r
α,β

a
)
5

 , (30)

which takes into account the hydrodynamic interaction between particles up to orderO( a
rα,β

)3

where rα,β = rβ − rα is the distance between the spheres α and β with rα,β = |rα,β|. The
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self mobility is chosen as the Stokes mobility,

Mαα
ij =

δij
6πµa

. (31)

Other approximations for the mobility tensor could be considered. The leading order

Stokeslet approximation used in particular in [9] corresponds to keeping only the first term

(inside the square brackets) on the right-hand side of equation (30). A fuller Rotne-Prager-

Yamakawa tensor which provides a regularization for rα,β < 2a and is positive definite for

all the particle configurations can also be used [see e.g. 19]. No significant differences are

seen between this later fuller tensor and the Rotne-Prager-Yamakawa tensor described by

Eqs. (30) and (31). Discrepancies arise with the Stokeslet approximation for high values of

B.

Eq. (28) governing the time evolution of the sphere positions can be made dimensionless

by using a as the length-scale and 6πµaUS as the force-scale, which reads

ˆ̇rαi =
∑
β

M̂αβ
ij

(
F̂ β
j − E

∂Û
∂r̂βj

)
. (32)

Eq. (32) exhibits the dimensionless parameter E = Eπa2

6πµaUS
. Care should be taken when re-

lating this dimensionless number E to the elasto-gravitational number B, defined by Eq. (1),

of a real filament. An important point, which may have been left unnoticed in previ-

ous numerical work using the bead-spring model since no comparison with experiments

was intended, is that the volume of the modeled object should be that of a filament, as

illustrated by the (blue) sheath around the chain of beads in Fig. 5. This means that

B = 32∆ρg`3/Ea2 ≡ 24κ−3/E .

Integration of the positions of each sphere is performed using an explicit Runge-Kutta

method of order (4)5 (the ‘dopri5’ integrator of the ‘ode’ solver in Python). The Python

code is given as supplementary material. Similar methods as those used in the experiments

(described at the end of Sec. III) are applied to determine the stationary values of the filament

velocity, U , the maximum deflection, δ, and the end-to-end distance, λ.
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FIG. 6. Final shapes of the filaments, y(x/`)` , (left column) and same but rescaled by the maximum

amplitude, y(x/`)
δ , (right column) for experiments (top), graphs (a) and (b), bead-spring model-

ing noted BSM (middle), graphs (c) and (d), and selected comparison between experiments and

numerical predictions (bottom), graphs (e) and (f).
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V. RESULTS AND COMPARISONS

A. Final shape

Experiments are performed for various B (30 <∼ B <∼ 1000) and κ−1 (70 <∼ κ−1 <∼ 300). A

selection of the obtained final shapes is presented in Fig. 6 (a). We rescale these profiles with

the maximum amplitude δ in Fig. 6 (b). As B increases, the amplitude of the deformation

increases. Whereas the filament adopts a “V” shape at weak deformation, it achieves a

“U” shape at stronger deformation as its ends become aligned vertically. All the profiles for

B ≤ 200 collapse onto a single curve in agreement with the prediction (the black line) given

by Eq. (26), i.e. the profile derived by the slender-body model [11] presented in Sec. IV A. For

larger values, the shape significantly deviates from this profile. A similar trend is recovered in

the numerical bead-spring modeling, see Fig. 6 (c)-(d). These numerical simulations enable

the exploration of a larger range of B, and in particular to extend the analysis to the high-B
regime (up to B = 104) where experiments are hardly amenable at a macroscopic scale.

As B is increased, the predicted shape evolves from a “V” to a “U” shape as seen in the

experimental observations. For the higher B explored, the filament can even reach a highly

deformed “horseshoe” shape. For intermediate values of B, the shape evolves between the

limit (the black line) given by the slender body theory, i.e. the “V” shape profile given by

Eq. (26), and the highly deformed “horseshoe” shape. Experiments and simulations compare

favorably as depicted in Fig. 6 (e)-(f). The largest discrepancy is observed in the intermediate

regime, e.g. for B = 265, as will be discussed in the following paragraphs.

Some understanding of the obtained shapes can be inferred from examining the combined

effect of hydrodynamic and elastic forces on the chain of spheres. As pointed in Sec. I, the

central spheres settle faster than the end spheres since they experience stronger hydrody-

namics disturbances due to the motion of the other spheres. The bending of the filament (of

uniform thickness) is thus caused by non-local hydrodynamic interactions. The equilibrium

shape is obtained by the balance of the hydrodynamic and elastic forces on the chain. Strong

elastic forces, i.e. small B, maintain a weakly curved shape, while smaller elastic forces, i.e.

larger B, are less likely to resist the hydrodynamic forces leading to an increased deforma-

tion. The highly deformed “horseshoe” shape is reminiscent of the subsequent evolution of

the chain of spheres without elastic restoring forces: the central spheres settle faster leaving
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FIG. 7. Scaled maximum amplitude, δ/`, versus B. Comparison of the slender-body and bead-

spring models presented in Sec. IV with numerical results from previous models [9, 12, 16] at similar

κ−1 = 30 and 100.

behind the end spheres which then come closer and start to settle faster and to catch up the

central spheres, leading finally to a toroidal circulation of the cluster of particles, see e.g.

chapter 6 in [20].

The shape of the stationary filament is characterized by its maximum amplitude δ as

well as its end-to-end distance λ. Before embarking in a detailed comparison between the

experiments and the predictions of the models presented in Sec. IV, these models are com-

pared to previous numerical results collected in the literature for the maximum deflection δ

in Fig. 7, for two values of κ−1(= 30 and 100). In particular, we focus the comparison on

two previous bead-spring models, that of [9] using a Stokeslet approximation and that of

[16] using a Gear model based on a no-slip condition between the beads and ensuring a non

extensibility condition for the filament. An important point to mention is that, in calculat-

ing B in these bead-spring models, one must use the volume of the object as a filament and

not as a chain of beads (there is a factor 3/2 difference) as explained at the end of Sec. IV B.

At small B, the predictions coming from all the models recover the linear evolution given by
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the slender-body theory given by Eq. (27) [11]. The numerical models also recover the same

saturation at large B, which, as expected, cannot be captured by the slender-body theory

valid only for small deflections. Note that this is not exactly a saturation, as the shape of

the filament continues to evolve slightly and the deflection slowly increases while remaining

close to δ ' 0.85 `. Note also that a metastable “W” shape can be reached for very large

values of B. This “W” configuration observed also in [9, 16] is unstable and, after some

transient time, the filament rotates and eventually adopts a final “horseshoe” shape, see the

movie given as supplementary material (for 51 beads and E = 120). This transient shape is

only observed for large values of B > 5000 which can not be attained experimentally; indeed,

the “W” configuration is never observed in the experiments . The main difference observed

between the models is visible in the intermediate (reconfiguration) regime, where the bead-

spring models deviate from the linear variation predicted by the slender body model before

the saturation regime. The present bead-spring model (introduced in Sec. IV B) agrees well

with the Gear model of [16], even though they consider different extensibility conditions.

The bead-spring model of [9] using a Stokeslet approximation shows larger deviations to the

linear variation than these two later models which consider a higher degree of approximation

for the hydrodynamic interactions. To be comprehensive, we have also reported on the graph

of Fig. 7 the results of [12] for a filament of non-uniform thickness (i.e. having an ellipsoid

form). A linear variation with B is observed at small B but with a larger relative amplitude

than for the uniform filaments considered in the bead-spring models. Interestingly, satura-

tion is observed at the same δ ' 0.85 `. Note that this model does not present the deviation

from the linear variation observed in the intermediate regime with the bead-spring models.

To conclude, these comparisons appraise the validity of the models used in the present work

(described in Sec. IV). The experimental results are presented against these two models in

the following.

Comparison of the experimental, analytical (slender-body model), and numerical (bead-

spring model) results for the scaled maximum amplitude, δ/`, and the end-to-end distance,

λ/`, are plotted as functions of B and V in Fig. 8. There is a reasonable agreement between

the experimental data and numerical simulations. The experimental data present some

scatters which reflect the experimental difficulties mentioned in Sec. III. It is interesting to

note that the experiments using the less viscous fluid 3, i.e. for which the Reynolds number

is larger, do not present a notable different trend. This finding may be expected as the finite
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FIG. 8. Scaled maximum amplitude, δ/`, (top) and end-to-end distance, λ/`, (bottom) as functions

of B (left), graphs (a) and (c), and V (right), graphs (b) and (d), for the experimental, analytical

(slender-body model), and numerical (bead-spring model noted BSM) results.

Reynolds corrections to the slender body theory only affect the order 1/(lnκ−1)2 term in the

drag and not the leading term [21]. Therefore, for the long filaments considered here, these

finite Reynolds number corrections may not produce a significant effect. At small B, the

maximum deflection δ increases linearly with B, in agreement with the small deformation

limit given by Eq. (27) of the slender-body theory [11], see Fig. 8 (a). The amplitude depends

on the aspect ratio, which varies between 80 and 300 as indicated by the color bar; larger

aspect ratios exhibit smaller deflections, in agreement with Eq. (27). For B >∼ 400, the

amplitude tends to saturate at δ ' 0.85`, independently of aspect ratio. It continues to
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FIG. 9. Scaled velocity, U/U⊥, versus B (left), graph (a), and V (right), graph (b), for the

experimental and numerical (bead-spring model noted BSM) data.

increase with increasing B but at a very slow rate. This slow saturation of the amplitude

cannot be captured by the slender body model but is predicted by the bead spring model in

good agreement with the experimental observations. The end-to-end distance λ decreases

with increasing B as the filament adopts a “U” shape, as shown in Fig. 8 (c). We observe the

signature of the two limiting regimes; at low B, the deformation is weak and λ ' 2` while,

at large B, the deformation saturates and λ decreases slowly towards λ ' 0.3− 0.4` with a

small dependence on κ−1. In addition, we identify here a third regime where λ continuously

evolves as the shape of the filament is modified. This reconfiguration regime is observed for

200 < B < 500 and corresponds to the intermediate profiles shown in Fig. 6. The three

regimes (weak deformation, reconfiguration, and saturation) are more conspicuous when

plotting the data against the elasto-viscous number V in Fig. 8 (b),(d). The increase in data

scatter is due to the uncertainty on the velocity used to estimate V . For V <∼ 30, δ/` ∝ V
and λ/` ' 2 (weak deformation). For 30 <∼ V <∼ 400, δ/` increases while λ/` decreases;

these evolutions are consistent with the scaling δ/` ∝ V1/2 and λ/` ∝ V−1/2 derived for the

reconfiguration regime in Sec. II. At larger V , the deformation saturates toward a constant

shape with δ/` ' 0.85 and λ decreases towards λ/` ' 0.3− 0.4.
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B. Velocity

We measure the settling velocity of the filaments that we compare to the settling velocity

of a rigid filament of same properties and dimensions, U⊥ given by Eq. (5). These scaled

velocities, U/U⊥, are plotted as functions of B and V together with the numerical results

coming from the bead-spring model in Fig. 9. As discussed previously, the experimental

measurements are affected by convection within the tank and by interactions with the walls,

resulting in a large scatter in the data; we thus only report data from batch P, in silicon-

based fluid and a large tank, where these effects are lower. The complete sets of data are

however given in the supplementary materials. We identify clearly the signature of the three

regimes: (i) for B < 100, U ' U⊥, (ii) for 100 < B < 1000, the velocity then increases, and

(iii) finally tends to saturate at a value close to the value U = 1.6U⊥ corresponding to the

settling velocity of a rigid vertical filament. Note that this value of 1.6U⊥ overestimates the

filament speed as the central part of the fiber remain horizontal and contributes to added

drag on the filament. This marked evolution evidences the reconfiguration regime, where the

shape of the filament evolves to reduce the drag. The drag force is no longer proportional

to the velocity (which will give a constant velocity independent of B), but rather can be

expressed as ∝ Uα with an exponent α < 1. The simple dimensional analysis proposed in

Sec. II provides the scaling U/U⊥ ∼ V1/2, in fair agreement with the data shown in Fig. 9 (b).

Finally, the above results regarding the velocity of the filament can be summarized by

plotting B against V , i.e. the dimensionless drag as a function of a dimensionless velocity

in Fig. 10. This graph evidences again the three regimes: (i) the weak (linear) deformation

regime for which B ≈ C⊥V , (ii) the reconfiguration regime with B ∼ Vα with an exponent

α < 1, and (iii) the saturation for which B ≈ C‖V . In contrast with high Reynolds number

reconfiguration, in this low Reynolds number regime the lowest drag (achieved when the

filament is perfectly aligned with the flow) has a finite value and differs only by a factor

1.6 (for the aspect ratios tested here) from the maximum drag experienced by a filament

perpendicular to the flow. The reconfiguration regime is characterized by B ∼ Vα, and

simple dimensional arguments give α = 1/2; however, this scaling is left as soon as the

filament shape approaches that of two vertical fibers, i.e. the reconfiguration regime is only

a transient here, and only occurs in a limited range (100 ≤ B ≤ 1000). We do not expect to

recover perfectly the simple proposed scalings; however, they provide a qualitative insight
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spring model noted BSM) and experimental data of various aspect ratios and (b) for κ−1 = 151

with the corresponding profiles.

in the mechanisms at play.

VI. CONCLUSION

In this work, we have presented a joint experimental, analytical, and numerical inves-

tigation of the equilibrium deformation of a flexible fiber settling in a quiescent viscous

fluid. The major output of this study is the identification of three regimes having different

signatures on the equilibrium configuration of the elastic filament.

In the weak deformation regime, i.e. for small elasto-gravitational number, B, or weak

elasto-viscous number, V , the filament adopts a “V” shape and its maximum deflection is

linear in B as well as in V with a linear dependence on the inverse of the logarithm of the

aspect ratio. In the large deformation (or saturation) regime, the filament takes a “U” shape

(and can even reach a “horseshoe” shape) and both its maximum deflection and end-to-end-

distance tend to saturate. These two regimes have been described in previous numerical

work [9, 12, 16] and are now further confirmed by the present observations.
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The important new finding of the present study is the existence of an intermediate regime

of elastic reconfiguration. In the weak deformation regime, the drag of the filament becomes

close to that of a rigid fiber settling perpendicular to the direction of gravity. In the large

deformation regime, the drag is close to that of a rigid fiber settling in the parallel direction to

gravity. In both cases, the drag is proportional to the velocity as is expected in Stokes flows.

Conversely, in the intermediate reconfiguration regime, the filament deforms to adopt a shape

with a smaller drag which is no longer proportional to the velocity but rather to the square

root of the velocity, i.e. B ∼ V1/2. This crossover regime between the linear and saturation

regimes, while anticipated in [9], has been clearly identified through its different scaling

behavior in the present work combining experiments and a simple bead-spring modeling of

the filament.
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