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Despite recent progress, laminar-turbulent coexistence in transitional planar wall-bounded shear
flows  is  still  not  well  understood.  Contrasting  with  the  processes  by  which  chaotic  flow  inside
turbulent patches is sustained at the local (minimal flow unit) scale,  the mechanisms controlling
the obliqueness of laminar-turbulent interfaces typically observed all along the coexistence range
are  still  mysterious.  An  extension  of  Waleffe’s  approach  [Waleffe,  1997]  is  used  to  show  that,
already at the local scale, drift flows breaking the problem’s spanwise symmetry are generated just
by slightly detuning the modes involved in the self-sustainment process. This opens perspectives
for theorizing the formation of laminar-turbulent patterns.
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Generically  the  transition  to  turbulence  in  flows  along  solid
walls,  so-called  wall-bounded  flows,  can  be  triggered  at  Reyn-
olds  numbers  well  below  the  value  at  which  the  laminar  base
flow  profiles  are  linearly  unstable  [1, 2].  The  existence  of  non-
trivial  solutions  to  the  Navier-Stokes  equations  (NSEs)  compet-
ing with the stable base flow, is believed to be well understood in
terms  of  self-regenerating  coherent  structures  [3].  The  corres-
ponding  process,  called  SSP  [3, 4],  involves streamwise  vortices
inducing streamwise  streaks by  lift-up,  the  so-produced  mean
flow distortion being subsequently unstable in a way that closes
the  cycle  by  feeding  the  vortices  present  at  start.  At  least  at  the
moderate Reynolds numbers where the transition to turbulence
takes place, this plausible general sequence has a high degree of
applicability.

R g

Such nontrivial flow regimes arise from saddle-node bifurca-
tions in state space but their coexistence with laminar base flow
has  also  to  be  appreciated in  physical  space.  An important  fea-
ture of transitional planar or nearly planar wall-bounded flows is
indeed the separation of the full space into turbulent and lamin-
ar regions separated by sharp fluctuating interfaces, in the form
of turbulent spots near the global stability threshold  and more
complicated  laminar-turbulent patterns at  larger  values  of  the
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Reynolds number. Formally, this can be understood as resulting
from a modulation in space of  the strength of  the SSP mechan-
ism,  active  in  turbulent  domains  and  switched  off  in  the  sur-
rounding laminar flow. This modulation of the mechanism's in-
tensity  is  in  general  detectable  up  to  a  limit  above  which  a  re-
gime  of  uniform  turbulence  called featureless [5]  is  recovered.
The  transition  from  modulated  to  featureless  turbulence  may
then be marked by a well-defined threshold usually denoted ,
and  laminar-turbulent  coexistence  be  observed  in  an  interval

 of finite width. For example, in plane Couette flow (PCF,
the shear flow between counter-translating parallel plates at dis-
tance  and relative speed , for which ), the trans-
itional range extends from  to  and a periodic
modulation of the turbulence intensity is observed in the form of
bands alternatively laminar and turbulent,  oblique with respect
to the streamwise direction [2, 6].

Both around turbulent patches or between turbulent bands,
near-laminar flow is the superposition of the base flow and large
scale corrections believed to play an important role in the over-
all  structure of  turbulence [7].  These corrections have compon-
ents  that  do  not  average  to  zero  in  the  wall-normal  direction,
which  makes  them  capable  of  transporting  coherent  structures
as  a  whole,  subsequently  acting  on  oblique  spot  growth  [8, 9].
For  that  reason,  they  will  be  called drift  flows in  the  following.
Oblique growth and the oblique laminar-turbulent organization
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clearly  break  the  original  spanwise  symmetry  of  the  problem
statistically restored beyond .  The aim of this note is  to bring
hints on the origin of these flows and their relation to symmetry
breaking  at  a  local  level,  i.e.  the  minimal  flow  unit  (MFU),  the
scale introduced by Jiménez and Moin [10] below which coher-
ent structures with sizable lifetimes are no longer observed. The
MFU  is  defined  in  the  context  of  numerical  simulations  with
wall-parallel periodic boundary conditions at distances  and 
typically  of  the  same  order  of  magnitude  as  the  wall-normal
characteristic size ,  viz.  the gap  for PCF. It  is the privileged
scale  at  which  transitional  coherent  structures  are  studied  [11]
and  arguments  from  dynamical  systems  and  chaos  theory  are
developed [12].

Great progress in the understanding of the SSP has been ob-
tained  thanks  to  Waleffe  [4]  who  built  an  analytical,  relatively
simple,  model  accounting  for  it  within  the  MFU  framework,
called WA97 in the following. It was obtained as a first-harmonic
truncation  of  a  Galerkin  expansion  of  the  NSEs  with  stress-free
boundary  conditions  in  a  plane  Couette-like  geometry,  some-
times  called Waleffe  flow [13].  A  straightforward  analysis  using
trigonometric basis functions yielded WA97 as a system of 8 dif-
ferential  equations  governing  8  mode  amplitudes  that  was  next
reduced  to  a  4-dimensional  system,  the  one  studied  in  greatest
detail. The four amplitudes retained were explicitly associated to
a mean flow distortion, the streaks and vortices amplitudes and
the  amplitude  of  a  combined  mode  effective  in  closing  the  sys-
tem  appropriately.  By  construction  WA97,  whether  reduced  or
not, preserves the spanwise symmetry of the flow configuration.
My purpose will be to generalize Waleffe's approach to allow for
drift flows observed in numerical simulations [8] or experiments
[9].  In some sense,  this  can be viewed as an analytical  counter-
part  to  the  numerical  approach  developed  by  Kreilos  et  al.  [14]
who studied drifting patterns at MFU size in related transitional
flows.

R

The  Galerkin  approach  to  be  used  is  a  weighted-residual
method  analyzing  the  problem  at  hand  by  expanding  its  fields
and governing equations onto functional bases. When pushed at
high orders, it can serve as a numerical simulation method with
good  convergence  properties  [15].  It  is  however  usually  not  de-
veloped  as  such  in  computational  fluid  dynamics  and  alternate
methods  are  used,  e.g.  [16],  more  straightforward  but  rather
working  as  black-boxes  not  amenable  to  analytical  develop-
ments.  Here, the aim is therefore not to apprehend the abstract
structure  of  state  space  within  the  MFU  framework  in  detail
through  the  accurate  determination  of  exact  solutions  to  the
NSEs like in Ref. [11]. On the contrary, and much in the spirit of
Waleffe's seminal work [4], I will attempt to uncover the concrete
local source of mean-flow corrections involved in the symmetry
breaking  typically  observed  at  transitional  values  of .  To  this
aim,  I  will  consider  the  Galerkin  method  rather  as  a  systematic
reductive modeling strategy of the primitive equations, achieved
by truncating the expansion at the lowest possible but still signi-
ficant order, so low that it can still be handled analytically while
clear physical significance can be given to the mode amplitudes
retained.

In accordance with the wide generality of the SSP for the base
flows of  interest,  systems with similar  structures can be derived
with  differences  only  appearing  in  the  value  of  the  coefficients.
Since  trigonometric  relations  between  the  basis  functions  used
to deal with the stress-free boundary conditions for Waleffe flow

[4]  artificially  kill  some  nonlinear  interactions,  in  order  to  work
with a  slightly  less  restrictive case,  I  will  consider  standard PCF
driven  by  no-slip  conditions  at  the  plates.  On  another  hand,  I
will  follow Waleffe  in  his  restriction to  a  first-harmonic approx-
imation of the MFU dynamics to describe the wall-parallel peri-
odic dependence of the state variables. A cursory presentation of
the  model,  the  full  expression  of  which  is  developed  in  the  Ap-
pendix,  is  first  given. Its main properties are then discussed be-
fore some perspectives on laminar-turbulent patterning in trans-
itional  wall-bounded  flow  are  presented  from  a  more  general
standpoint.

The modeling approach starts from the velocity-vorticity for-
mulation  of  the  NSEs  written  for  the  perturbation  to  the  base
flow as detailed in Ref. [18], p.155. Though the wall-normal and
wall-parallel  directions  can  be  treated  simultaneously  in  the
Galerkin  approach  as  originally  done  by  Waleffe  [4],  here  I  will
first deal with the wall-normal direction making use of results in
Refs.  [19, 20],  and  next  with  the  wall-parallel  direction  and  the
periodic conditions corresponding to the MFU definition. Simu-
lations  of  PCF  have  shown  that  a  representation  of  the  flow  at
lowest  significant  order  contains  about  90% of  the  perturbation
energy  for  transitional  Reynolds  numbers[21,  App.B],  accord-
ingly  I  will  just  consider  the  corresponding  minimal  functional
set, like for WA97:

fu;wg = fU0;W0gf 0(y) + fU1;W1gf 1(y); and v = V1g1(y); (1) 

fu;wg v

y = §1 ub = y
f 0 / (1¡ y2)

f 1 / y (1¡ y2) g1 / (1¡ y2)2

f 0 = 1=
p

2 f 1 = sin y=2 g1 = cos y=2 ub / f 1

U0 W0

[¡1; 1]

 and  being  the  wall-parallel  and  wall-normal
perturbation  velocity  components,  respectively.  Polynomial
bases introduced in Refs. [19, 20] are particularly well adapted to
the  no-slip  boundary  conditions  at ,  base  flow ,
and  low-order  truncation  [19],  namely ,

,  and .  In  the  stress-free  case,  one

has , , ,  and .

Amplitudes  and  are  attached  to  parabolic  flow
components that do not average to zero over  and clearly
contribute to the drift flows mentioned in the introduction.

fU0;1;W0;1g V1

Z 0;1 = @zU0;1 ¡ @xW0;1

(x ; z) t

V1 Z 0;1

`x = 2 =® `z = 2 =° ® °

At  this  stage,  amplitudes  and ,  and  the  wall-
normal  vorticity  components ,  are  still
functions  of  space  and  time .  The  partial  differential
equations  expressing  the  NSEs,  or  rather  their  Orr-Sommerfeld
part  for  and  Squire  part  for  are  given  in  the  Appendix.
The  next  step  is  the  MFU  reduction,  treated  by  a  Fourier  series
expansion expressing the wall-parallel periodic boundary condi-
tions at  and , where  and  are the funda-
mental wavevectors of the wall-parallel MFU space dependence.
Here the expansion is truncated beyond the first harmonic as in
Ref. [4] since we are not primarily interested in an accurate rep-
resentation  of  the  solution.  The  generalization  of  Walleffe's  an-
satz reads:

ª0 =¡¹U0z + ¹W0x + X 1 sin®x + X 2 sin°z + X u
1 cos®x

+X w
1 cos°z + X 3 cos®x cos°z + X u

2 sin®x cos°z
+X w

2 cos®x sin°z + X o
1 sin®x sin°z; (2) 

ª1 =¡¹U1z + ¹W1x + X 4 cos®x + X u
3 sin®x + X u

4 sin°z
+X o

2 cos°z + X 5 sin®x cos°z + X u
5 cos®x cos°z

+X w
3 sin®x sin°z + X o

3 cos®x sin°z; (3) 
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©1 = X 6 cos°z + X w
4 sin®x + X w

5 sin°z + X o
4 cos®x

+X 7 cos®x sin°z + X u
6 sin®x sin°z + X w

6 cos®x cos°z
+X o

5 sin®x cos°z: (4) 

ª0;1 ©1

The  velocity  components  are  retrieved  from  the  expression  of
the streamfunctions  and velocity potential  through:

U0 = ¡@zª0;W0 = @xª0;

U1 = ¡@zª1 ¡ ¯@x©1;W1 = @xª1 ¡ ¯@z©1; (5) 

so that

Z 0;1 = ¡¢ª0;1 and V1 = ¡¢©1;

¢ = @xx + @zz

¯ ¯ =
p

3
¯ = =2 ¡U0;1z +W0;1x

U1 fX 1;X 2; : : : ;X 7g

M = 1+U1 U= ¡°X 2

V= ¡°X 6

A = ®X 1 B = ¡X 3 C = ¡®X 4 D = X 5 E = ¡X 7

U0 W0

where  is the Laplacian in the plane of the flow and
 plays  the  role  of  a  wall-normal  wavevector  (no-slip: ,

stress-free: ).  The  terms  in  Eqs.  (2,  3)
correspond  to  the  non-oscillatory  mean-flow  components,
governed  by  appropriately  averaged  equations  as  discussed  in
Ref.  [18].  In  WA97,  only  and  the  set  are
present  under  different  names  (Eqs.  (8,  9)  in  Ref.  [4]),
specifically:  (mean  flow),  (streak
amplitude),  (streamwise  vortex  amplitude),

, , , ,  and .  The
justification  for  superscripts  “u”,  “w”,  and  “o”,  decorating  the
other  sets  of  amplitudes  amplitudes  will  appear  later.
Amplitudes  and  are  the  key  ingredients  in  the  extension
of WA97.

A  set  of  28  equations  for  the  28  unknowns  is  obtained  by
mere separation of harmonics. It displays all the properties, lift-
up,  viscous  dissipation,  quadratic  advection  nonlinearities,  lin-
ear  stability  of  the  base  flow,  expected  from  NSEs  for  wall-
bounded  shear  flows  within  the  MFU  framework.  It  formally
reads:

d
dt
Z+ LZ = N(Z;Z); (6) 

Zwhere the variable set  can further be decomposed into:

Z = fY;Yu;Yw;Yog ´
f¹U1;Xg; f¹U0;Xug; f ¹W0;Xwg; f ¹W1;X ogg; (7) 

X = fX 1;X 2; : : : ;X 7g Xu = fX u
1 ;X u

2 ; : : : ;X u
6 g

Xw = fX w
1 ;X w

2 ; : : : ;X w
6 g Xo = fX o

1 ;X o
2 ; : : : ;X o

5g
Y =

©
U1;X

ª
©

U1;X
ª

ZW A97 ´ fY; 0; 0; 0g
Yu Yw Yo

where , ,
, and .

 is precisely the set corresponding to WA97. The full
expression  of  System  Eq. (6) is  given  in  the  Appendix.  An
immediate  inspection  of  this  system  shows  that  the  subspace
spanned  by  is  closed,  which  means  that,

 is  a  consistent  assumption  solving  the
problem  with  equations  for , ,  and  identically
cancelling.  Here  are  four  sample  equations:  The  first  one  Eq.
(A.27) governs the streamwise mean flow correction:

d
dt
¹U1+ º¹p1

¹U1 =
1
4
°¹s 1[2°

2(X 6X 2 ¡ X w
1 X w

4 )

+·2(X w
6 X w

2 + X o
5 X o

1 ¡ X u
2 X u

6 ¡ X 3X 7)]; (8) 

·2 = ®2 + °2

M = 1+U1

where .  Once  reduced  reduced  to  WA97,  it  closely
corresponds  to  Waleffe's  equation  (10-1)  for  [4],  in

the present notations:

d
dt
¹U1+ º¹p1

¹U1 =
1
4
°¹s 1[2°

2X 6X 2 ¡ ·2X 3X 7]: (9) 

W0My second sample is Eq. (A.26) governing , a spanwise mean
flow correction absent from WA97:

d
dt
¹W0+ º¹p0

¹W0 =
1
4
®¹s 0[2®

2(X 4X w
4 ¡ X o

4 X u
3 )

+·2(X o
5 X u

5 + X o
3 X u

6 ¡ X 5X w
6 ¡ X 7X w

3 )]: (10) 

U0

W1

X 2

The  two  last  equations  in  this  group,  Eq.  (A.25)  for  and  Eq.
(A.28) for , follow the same simple pattern. The third sample
is Eq. (A.2), the equation governing the streak amplitude :

d
dt

X 2+º·
°
0X 2 = ¹bX 6+ s 0°

·
X w

1
¹W0+

1
2
®(X 1X 3 ¡ X u

1 X u
2 )

¸
+s 1

½
°(X o

2
¹W1+ ¯X 6

¹U1)

+
1
2
®°
£
(X u

3 X u
5 ¡ X 4X 5) + ¯2(X o

4 X o
5 ¡ X w

5 X w
6 )
¤

¡ 1
2
®2¯(X 4X 7+ X o

4 X o
3 + X u

3 X u
6 + X w

5 X w
3 )

¾
; (11) 

·°
0 = °2 + ¹p0

X 6 / V
¹bX 6

with .  The  last  sample  is  Eq.  (A.17)  for  the
streamwise  vortex amplitude  (  in  WA97)  that  generates
the streaks by lift-up through the term  in Eq. (11):

¹°
2 d

dt
X 6+ º·°

04X 6 = ®2r(X u
1 X u

5 + X 4X 3+ X 1X 5+ X u
3 X u

2 )

+d° (X
w
5 X w

2 ¡ X o
4 X o

1 )

+e°(X
u
1 X u

6 ¡ X 1X 7)¡ c°X w
6
¹W0; (12) 

¹2
° = °2 + ¯2 ·04° = °4 + 2¯2°2 + p1

p1 ¹p0;1

with  and .  The  values  of
constants  appearing  in  the  equations, , ,  etc.  derive  from
the  wall-normal  part  of  the  modeling  of  the  considered  flow
configuration, thus here depending on whether no-slip or stress-
free boundary conditions are used. Once reduced to WA97, Eqs.
(11) and (12) read:

d
dt

X 2+ º·°
0X 2 =¹bX 6+

1
2
°®s 0X 1X 3+ s 1(¯°X 6

¹U1

¡ 1
2
®°X 4X 5 ¡

1
2
®2¯X 4X 7)

(13) 

and

¹°
2 d

dt
X 6+ º·°

04X 6 = ®2r(X 4X 3+ X 1X 5)¡ e°X 1X 7
(14) 

X 4

strictly  corresponding  to  Waleffe's  equations  (10-2)  and  (10-3).
When comparing his system to the corresponding one extracted
from Eqs. (A.1)-(A.28), a single difference appears in Eq. (A.9) for

 that reads

d
dt

X 4+ º·®
2X 4 =¡®bX 1+ s 1(®°X 2X 5 ¡ 2®X 1

¹U1 ¡ ¯°2X 2X 7)

¡ 1
2

s 4°
2X 6X 3: (15) 
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In  WA97,  is  variable  and  the  corresponding  equation  is
Waleffe's equation (10-6) with the same terms as in Eq. (15) but
lacks  the  last  one, ,  i.e. ,  that  disappears  owing  to  an
accidental  cancellation  from  trigonometric  relations  as  noticed
earlier.  The  detailed  consequences  of  this  observation  have
however not been scrutinized in detail.

Before  considering  the  virtues  and  limitations  of  model  Eq.
(6), let me stress that, within the 1st-harmonic MFU assumption,
its expression and detailed structure are quite general so that its
applicability is not restricted to PCF or Waleffe flow. On the con-
trary, it should rather be understood as implementing the SSP on
an extended footing that includes drift flows.

Z

º

¹bX 6

z X 7 X 3

The 28 variables in  is the most general ensemble compat-
ible  with  the  first-harmonic  approximation.  As  detailed  in  the
Appendix,  equations  in  Eq. (6) are  individually  rather  complic-
ated but with clear physical meanings. Terms with  in factor of
specific  expressions  of  the  Laplacian  obviously  account  for  vis-
cous  dissipation  and  lift-up,  already  identified  as  on  the
right hand side of Eq. (11), acts similarly on other mode pairs ex-
plicitly periodic in ,  e.g.  as a source term for .  Conserva-
tion of the kinetic energy by quadratic terms is expected from the
way the model is derived. It  is indeed fulfilled but the check re-
mains technically cumbersome.

ZW A97 = fY; 0; 0; 0g

x 7! x + x 0 z 7! z + z0

`x=4
cos®x 7! sin®x sin®x 7! ¡ cos®x

X 1 X u
1

X 3 X u
2

ZW A97;u = fY;Yu; 0; 0g
z

ZW A97;w = fY; 0;Yw; 0g

ZW A97;o = fY; 0; 0;Yog

More  importantly,  the  choice  is  associ-
ated with specific  spatial  resonances between the different  flow
components. This resonance condition can be retrieved in each
and every solution to the full system, whatever its time depend-
ence,  by  performing  an  arbitrary  time-independent  translation

, . Similar observations have been made in
the  literature,  see  Ref.  [14]  and  references  quoted.  Here  I  will
take a down-to-earth but instructive viewpoint and first note that
this  implies  relations  between  the  equations  of  the  full  system.
For  example,  a  translation  by  amounts  to  performing  the
changes  and , which straight-
forwardly  explains  the  similarity  of  equations  for  and ,
Eqs.  (A.1)  and  (A.3),  and ,  Eqs.  (A.5)  and  (A.6),  etc.  with
identical  coefficients  and  signs  modifications  linked  to  the
minus sign in the second change. An immediate consequence is
that  the  dynamics  restricted  to  is  also
closed. The case of -translation can be treated in the same way,
showing  that  the  subspace  is  similarly
invariant. Inspecting the full expression of Eqs. (A.1-A.28) finally
shows that the subspace  is also invariant
but with no obvious relation to translational properties.

ZW A97

8£ 8 ©
U1;X

ª
7£ 7©

U0;Xug©
W0;Xwg

On general grounds, the knowledge of the structure of phase
space  takes  advantage  of  the  stability  properties  of  solutions
known. As a consequence of the identification of invariant sub-
spaces  above  and  the  quadratic  nature  of  the  nonlinearities,  it
follows  from  standard  linear  analysis  that  the  stability  operator
around a  solution in  has  a  block diagonal  structure.  The
first  block accounts for the stability of the solution as if the
system was restricted to , as dealt with in Ref. [4]. It cor-
responds to amplitude perturbations. The two next  blocks
are  for  infinitesimal  perturbations  living  in  and

. These subspaces being associated with translations as
discussed  above,  the  related  linear  modes  correspond  to phase
perturbations.

For  example,  let  us  consider  the  effect  of  an  infinitesimal

z 7! z + ±z Z = fY; 0; 0; 0g
Z+ ±Z

±Z = f0; 0; ²zY0w; 0g ²z = °±z Y0w

W0 = 0 X 1
0w = X 2 X 2

0w = ¡X 3 X 3
0w = ¡X 5 X 4

0w = 0
X 5

0w = ¡X 6 X 6
0w = X 7

X w
4

X w
4 ! 0

X w
4 = 0

W0 ! 0
Y0w

Y
²zY0w

U1

translation  on an arbritrary solution .
At  leading  order  the  solution  reads  with

 with .  The  components  of  are
, , , , ,

,  and .  It  is  indeed  readily  checked  that
the right  hand side of  Eq.  (A.18)  governing  cancels  identic-
ally  for  such  a  perturbation,  which  implies .  Next  for

, it is verified that the right hand side of Eq. (10) also van-
ishes,  so  that .  In  addition,  the  equations  governing  all
the  non-zero  components  of  are  identical  to  the  equations
for  the  corresponding  component  of  apart  from  appropriate
sign  changes  and,  finally,  insertion  of  perturbation  in  Eq.
(8) for  yields

d
dt
¹U1+ º¹p1

¹U1 =
1
4
°¹s 1[2°

2X 6X 2 ¡ ·2X 3X 7(1+ ²2
z)]; (16) 

U1

z
W0

Y0u

U0

Y0w Y0u ¡
U0;W0

¢

which  shows  that  the  dynamics  of  is  preserved  at  leading
order.  Accordingly,  perturbations  corresponding  to  an
infinitesimal -translation are neutral  and do not  generate drift
flow , as expected. The same argument can be developed for
infinitesimal  streamwise  translations,  with  identification  of  the
corresponding perturbation mode  and proof of the absence
of  related .  However,  perturbations  along  the  so-obtained
eigenvectors  and ,  while  neutral,  are  extremely  special
and  it  is  immediately  seen  that  arbitrary  perturbations  are
expected  to  generate  some  non  trivial  drift  flow .  It
suffices  to  look  at  Eq. (10),  for  convenience  rewritten  by
dropping all irrelevant higher order terms as:

d
dt
¹W0+ º¹p0

¹W0 =
1
4
®¹s 0[2®

2X 4X w
4 ¡ ·2(X 5X w

6 + X 7X w
3 )];

(17) 

©
W0;Xw

ª
Xw 6´ ²zX0w X w

4 = ²1 6= 0 X w
6 =°±zX 7+²2 X w

5 =¡°±zX 6+²3

W0

²1;2;3 6= 0
X w

4 X w
6 X w

3

X 4 X 5 X 7

W0

X 4X w
4 X w

4 ´ 0
X 4

¡®X 4 sin®x

(¡®2=¯)X w
4

W0 X w
6 X w

3

W0

W0 ²

Xw ² X
²2

Yw =
©

W0;Xw
ª

to  see  how  perturbations  within  subspace  but  with
, i.e. , , ,

introduce  sources  terms  for ,  generating  a  response  of  the
same  order  of  magnitude  that  comes  and  feeds  back  into  the
whole  system.  Going  back  to  the  definitions  of  the  different
variables,  assuming  means  that  arbitrary  infinitesimal
perturbations , ,  and  can  resonate  with  already
present flow components, , , and  to produce some drift
flow  as  soon  as  they  do  not  strictly  derive  from  an
infinitesimal  spanwise  translation.  Let  us  just  consider  the
contribution of  to the r.h.s. of Eq. (17) since  for an
infinitesimal  translation:  Returning to  Eq. (3),  we see  that  is
the amplitude of a spanwise velocity component  of
the nontrivial state of interest, hence of order one, that interacts
resonantly  by  lift-up  with  an  infinitesimal  wall-normal  velocity
component  as  obtained  from  Eq. (4) to  produce  a
distortion .  The  others  contributions  and  departing
from  strict  infinitesimal  translation  would  be  analyzed  in  the
same way with production of some  as a net result. In turn the
so-produced  of  order  feeds  back  into  the  dynamics  of  the
set  also of order , while corrections to dynamics of set  are
of order , as a consequence of the block structure of the linear
stability  operator.  Unfortunately,  without  specifying  the
nontrivial state of interest—which is clearly beyond the scope of
this  study—it  is  not  possible  to  go  further  and  decide  whether
system  is  stable  or  unstable,  i.e.  whether  it  has
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exponentially growing solutions in addition to the neutral phase
mode that exists in all circumstances. The same reasoning would
also  separately  apply  to  streamwise  perturbations.  What
precedes leads us to suspect that the study of solutions obtained
in a MFU context, either in a model like Eqs. (A.1-A.28) or in the
full  NSEs,  lacks  an  important  ingredient  if  symmetries  are
imposed that forbid the existence of drift flows.

R g

R t

Periodic boundary conditions inherent in the MFU assump-
tion  maintain  the  fiction  of  a  solution  that  would  be  uniformly
developed in space. In actual systems with wall-parallel dimen-
sions much larger than the wall-normal scale, itself typical of the
size of the MFU, the intensity of the SSP can be modulated, espe-
cially  in  the  turbulent  spot  regime  around  where  the  turbu-
lence  level  varies  from  0  to  1  in  space,  and  in  oblique  banded
laminar-turbulent  patterns  up  to .  In  the  stability  analysis
sketched above, spanwise and streamwise translations could be
treated  separately.  This  is  no  longer  the  case  more  generally
since the corresponding drift  flows are coupled by the continu-
ity equation, an important condition at the heart of the Duguet-
Schlatter  argument  about  the  obliqueness  of  laminar-turbulent
interfaces [8], here expressed as [19]:

@xU0+ @zW0 = 0;

U =
©

U0;W0;U1;W1
ª

X = fX;Xu;Xw;Xog

and automatically fulfilled thanks to Eq. (5). Modulations to the
SSP intensity have to be understood as perturbations brought to
a  WA97  solution  that,  as  is  readily  verified,  must  include  all  the
components of its extended representation in the present model.
For convenience Eq. (6) can be rewritten by separating the mean
flows  from  the  rest  of  the  amplitudes

:

d
dt
X+ LX+M(U)X = N(X;X); (18) 

d
dt
U+ L0U = N0(X;X); (19) 

Uhighlighting the origin and role of   .

M
¡
U
¢
X

W0

X 2

X 6

Assuming  that  this  system  only  describes  the  small-scale
(MFU)  flow  in  a  simplified  way  and  admitting  further  that  this
local  solution can experience modulations that  perturb the fine
tuning of SSP modes, we see that drift flows inevitably appear as
nontrivial responses to Reynolds stresses on the r.h.s. of Eq. (19)
induced  by  resonance  mismatches  pointed  out  above.  These
drift  flows  then  feed  back  into  the  rest  of  the  solution via the
term  in Eq. (18); typical examples are the terms with a
factor  in the equations governing the amplitudes of  the two
most  crucial  ingredients  to  the  SSP,  Eq. (11) for  the  streaks 
and Eq. (12), for the streamwise vortices .

When  dealing  with  modulations,  we  have  to  face  the  diffi-
culty that, owing to the sub-critical character of transition, there
is  no systematic  multiscale  approach available.  Nontrivial  solu-
tions emerge abruptly and steep interfaces in physical space sep-
arate  different  flow  regimes,  in  sharp  contrast  with  the  case  of
supercritical  bifurcations  as  pointed  out  by  Pomeau  [22].  The
first reason is that there is no linear marginal stability condition
to work with: the coherence length that controls the diffusion of
modulations near threshold is indeed directly obtained from its
curvature at  the critical  point.  The second reason is  that  super-

criticality implies a controllable saturation of the solution's amp-
litude. Both circumstances permit a rigorous and systematic per-
turbation  approach  [23,  Chaps.  8-10],  and  none  holds  in  the
present case.

R R t

R g

X

¡
U0;W0

¢

The spatial coexistence of laminar and turbulent flows is par-
ticularly difficult to apprehend from the primitive equations. An
approach via analogical modeling in terms of reaction-diffusion
(RD) systems [24],  developed by Barkley [25, 26],  has been par-
ticularly fruitful to account for the transitional range of pipe flow.
In  that  model,  the  production  of  turbulence  was  considered  as
the result of a reaction and diffusion was introduced phenomen-
ologically to treat the spatial coexistence of the two states, lamin-
ar  or  turbulent.  Soon  after  the  earliest  developments  of  that
work, I used the same RD framework but in the context of a Tur-
ing  instability,  i.e.  a  pattern-forming  mechanism  controlled  by
diffusion  rates  with  sufficiently  different  orders  of  magnitude
[24].  In  my model  [27],  the  local  reaction terms were  expressed
using  the  reduced  (4-dimensional)  WA97  model  [4],  while  its
variables were allowed to diffuse with widely different turbulent
viscosities in one direction of space. As a result, a Turing bifurca-
tion  was  obtained  at  decreasing ,  defining  a  threshold  be-
low which a pattern was present down to some  correspond-
ing  to  a  general  breakdown  toward  laminar  flow.  Whereas  it
seems  reasonable  to  use  the  variables  in  to  treat  turbulence
production at  a  local  scale,  the structure of  Eqs.  (18, 19)  clearly
shows that the simple heuristic assumption of a diffusion via tur-
bulent  viscosities  is  unable  to  properly  render  the  possible  role
of drift  flows on pattern formation. On the other hand, a model
equivalent  to  the  spatiotemporal  Galerkin  system  described  in
the  Appendix  was  numerically  studied  by  Lagha  and  myself  in
Ref. [28]. Filtering out the small scales, we could next determine
the  dynamics  of  large-scale  flows,  in  particular  their  drift-flow
component  around  turbulent  spots.  They  were  ob-
tained analytically as a response to Reynolds stresses given from
the  outside,  not  as  stemming  from  some  local  dynamics  pos-
sibly obtained within a MFU framework as examined here.

[R g;R t]

R t R

We  can  therefore  infer  that  a  combination  of  the  two  ap-
proaches,  small  scale  dynamics  including  the  feedback  of  large
scales  flows,  should  provide  a  satisfactory,  now  self-contained,
description  of  laminar-turbulent  coexistence  in  the  transitional
regime.  Numerical  simulations of  Galerkin models  truncated at
different levels however suggest that the lowest nontrivial, three-
field, level is insufficient to recover an organized laminar-turbu-
lent  band  pattern,  for  PCF  [20]  as  well  as  for  Waleffe  flow  [13],
and that we are requested to consider at least seven fields in or-
der  to  obtain  oblique  bands  in  a  range  of  finite  width
[20].  Working  with  a  higher  level  model  at  the  MFU  scale,  fur-
ther incorporating the effect of space modulations, and of course
simplifying  the  cumbersome  so-obtained  model  appropriately,
e.g.  through  adiabatic  elimination  of  fast  variables,  is  likely  the
only  way  to  really  explain  the  occurrence  of  laminar-turbulent
pattern analytically. A RD picture [25-27] would emerge, mostly
directed  at  the  understanding  of  the  transition  from  featureless
turbulence  to  banded  turbulence  at  upon  decreasing .  It
would be derived from the NSEs and would replace the naive in-
troduction  of  turbulent  viscosities  by  a  clean  account  of  drift
flows, hopefully containing the mechanism for a Turing instabil-
ity.  The  approach  is  not  limited  to  PCF  or  Waleffe  flow  and
should provide a generic interpretation to laminar-turbulent co-
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existence  in  the  transitional  range  for  a  wide  range  of  wall-
bounded  flows  of  practical  interest,  as  can  be  anticipated  from
the universal  structure of  Galerkin approximations to the NSEs,
the relevance of the SSP in producing nontrivial states already at
the  MFU  scale  and  moderate  Reynolds  numbers,  and  the  ubi-
quitous presence of drift flows.
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Appendix
Galerkin three-field model

ub = ubx̂

As explained in  the text,  we model  PCF by severely  truncat-
ing a Galerkin expansion of the no-slip problem starting with the
velocity-vorticity  formulation  of  Navier-Stokes  equations  writ-

ten  for  the  perturbation  to  a  general  streamwise  laminar  base
flow  [18]. These equations read:

(@t + ub@x)r2v¡ u00b@xv¡ ºr4v = Nv;

(@t + ub@x)³+ u0b@zv¡ ºr2³ = N³:

v ³ = @zu¡ @xw

u w

ub

y
ub = y u0b = 1 u00b = 0 º

1=R h h=U

Nv

N³

where  is the wall-normal velocity component,  is

the  wall-normal  vorticity  component,  ( )  being  the
streamwise  (spanwise)  wall-parallel  perturbation  velocity

component. The equations are written for a general base flow ,
the primes indicating differentiation w.r. to direction . For PCF,

,  hence  and .  The kinematic viscosity  is

numerically  equal  to  when  and  are  used  as  length

and time units to write the equations in dimensionless form. 

and  are complicated, formally quadratic expressions:

Nv = @xySx + @yzSz ¡ (@xx + @zz)Sy;

N³ = ¡@zSx + @xSz;

with

Sx = u@xu+ v@yu+ w@zu; Sy = u@xv+ v@yv+ w@zv;

Sz = u@xw+ v@yw+ w@zw:

fV1;Z 0;Z 1g

The perturbation velocity field is then expanded onto a con-
venient  orthonormal  polynomial  basis  as  explained  in  Ref.  [20]
from which extract the lowest-order consistent set :¡
¢¡ ¯2

¢
@tV1 ¡º

¡
¢2 ¡ 2¯2¢+ p1

¢
V1 =

¡(q¢¡ ¹r)(@x(U0V1) + @z(W0V1))+

r [@xx (U1U0) + @xz (U1W0+U0W1) + @zz (W0W1)] ;

@tZ 0+b@xZ 1+¹b@zV1 ¡ º (¢¡ ¹p0)Z 0 =

s 0
¡
@xz
¡

U2
0 ¡W 2

0

¢
+ (@zz ¡ @xx)(U0W0)

¤
+s 1
£
@xz
¡

U2
1 ¡W 2

1

¢
+ (@zz ¡ @xx)(U1W1)

¤
¡¹s 0 [@z(U1V1)¡ @x(W1V1))] ;

@tZ 1+b@xZ 0 ¡ º (¢¡ ¹p1)Z 1 =

2s 1 [@xz(U1U0 ¡W1W0) + (@zz ¡ @xx)(U1W0+U0W1)]

¡¹s 1 [@z(U0V1)¡ @x(W0V1)] ;

¢ = @xx + @zzwhere  is  the  Laplacian  in  the  plane  of  the  flow.

The stress-free and no-slip versions of this system have the same
overall  structure,  only  differing  in  the  numerical  values  of  the
coefficients [19, 20].

For linear terms:

from which it  can be seen that  the velocity profile  of  the stress-

free  case  is  much  less  dissipative  than  the  no-slip  profile  as

expected  owing  to  the  absence  of  boundary  layers  close  to  the

walls.

For nonlinear terms:

Minor  differences  with  coefficients  given  in  Ref.  [19]  may  be

noticed,  all  stemming  from  the  fact  that  we  use  the  velocity-

vorticity  formulation  of  Ref.  [20]  rather  than  the  Navier-Stokes

equations  in  primitive  variables  and  a  subsequent  treatment  of

the pressure field in Ref. [19].
First-harmonic approximation in the MFU context

® = 2 =`x ° = 2 =`z

`x `z

The  model  involves  wave-vectors  and 

as  parameters,  and  being  the  wall-parallel  dimensions  of

the MFU. The first-harmonic guess reads (2-4). The velocity and

wall-normal  vorticity  components  deriving  from  these  fields

read:

U0 = ¹U0 ¡ @z
~ª0;W0 = ¹W0+ @x

~ª0;

U1 = ¹U1 ¡ @z
~ª1 ¡ ¯@x©1; V1 = ¡¢©1; W1 = ¹W1+ @x

~ª1 ¡ ¯@z©1;

Z 0 = @zU0 ¡ @xW0 = ¡¢~ª0; Z 1 = @zU1 ¡ @xW1 = ¡¢~ª1;

eª0
eª1 ª0

ª1

where  and  denote the periodically varying parts of  and

. In order to simplify the expressions of some coefficients,  we

¯ ¹p0 ¹p1 p1 b ¹b

no¡slip
p

3¼1:73
5
2

21
2

63
2

1p
7
¼0:38 3

p
3

2
p

7
¼0:98

stress¡free 2 ¼1:57 0 ( 2 )
2¼2:47 ( 2 )

4¼6:1
1p
2
¼0:71 2

p
2
¼1:11

q r ¹r

no¡slip 5
p

15
22 ¼0:88

p
5

2 ¼1:12 ¡
p

135
4 ¼¡2:9

stress¡free
1p
2
¼0:71 2

p
2
¼1:11 ¡ 2

4
p

2
¼¡1:74

s 0 s 1 ¹s 0 ¹s 1

no¡slip 3
p

15
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15
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5

4 ¼0:56 ¡ 3
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4 ¼¡1:68

stress¡free 1
2

¡
2
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2
¼¡1:11 0 ¡

2
p
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introduce:

·2 = ®2 + °2; ¹® = ®=·; ¹° = °=·;

¿ = ¹°=¹®; g = ¹®2 ¡ ¹°2; g0 = 2¹®¹°;

¿ = tanµ g = cos 2µ g0 = sin 2µwhere , ,  and ,  relate to the aspect
ratio of the MFU.

Equations have been derived using MATHEMATICA.
ª0Equations stemming from the dynamics of 

d
dt

X 1+ º¹·®
2X 1 = ®bX 4+ s 0

·
®X u

1
¹U0+

1
2
®° (X w

1 X w
2 ¡ X 2X 3)

¸
+s 1
£
®X 4
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1
2
®°(X o

2 X o
3 ¡ X u

4 X u
5 )

¡ 1
2
¯°2(X o

2 X o
5 + X u

4 X u
6 )
¤

¡s 2
£
®X o

4
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1
2
®¯°(X 6X 7 ¡ X w

5 X w
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1
2
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5 X w
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¤
; (A.1) 

d
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; (A.2) 
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Additional constants are:

¹·®
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2 = °2 + ¹p0; ¹·
2
®° = ®2 + °2 + ¹p0;

s 2 = ¹s 0+ ¯s 1; s 3 = ¹s 0+ 2¯s 1:

ª1Equations stemming from the dynamics of 
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