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a b s t r a c t

Themain part of this contribution to the special issue of EJM-B/Fluids dedicated to Patrick Huerre outlines
the problem of the subcritical transition to turbulence in wall-bounded flows in its historical perspective
with emphasis on plane Couette flow, the flow generated between counter-translating parallel planes.
Subcritical here means discontinuous and direct, with strong hysteresis. This is due to the existence of
nontrivial flow regimes between the global stability threshold Reg, the upper bound for unconditional
return to the base flow, and the linear instability threshold Rec characterized by unconditional departure
from the base flow.

The transitional range around Reg is first discussed from an empirical viewpoint (Section 1). The recent
determination of Reg for pipe flow by Avila et al. (2011) is recalled. Plane Couette flow is next examined.
In laboratory conditions, its transitional range displays an oblique pattern made of alternately laminar
and turbulent bands, up to a third threshold Ret beyond which turbulence is uniform.

Our current theoretical understanding of the problem is next reviewed (Section 2): linear theory
and non-normal amplification of perturbations; nonlinear approaches and dynamical systems, basin
boundaries and chaotic transients in minimal flow units; spatiotemporal chaos in extended systems and
the use of concepts from statistical physics, spatiotemporal intermittency and directed percolation, large
deviations and extreme values. Two appendices present some recent personal results obtained in plane
Couette flow about patterning from numerical simulations and modeling attempts.
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related to the topics examined here is tremendous and, though
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reviewpapersmentioned. I tried not to bias the list according tomy
personal interests, while choosing what I thought to be the most
representative papers in each subtopic, sometimes themost recent
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The article published by O. Reynolds in 1883 [130] founded the
scientific approach to the problem of the transition to turbulence.
Already an abstract in itself, its title ‘‘An experimental investigation
of the circumstances which determine whether the motion of water
shall be direct or sinuous and the law of resistance in parallel chan-
nels,’’ summarized the main features of the problem and, between
the words, identified its control parameter Re nowadays called the
Reynolds number. This parameter is a measure of the typical shear
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present in the flow under consideration.1 When Re is small viscous
effects have enough time to tame departures from the base flow
profile so that ‘direct motion’ in Reynolds’ own terms, i.e. laminar
flow, prevails. On the contrary, when Re is large ‘sinuous motion’
can be amplified up to being considered as turbulent. The problem
is then to determine/predict the value of Re at which the transition
takes place.

On general grounds two characteristic values can be defined
[79,99,70], a threshold for unconditional or global stability Reg,
and a threshold for unconditional instability Rec, ‘c’ for ‘critical’.
Thresholds Reg and Rec are global and local quantities, respectively.
These terms have to be understood in the general context of
dynamical systems: In the state space, ‘global’ meanswhatever the
amplitude and shape of the perturbation brought to the base state,
whereas ‘local’means infinitesimal, which allows linearization and
eigenmode decomposition. Rec is obtained from linear stability
analysis that can be continued in the weakly nonlinear regime
around threshold by perturbation. At this level, issues are in
principle purely technical (but possibly delicate) in a well-posed
setting.

Obviously, Reg lies below Rec and between Reg and Rec stability
is only conditional: it depends on the shape and intensity of pertur-
bations brought to the base flow. Global stability is thereforemuch
difficult to ascertain since the variety of possible perturbations
cannot be tested in any systematic way. In a few cases, one can
show that local and global thresholds coincide, which makes the
transition supercritical. Thermal convection in a horizontal layer
heated from below is the most celebrated example of such a cir-
cumstance [117]. This case is exceptional and, in general, perma-
nent departures from the base state may exist in the subcritical
range below Rec. The energy method [79,117] generates a lower
bound ReE to the global stability threshold. ReE is the threshold
below which the kinetic energy contained in any perturbation to
the base flow decreases to zero in a monotonic way. This bound is
usually very conservative. By contrast, the condition defining Reg
bears on the ultimate decay of the perturbations, possibly at the
end of long transients during which the energy may vary wildly
before decreasing like below ReE.

Linear instability dealswith infinitesimal perturbations that can
be analyzed as superpositions of elementarymodes of infinite spa-
tial extension, e.g. Fouriermodes. A contrario, typical perturbations
living below Rec have finite amplitudes and finite supports, and
coexist with laminar flow. These are the flashes of turbulence ob-
served by Reynolds in his pipe or the turbulent spots seen in planar
geometries. When the applied shear is very large, the system is ex-
pected to be uniformly turbulent. At least conceptually, one should
therefore find another threshold separating laminar–turbulent co-
existence from uniform turbulence since this represents two qual-
itatively different situations. The localization of such a threshold,
called Ret in the following, will also be discussed below. What is
generally called the transitional range is therefore the Reynolds
number interval extending from around Reg to around Ret. Table 1
recapitulates known values of these thresholds for the two cases of
main interest here, pipe flow and simple shear flow, both of them
with Rec = ∞.

Our understanding of the transitional range in wall-bounded
flows has made considerable progress recently. Relevant informa-
tion can be found in the proceedings of the 2005 IUTAM Sympo-
sium edited by Mullin & Kerswell [112]. In 2008, a whole issue of

1 Explicitly, Re = UL/ν, where U is a typical amplitude of velocity variations,
L a typical distance over which the speed varies, and ν the kinematic viscosity of
the fluid. It can be understood as the ratio of a viscous time scale τv = L2/ν to an
advection time scale τa = L/U .
Table 1
Characteristic values of the control parameter in some wall-bounded flows. The
ingredients for the Reynolds number as introduced in note 1, Re = UL/ν, are the
mean speed U and the diameter of the pipe D for Hagen–Poiseuille flow (HPF); for
plane Poiseuille flow (PPF) and plane Couette flow (PCF) L, usually noted h, is the
1/2-distance between the plates; for PPF U is the speed of the laminar flow in the
center plane and for PCF the speed of the driving plates. Reg is the global stability
threshold, Rec the linear stability threshold, and Ret the threshold beyond which
turbulence is featureless.

Flow ReE [79] Reg Rec Ret

HPF 81.5 2040 [3] ∞ [135] ∼2700 [171]
PCF 20.7 ∼325 [17] ∞ [132] . 415 [124], Appendix
PPF 49.6 ∼840 [160] 5772 [118] & 1600 [158]

the Philosophical Transactions of the Royal Society has been de-
voted to the celebration of the 125th anniversary of the publication
of Reynolds’ article, where discussions of experimental and theo-
retical findings for pipe flow, also known as Hagen–Poiseuille flow
(HPF) can be found [52]. Several reviews have also appeared, fo-
cusing on theoretical and numerical aspects [51,170] or on the ex-
periments [170,113], summarizing the state of the art before 2010.
Accordingly, in Section 1.1 I shall limit myself to a brief account of
posterior results in HPF centered on the quantitative determina-
tion of Reg [3] that will be defined as the value of Re below which
the flashes of turbulence always decay in the long term and above
which they are able to split and spread turbulence in the pipe.

With respect to simple shear flow, also called plane Couette flow
(PCF), only partial reviews of experimental and numerical results
seemingly exist [126,51]. I shall not attempt to be comprehensive
but try to focus on features that, in my opinion, are the most in-
teresting. Accordingly, in Section 1.2 I will just sketch the history
of the subject and present experimental results gathered by the
Saclay group [126] in the perspective of earlier andmore recent nu-
merical findings. In a first series of experiments by this group, con-
cludedwith Bottin’s thesis [16], the focus was on the identification
of mechanisms and the determination of Reg based on the dynam-
ics of turbulent spots in setups with moderate aspect ratio.2 Later,
in the larger aspect ratio setup used by Prigent [124], patterns of
alternately laminar and turbulent oblique bandswere shown to oc-
cupymost of the transitional range, leading to the determination of
the upper threshold Ret. I shall situate these findings in their con-
text and relate them to the transition in cylindrical Couette flow
(CCF) which has PCF as its small gap limit and the banded regime
as the limit of spiral turbulence observed in that system [27,1,124].

Other cases of comparable interest, especially in view of appli-
cations, will not be reviewed here, in particular plane Poiseuille flow
(PPF), the flow between two motionless plates driven by a pres-
sure gradient, and the Blasius boundary layer flow [136]. Both are
linearly unstable above some finite critical Reynolds number Rec
but also display nontrivial subcritical flow in the form of turbulent
spots promoting developed turbulence when the level of residual
turbulence in the base flow is large (natural transition) or when it
is clean enough but appropriately triggered. Thresholds for PPF are
also quoted in Table 1.

Some views on the present theoretical understanding of the
transition will next be presented in Section 2. I shall first recall
linear properties related to the stability of wall-bounded flows
compared to free shear flows [77,137] and the importance of non-
normal energy growth [156,138], streamwise vortices and lift-
up [54,88], and the process underlying the sustainment of flow
patterns away from laminar flow uncovered by Waleffe and

2 For PCF, two aspect ratios can be defined, Γx = Lx/2h and Γz = Lz/2hwhere Lx
and Lz are the streamwise and spanwise dimensions of the shearing zone, and 2h
the gap between the moving plates. For HPF, this would just be L/D where L is the
length of the pipe and D its diameter.
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coworkers [67,165]. This mechanism paves the way to sustained
nontrivial states of central interest to the approach in terms of low-
dimensional dynamical systems [33] examined in Section 2.2. The
shift from concrete fluid mechanics to that scheme offered a con-
ceptually appealing interpretation framework to a series of proper-
ties observed in experiments, the emergence of coexistingmultiple
solutions in state space via saddle–node bifurcations, special solu-
tions found by refined numerical techniques explaining recurrent
flow fields observed in the experiments [73], basin boundaries and
finite lifetime of turbulent flashes or spots explained through the
theory of transient chaos [51], etc.

This abstract scheme mostly relies on the concept of minimal
flow unit (MFU), a functional setting introduced by Jiménez &
Moin [78] in which periodic boundary conditions are placed at a
distance just necessary to obtain nontrivial solutions. It implies
artificial and strong confinement effects supporting the idea that
the dynamics can be reduced to the strictly temporal evolution of
well defined coherent structures. Such constraints are however not
relevant to open flow experiments in the laboratory. In Section 2.3
I discuss the adaptations needed in view of a proper treatment of
extended systems where coherence in physical space can no longer
be taken for granted so that coexistence has now a spatiotemporal
flavor, with regions occupied by either laminar flow or turbulence,
separated by steep interfaces. As stressed by Pomeau [123], in
that case a novel transition scenario can develop, spatiotemporal
intermittency, with some features of a stochastic process called
directed percolation that helps one to account for phenomena such
as forest fires or the imbibition of porous media. This conjecture
had the virtue of bringing the tools of statistical physics, in
particular those of phase transitions and critical phenomena [148],
into turbulence theory in a novel way. Whereas second-order
transitions with a continuous variation of the order parameter
seem relevant toHPF near Reg [10], PCF displays propertiesmore in
line with first-order transitions, especially through discontinuous
changes associated to large deviations and nucleation [17,101].
Recent personal simulation results related to the characterization
of the transition in PCF are presented in Appendix A, supporting
the first-order schema. Up to now, to my knowledge, patterning
in PCF has not yet received any physical explanation. Such an
explanation could be obtained from well-conceived models such
as the reaction–diffusion system used by Barkley [10] to interpret
the transition via spatiotemporal intermittency at Reg in HPF.
Appendix B summarizesmy previouswork in this domain [86,105]
and the perspectives opened by its extension.

1. Brief review of the phenomenology

1.1. Global stability threshold of pipe Poiseuille flow

Reynolds reported the natural transition in HPF to take place
at Re of the order of 2000 via intermittent flashes of irregular
motion with some internal structure but noted that a clean flow
could be maintained laminar up to much higher Re. Studying
the turbulent flashes seen by Reynolds, Lindgren [94] measured
the speeds of their leading and trailing edges and called slugs
the invasive localized turbulent domains that appear when Re
increases. (Consult also the reviewby Coles [28].) Later,Wygnanski
and coworkers [171,172] scrutinized the structure of the turbulent
flashes and, in the lower part of the transitional range, identified
sustained localized structures they named puffs. These structures
had roughly constant length of order 20 diameters, were filledwith
large scalemildly disorderedmotion, bounded upstreamby a steep
laminar–turbulent interface and downstream by fuzzy streaky
eddies, traveling at a speed slightly smaller than the mean velocity
U . Upon further increasing Re puffs were replaced by slugs filled
with smaller scale turbulence and limited by laminar–turbulent
interfaces of comparable steepness upstream and downstream,
the leading-edge front moving faster and faster, the trailing-edge
slower and slower, respectively approaching 1.6U and 0.5U at
Re ∼ 104, U being the average fluid speed and 2U the fluid speed
on the centerline when the flow is laminar.

In early studies, puffs were not followed for long enough du-
rations to decide whether they were sustained or, on the con-
trary, finite-lifetime transient structures, which is important in
view of the determination of Reg since ultimate decay means
Re < Reg. A novel turn was taken around 1995 when Mullin and
coworkers [34] showed that the puffs, initially thought to be equi-
librium states [172], in fact probabilistically decayed to laminar
flow with exponentially decreasing distributions of lifetimes. Ex-
periments at constant mass flux then showed that turbulence
could not be sustained below Re ≃ 1760 [120,170], proposing a
first estimate for Reg, with a divergence of the mean lifetime as
1/(Reg − Re) below threshold. Other experiments performed at
constant pressure gradient (in conditions such that flow rate fluc-
tuations were thought negligible) yielded mean lifetimes rapidly
increasing with Re, faster than exponentially [74,75,2], but with-
out indication of singular behavior at finite Re suggesting that tur-
bulence might never be sustained but only transient.

The latter claim however relied on the proviso that the dynam-
ics of puffs does not change, which is not the case since, before
being replaced by slugs, puffs see their equilibrium lengths statisti-
cally increase with Re. Simultaneously, they become prone to split-
ting, as early observed by Lindgren [94] and quantitatively studied
more recently [116,3,146]. Puff splitting is a complementary pro-
cess that displays exponential distributions of waiting times at a
given Re, with the mean waiting time rapidly decreasing as Re in-
creases [3]. Whereas puff decay destroys turbulence, puff splitting
spreads it further. The two processes are therefore in competition
and turbulence is statistically sustained if a puff splits before it has
enough time to decay, which will inevitably happen for Re large
enough. Thewinner of the competition, decay vs. splitting, changes
at Re = 2040 [3], which can be retained as the experimental value
of Reg for HPF. This value is reported in Table 1 since it is more in
line with what I expect to happen at the global stability threshold
in view of the spatiotemporal interpretation of Barkley [10] fur-
ther discussed in Section 2.3.2. By contrast, the former estimate
and associated divergence would rather be the signature of a cri-
sis converting a chaotic repeller into a strange attractor, within the
chaotic transient paradigm of dynamical systems theory, see Sec-
tion 2.2.4. The reason why experiments at constant mass flux or
constant pressure gradient should yield different outcomes has not
yet been elucidated.

At any rate, the splitting frequency increases with Re and split-
tings occur repeatedly for Re > 2100. The region occupied by
the train of daughters of a given puff expands slowly downstream
andmore rapidly upstream. Next, slugs replace plugs [171,116,46].
Conceptually, the value of Re corresponding to the puff–slug trans-
formation should be identified with the upper threshold Ret since
beyond, the strongly invasive character of slugs is expected to pro-
duce uniform turbulence asymptotically occupying the full pipe.
By decreasing Re from larger values, Moxey & Barkley [111] kept
essentially uniform turbulence down to Re = 2600 in a computa-
tional domain of length 125 tube diameters. On the other hand, by
increasing Re in a domain of length 400 diameters, Avila & Hof [4]
numerically found that at Re = 2800 the probability of turbu-
lence breakdown over sizable intervals for limited durations re-
mains non-negligible. In view of these results and taking the word
‘transition’ in a loose sense, I have placed the intermediate value
Ret = 2700 for HPF in Table 1, a value which, by the way, corre-
sponds to the upper limit for puffs given by Wygnanski & Cham-
pagne [171, Fig. 2b].



348 P. Manneville / European Journal of Mechanics B/Fluids 49 (2015) 345–362
Fig. 1. Left: The shear is produced between the inner faces of a ribbon of width Lz entrained by the big cylinders; the gap 2h is kept fixed by the small cylinders [154];
bottom: sketch of complementary setups as used at Saclay to perturb the flow: jet triggering [36] and spanwise wire [35]. Top-right: mature spot at Re ≈ 325 in a domain
Γx × Γz = 142 × 36.3, reframed from a picture courtesy of S. Bottin [16]. Bottom-right: oblique laminar–turbulent pattern at Re = 358 in a domain Γx × Γz = 385 × 170,
after a picture courtesy of A. Prigent [124]. Darker regions in the pictures correspond to laminar flow.
The dynamical systems approach to coherent structures, to be
considered further in Section 2.2, suggests that, at a given Re, the
puff state belongs to a chaotic repeller with exponentially dis-
tributed lifetimes. This can be accepted as an interpretation frame-
work for turbulence breakdown, either at the size of the puff to
explain full decay orwithin a puff to account for splitting. However
the approach does not tell us how the frequency of these processes
vary with Re. Reasons why exponential or even super-exponential
variations of mean lifetimes might be expected have been put for-
ward from a different perspective in terms of large deviations of
processes at a MFU or sub-MFU scale [63], and similarly for the
problem of waiting times involved in splitting [146].

1.2. Laminar–turbulent patterning in plane Couette flow

The other flow of interest to us, PCF, is also known to be linearly
stable for all Reynolds numbers [132]. HPF was a paradigm of a
nonlinearly convectively unstable system [25] inwhich departures
from laminar flow were transported away by the mean flow. Now,
at least in experimental configurations with walls in strict anti-
parallel motion (see Fig. 1), this difficulty is avoided and pertur-
bations can be observed at will since they developmostly at rest in
the laboratory frame. The difficulty has now a different origin: the
geometry is basically two-dimensional in the plane of the plates,
which drastically enlarges the potential number of degrees of free-
dom in the turbulent state, even at moderate Reynolds number.

Besides Re = Uh/ν (note 1 and caption of Table 1), aspect-
ratios of the setup Γx,z = Lx,z/2h (note 2) turn out to be important
parameters. From the experimental point of view, the difficulty
of having a very long pipe is translated into that of achieving
sufficiently large aspect ratios, which puts stringent mechanical
constraints since h has to be small enough, hence U large enough,
to achieve a given Re. References to early work can be found in
the introduction of papers by Tillmark & Alfredsson [154] and Bech
et al. [12] but a review of experimental findings equivalent to that
of Mullin for HPF [113] does not exist to my knowledge, which
should absolve me of giving more detail.

1.2.1. From cylindrical to plane Couette flow in the laboratory
Consider first cylindrical Couette flow (CCF), the flow between

differentially rotating coaxial cylinders, keeping in mind that PCF
is its small gap limit. This case is more versatile than PCF since
it depends on two control parameters, the inner and outer rota-
tion rates, besides the radius ratio. When the inner cylinder ro-
tates and the outer cylinder is kept at rest or rotates in the same
direction as the inner cylinder, a supercritical instability develops
producing Taylor vortices [151,22] and, after a few bifurcations [1],
turbulence is obtained at the end of a globally supercritical transi-
tion [41], in close parallel to thermal convection. When they are
counter-rotating, the transition becomes subcritical and turbulent
spots are observed below the linear instability threshold. When
sufficient counter-rotation is present, turbulent spots grow and ar-
range themselves in a continuous helical band, the barber pole or
spiral turbulence regime, as observed by Coles and Van Atta long
ago [28,27,163] and more recently by Andereck et al. [1] and oth-
ers [69,95,64]. This regime has also been reported in numerical
simulations, e.g. [42]. Upon further increasing the shear, the flow
enters a regime of uniform or featureless turbulence [1].

In all these cases, the ratio of inner to outer radii ri/ro = η was
less than 0.9 and, accordingly the streamwise aspect-ratio, the ra-
tio of the mean perimeter to the gap Γθ = π(ro + ri)/(ro − ri),
was kept smaller than about 60. In these conditions, single-branch
spirals could be observed, whereas rotation and curvature effects
were sizable. The centrifugal instability of a narrow layer close
to the inner cylinder [22] renders the interpretation of the sub-
critical range more delicate. In the counter-rotating case of in-
terest here, this instability generates short-wavelength laminar
interpenetrating spirals that become unstable. Nonlinear focus-
ing and breakdown of these perturbations evolve into spatiotem-
porally intermittent turbulent spots [1,95]. As the shear rate
increases, the spots grow and merge to form a complete, alterna-
tively laminar and turbulent, spiral band [28]; next, laminar gaps
close and the flow eventually enters the regime of featureless tur-
bulence [1]. In the spiral regime, the flow displays a nontrivial
internal structure through the gap at the laminar–turbulent inter-
faces, with laminar flow close to one cylinder facing turbulent flow
near the other [28,163,42], now called turbulent overhangs.

The dependence of the bifurcation diagram on the curvature
was studied by Prigent who, in his thesis [124], considered η =

0.963 and 0.983, hence azimuthal aspect-ratios 167 and 366,
respectively. The bifurcation diagrams were found qualitatively
similar with slight quantitative shifts of the different thresholds,
better shown by turning to intrinsic control parameters based on
mean radius and gap width as length scales, and average rotation
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speed and cylinder tangential speed difference as velocity scales,
respectively [115,100,126]. The continuous trend from CCF to PCF
as η goes to one was particularly obvious from Fig. 3 in [100].

With larger aspect-ratios, Prigent [124,125]was able to produce
stable periodic arrangements of spirals with several branches
and to measure the variation of the associated azimuthal and
axial wavelengths with Reynolds number. When present, the
spirals were seen to rotate at the mean angular velocity and, for
η = 0.983, a range of rotation rates was found for which the
pattern was at rest in the laboratory frame, which facilitated the
comparison to the limiting case of PCF, which I now consider.

Experiments in strictly planar geometry, though conceptually
simple, are scarce in the literature due to mechanical difficulties
pointed out earlier. In the Fifties, Reichardt [129] observed turbu-
lence at Re ∼ 750 and beyond but did not considered the tran-
sitional aspects quantitatively. At the turn of the Nineties, as a
laboratory counterpart of early numerical experiments of turbu-
lence growth from localized spots by Lundbladh & Johansson [96],
Tillmark&Alfredsson [154] consistently observed sustained turbu-
lence as a result of the growth of turbulent spots around Re ≃ 360.

At the same period, series of experiments were undertaken
by Bergé’s group at Saclay in order to locate thresholds either by
triggering spots [38,36,19,17] (Fig. 1 top-right) or by modifying
the flow with tiny beads or thin spanwise wires stretched at
mid-gap [35,15,18,17], either at decreasing or increasing Re. For
details, consult [99,126]. Lifetimes of turbulent spots, were shown
to divergewhen Re increased towards 325 [19]. This valuewas also
the one belowwhich fully developed turbulence generated at large
Re was seen to decay ultimately, and also when departures from
laminar flow stayed sustained in the limit of vanishing permanent
perturbations (thinner and thinner spanwise wires [18], a case
also studied numerically by Barkley & Tuckerman [6]). Overall
consistency of these results led to the proposal Reg ≃ 325 for PCF,
despite a reanalysis of the variation of the mean lifetimes of spots
by Hof et al. [74] suggesting a regular exponential increase rather
than a singularity around Re = 325.

These experiments were performed at moderate aspect ratios,
Γx ≈ 140 in the streamwise direction andΓz ≈ 36 in the spanwise
direction. Halving the gap, hence doubling the aspect ratios of her
current experiments, Bottin could observe obliquely arranged tur-
bulent domains [16,17]. Experiments at much larger aspect ratios
displaying conspicuous large scale disordered laminar–turbulent
patterns [99, Fig. 3] showed that this was not the end of the story.
Prigent’s systematic study [124,125] focused on a regular banded
regime obtained by slowly decreasing Re from high values where
the flow is uniformly turbulent. The pattern was observed3 below
Ret ≈ 415 down to Reg ≈ 325. Fig. 1 (bottom-right) for Re = 358
illustrates the band pattern at its strongest. (Notice that scales are
different in the two images of Fig. 1: small structures have the same
size in both experiments but appear finer in the bottom image than
in the top one due to the larger aspect-ratio.)

Aspect ratios much larger than previously considered were
indeed necessary to observe that pattern just because its
streamwise wavelength was of the order of λx ≃ 100 (in units of
the half-gap h) while, in the spanwise direction, λz was regularly
increasing when decreasing Re, from about 50 close to Ret up to 85
in the vicinity of Reg. Comparable wavelengths were obtained in

3 In Prigent’s manuscript [124] the value Ret ≈ 415 is indicated in Fig. 3.27 on
p.73 but, in his Fig. 3.28 on p. 75, the pattern is hardly visible at Re = 402. It is
chevron-like at Re = 395, next displays regular bands at Re = 376, 358, 349,
and disrupted bands at Re = 340 and 331. Finally, at Re = 323 and 314, the
flow is fully laminar in the center of the setup but shows pattern remnants near
the driving cylinders where the local Reynolds number is presumably larger than
the nominal value due to entrance length phenomena. About the value of Ret , see
also Appendix A.
CCF at η = 0.983 [124,126], which explains that a single turbulent
helical branch could be observed in setups with η ≤ 0.9.

1.2.2. Numerical experiments in plane Couette flow
Direct numerical simulations (DNSs) have also considerably

contributed to our empirical knowledge of transitional PCF. Many
of them focused on the determination of special solutions and will
be reviewed in Section 2.2. Concerning the large aspect-ratios of
interest to patterning, early work related either to the evolution
and growth of turbulent spots [96] or to the developed stage at
moderate Re but largely above Ret [84]. Fully resolved computa-
tions dedicated to the transitional range are more recent, owing to
the numerical power needed. For example Duguet et al. [44] ob-
tained results in general agreement with laboratory experiments
(thresholds, wavelengths). Results presented in Appendix A below,
focused on the role of periodic boundary conditions, will corrobo-
rate the experimentally observed angular variation of the bands.

In an attempt to reduce the computational cost, Barkley & Tuck-
erman [7,8] chose to consider a long and narrow domain aligned
parallel to the wavevector of the periodic modulation of turbu-
lence characterizing the band pattern, usually at the angle with
the streamwise direction expected from experiments. So doing,
theywere able to reproducemost of the pattern’s features. In addi-
tion, they analyzed the structure of the mean flow inside the lami-
nar bands, something hardly detectable in laboratory experiments,
and derived from it a relation between the angle of the patterns
and the Reynolds number [9] (for a review of their findings con-
sult [162]). By restricting the length of the computational domain
to a wavelength of the pattern, in collaboration with Dauchot they
determined the variation of the order parameter of the transition
at Ret that they extrapolated at ≈440, somewhat higher than in
experiments [125] or fully resolved simulations in extended do-
mains [44]. The possibility that this shift be due to residual con-
finement effects in the width of their computational domain is
supported by results presented in Appendix A for domains able to
accommodate at least one full pattern wavelength in the two in-
plane directions.

Bands appear to be a robust feature of the transitional regime
since they are appropriately rendered by decreasing the wall-
normal resolution [102] in order to reduce the computational load
differently fromBarkley & Tuckerman. Considering this voluntarily
degraded setting as a consistent modeling strategy, I could obtain
reliable hints about the local processes involved in the growth and
decay of the pattern around Reg [103,104] to be interpreted in the
theoretical discussion of Section 2.3. The price to be paid was just
a systematic decrease of Reg and Ret, which can be understood
simply by noticing that the amount of energy extracted from the
base flow cannot be dissipated in sufficiently small scales so that it
accumulates in the remaining degrees of freedom and keeps them
chaotic at values of Re lower than expected.

Besides global subcriticality, organized laminar–turbulent al-
ternation is certainly a characteristic feature shared by other wall-
bounded flow configurations. First, an appropriate definition of the
shear Reynolds number [100,125,126] makes the range [Reg, Ret]
quantitatively correspond in the plane and cylindrical cases. Next,
at a more qualitative level, alternating laminar–turbulent banding
has also recently been observed in other planar flow configura-
tions, provided that the in-plane aspect-ratios are large enough,
in numerical simulations or laboratory experiments: in PPF (nu-
merical [157]), in the flow between closely spaced coaxial rotating
disks (torsional Couette flow, experimental [31]), in the stratified
Ekman layer (numerical [40]), as well as in the presence of overall
rotation or other forces (numerical [20,159]), all likely a response
to the same mechanism yet to be fully elucidated. Aiming at a bet-
ter analysis of flow patterns both at the local and global scale, ex-
periments are being currently developed in PPF by Wesfreid and
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his group [92] at ESPCI and in PCF by Couliou andMonchaux at EN-
STA [30], to mention only those who are geographically close to
me.

2. Theoretical issues

2.1. Linear vs. nonlinear approaches

In the study of the transition from laminar to turbulent flow, the
simplest case is when one can find linear instability modes serving
as a first step of a cascade involving more and more complicated
dynamics. The corresponding theory has a long story resting on
linear stability analysis of parallel flows, as described, e.g., by
Schmid & Henningson [137]. A cornerstone of the approach was
Squire’s theorem stating that most unstable modes are spanwise
uniform.

Inflectional base profiles that satisfy Rayleigh’s criterion are
then shown to be unstable against the Kelvin–Helmholtz (KH)
mechanism. This inviscid mechanism is just mitigated by viscous
effects thus responsible for instability thresholds at finite but low
values of Re. As a matter of fact, free shear layers, wakes or jets, all
displaying inflection points in their respective base flow profiles,
are seen to experience progressive, mostly continuous, globally
supercritical transitions to turbulence at low Reynolds numbers
nicely reviewed by Huerre and Rossi [77].

By contrast, wall-bounded flows typically do not fulfill
Rayleigh’s criterion. They can still be linearly unstable but against a
subtlemechanism crucially involving viscosity. Viscous dissipation
indeed plays a counter-intuitive destabilizing role in generating
Tollmien–Schlichting (TS) waves but the instability, when present,
sets in at high Reynolds numbers. The full stability problem was
finally solved in the middle of the last century, when the thresh-
old for TS waves was analytically obtained by asymptotic meth-
ods [93], later confirmed numerically, e.g. for PPF [118], whereas
HPF or PCF were shown to be linearly stable for all Reynolds num-
bers [135,132]. Weakly nonlinear theory à la Stuart–Landau was
next developed by perturbation around spanwise-uniform neu-
tral modes when existing. In that way, the bifurcation of PPF at
Rec = 5772 [118]was shown to be subcritical and the saddle–node
threshold for saturated TS waves located at Resn ≈ 2900 [71], still
off the value ≈1000 where sustained and growing turbulent spots
were observed [21]. The search for saturated TW waves for PCF
turned out to be negative [53], which is not surprising since this
flow has no neutral modes.

The observation that the coherent structures filling the
localized turbulent patches involved in the transition are mostly
streamwise and display spanwise dependence (azimuthal in the
case of HPF) suggests to forget about Squire’s theorem that does
not account for algebraic perturbation growth implied by lift-up
as pointed out by Ellingsen & Palm [54] and Landahl [88]. The
amplification of perturbation energy is due to the non-normality
of the full three-dimensional linear stability operator that does not
commute with its adjoint as emphasized by Trefethen et al. [156].
Details can be found in Schmid’s review [138].

As governed by the linear stability operator, mathematically in-
finitesimal perturbations, even strongly amplified, remain mathe-
matically infinitesimal. By contrast, physically small perturbations
do not remain so when amplified by a large amount, thus driv-
ing the system away from its base state. Physical ingredients for
a by-pass scenario, e.g. oblique waves, are reviewed in [137]. In
parallel, the respective role of nonlinearity and non-normality has
been studied by building conceptual models in terms of simple
low-order ordinary differential systems with quadratic nonlinear-
ities preserving the energy [58,37,5,91]. Consult Grossmann’s re-
view [66] for a thorough discussion.
Beyond conceptual models, Waleffe and coworkers [67,165,
166] described a cyclic series of stages involved in the departure
from base flow (below Rec for TW waves if any), commonly
termed SSP for self-sustaining process: At the start streamwise
vortices are assumed. They next generate streamwise streaks by lift-
up. The developing streaky flow displays a spanwise-inflectional
velocity profile experiencing a KH-like instability. The subsequent
breakdown of that instability eventually regenerates the vortices.
See [61] for video illustrations of the SSP in PCF.

The description of this process stemmed from a careful scrutiny
byHamilton et al. of their numerical simulations [67] in domains of
the size of the MFU introduced by Jiménez & Moin [78]. It has next
been formalized using amplitudes attached to each of the modes
involved in the process by means of a Galerkin method directly
applied to the Navier–Stokes equations, thereby generating low-
dimensional dynamical systems [165,166]. The systematic use of
the MFU scheme will be discussed in the next subsection devoted
to the approach in terms of dynamical systems, bifurcations, and
chaos theory, to whichWaleffe’s seminal contribution gave a large
impetus.

2.2. Transition as a dynamical system problem

2.2.1. Coherent structures in minimal flow units
In practice, in the systems under focus the transition to tur-

bulence takes place at moderate Reynolds number, with coherent
structures at the scale of a typical relevant length, channel height or
pipe diameter. These structures can be educed by a standard statis-
tical analysis of the velocity correlations via proper orthogonal de-
composition [76]. Themethodology allows one to filter out smaller
scales and to build empirical models governing the amplitudes of
a small number of larger scale eddies. This approach was followed
by Moehlis et al. [109] for PCF.

The relevance of so-obtained models relies on deep mathe-
matical results proving that, on general grounds, the dynamics of
fields governed by dissipative partial differential equations, viz.
the Navier–Stokes equations, is globally attracted by low dimen-
sional inertial manifolds, as described at an introductory level by
Temam [153], giving access to the whole framework of (finite-
dimensional, dissipative) dynamical systems theory, already suc-
cessfully applied to the transition to chaos in other fields of
hydrodynamics [149], e.g. thermal convection in confined domains
[98, Chap. 4].

Objects manipulated in dynamical systems theory are phase
space trajectories, limit sets (fixed points, periodic orbits, etc.)
with various stability characteristics. Manifolds attached to these
elements endow the phase space with a nontrivial structure con-
straining the geometry of trajectories. For a recent review, con-
sult Kawahara et al. [81]. It should however be clear that, contrary
to à la Waleffe models, these systems are never defined explicitly
as sets of equations for state variables but rather implicitly from
their representations in projection spaces where coordinates are
observables computed from solutions to the Navier–Stokes equa-
tions. They rest on idealizations of the physical problem, in par-
ticular by having recourse to periodic boundary conditions placed
at distances of limited relevance when compared to actual ex-
periments. The consequences of this change of functional setting
are often under-appreciated when trying to pass to the more re-
alistic case of extended systems because it extrapolates to large
distances the strong spatial coherence enforced by periodic bound-
ary conditions at finite (and small) distances: As measured in units
of the half-gap h, typical MFU sizes for PCF are ℓx = 7.85, ℓz =

4.19, in [115] andmany subsequent studies, ℓx = 10.89, ℓz = 5.46
in [167], and, at the most, ℓx = 8π , ℓz = 2π in [143]; for HPF, in
units of the pipe diameter they are ℓ = 2.1 in [55], from ℓ = 1.8 to
2π in [169], or ℓ = 5 in [140,74]. This has however not refrained
mainstream research to concentrate on the study of properties of
these limit sets called invariant solutions.
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2.2.2. Exact nontrivial solutions to Navier–Stokes equations
In the absence of linear modes allowing to obtain nonlinear

solutions straightforwardly, contorted strategies are necessary to
find them. In a seminal paper, Nagata [115] initiated the first of
two popular avenues: homotopy, i.e. continuous deformation of the
problem from a solvable case to the case of interest. Starting from
Taylor vortices in the cylindrical Couette case, he was able to find
the first nontrivial steady state in PCF. Basically the same solution
was obtained later by Clever&Busse [26]who started from thermal
convection cells submitted to a shear. More recently,Waleffe [167]
obtained a solution of the same class by continuously changing
both boundary conditions and an additional bulk force to pass from
a stress-free configuration to the realistic no-slip case. For HPF,
mean advection trivially transform time-independent spatially-
periodic solutions into traveling waves. Similar continuation
methods allowed Faisst & Eckhardt [55] orWedin & Kerswell [169]
to find such traveling waves and study their properties.

These MFU solutions, once obtained can be continued as func-
tions of Re, defining branches of a bifurcation diagram that
becomes more and more complicated as supplementary modes
bifurcating from them are included, further classified according
to their symmetries [139,169]. Nagata’s solution is time indepen-
dent and bifurcates from blue sky into a pair defining two solution
branches, called ‘‘upper’’ and ‘‘lower’’ as Re is increased. The sad-
dle–node threshold Resn is a function of the dimensions of theMFU
but, in the cases mentioned above, is much below the experimen-
tal transition range, e.g. 125.7 in [115] to be compared to ≈325.
For PCF the phase space can thus be supposed to have a basically
simple structure (mostly controlled by viscosity) below that value,
and amore complex nonlinear structure above it. Similarly, for HPF
Pringle & Kerswell [127] have found a pair of asymmetrical solu-
tions down to Re = 773 below which no nontrivial states seem to
exist, and accordingly a simple phase space structure is expected.

The second popular strategy, used in particular by Kawahara
& Kida [80] to obtain the first periodic orbits in PCF, involves
performing DNSs, next identifying approximate recurrences in the
record of velocity field images or observables defined from them,
and eventually to refine on the trajectories by Newton iteration to
achieve periodicity at a given precision level. Two solutions were
found in this way, one experiencing periodic bursting typical of the
turbulent flow, the other being a gentle periodic modification of
the lower branch solution evoked above. The same methods have
been applied to find special solutions in other flows, e.g. periodic
states in channel flow [155]. On general grounds these solutions
have spatial structures that fulfill specific symmetry conditions
(translations, reflections, shifts, and compositions of them), which
may help understand the global structure of phase space [59]. A
wealth of solutions has indeed been obtained by these methods
that have been pushed to a high degree of refinement [164].
Their significance regarding the physical processes involved in the
turbulence regeneration cycle is discussed in [81].

All these solutions are saddles, i.e. unstable in a certain – usually
very small – number of directions in phase space and attracting in
the complementary subspace. As such, they cannot be observed,
but coherent structures resembling them can appear transiently
as the trajectory approaches them along their attracting directions
before being repelled away [73]. The repelling directions usually
correspond to perturbations that break some of their symmetries.
If the dynamics could be confined to their stable manifold – which
is not possible – these solutionswould be observable, i.e. attractors,
hence the term relative attractors.

2.2.3. Nontrivial states on the laminar–turbulent boundary
Good examples of relative attractors are edge states that are

special solutions sitting on the basin boundary of the base state.
Thismanifold separates trajectories that return to the laminar state
from those that remain chaotic in the long time-limit. Edge states
generalize the concept of lower-branch state alluded to above.
In the trivial setting of one dimensional dynamical systems, this
comes to the determination of the unstable fixed point that is
closest to the base state. The approach remains straightforward
in low-order conceptual models [58,37,91]. Things are much more
complicated for the full Navier–Stokes problem, even within the
MFU framework with reduced effective dimensionality. A working
scheme has been set up first by Skufca et al. [147] who determined
edge trajectories in a shear flow model by interpolating between
those that return to laminar and those that fly away at later and
later times. The same strategy has next been applied to different
flows, PCF e.g. [141], HPF e.g. [140], and other flows such as the
asymptotic suction boundary layer [85]. The states obtained in that
way are mildly chaotic and experience a kind of slowed-down SSP,
while strongly chaotic states typical of turbulence are thought to
derive from upper-branch states [81].

Another strategy to obtain edge states and corresponding
critical amplitudes has been to look for initial conditions as modes
selected by non-normal amplification and subsequent nonlinear
optimization. What can be done easily in conceptual models
[37,29,91] is much more computationally demanding for flows
such as HPF [128], PCF [45,110,49] or boundary layers [24], though
still not free from limitations inherent in the MFU context.

The determination of edge states from the optimization view-
point relates to an old practical question about the variation with
Re of the critical amplitude Ac of perturbations able to trigger
turbulence. Well above Reg it is expected that Ac decreases as
Re−γ when Re increases. A lower bound γ = 1 can be derived
from a simple balance between linear and nonlinear terms in the
Navier–Stokes equations but the actual value is highly debated,
likely dependent on the flow geometry and a function of the by-
pass scenario [113]; see [168] or the introduction of [49] for re-
views.

At the price of much heavier computations, edge states can also
be obtained in unbounded domains in the form of localized solu-
tions, e.g. in HPF [108], or in PCF [43]. Flow structures resembling
edge states in extended domains appear to be visited during the
decay from turbulence in experiments [39] as well as in numerical
simulations, e.g. [44, movie 1], or [103]. By contrast, owing to their
instability and the fine tuning necessary to be able to observe them
during sufficiently long times in conditions of experimental rele-
vance, such edge states are unlikely to manifest themselves in the
transition to turbulence, by natural selection among residual fluc-
tuations or by amplification of artificial perturbations. For example,
upon triggering HPF with the experimentally most efficient per-
turbations at the smallest possible amplitude, what come out are
wavy trains of hairpin vortices that readily breakdown into puffs
or slugs depending on the value Re [150]. In the puff regime, the
hairpins are easily identifiable at the start of the transient but the
breakdown is so fast that the visit of the edge state, just looking
like a weak puff [108], is so furtive that it cannot be pinpointed. In
view of control, the knowledge of the initial shape of nonlinearly
optimal perturbations is presumably more important than of its
by-product, i.e. the edge state that will emerge from it at a later
time, while the underlying chaotic dynamics leaves it trace on the
discontinuous, fractal-like, dependence of the outcome on the trig-
gering amplitude [51,150].

2.2.4. Chaotic transients
From a mathematical standpoint, invariant solutions, espe-

cially unstable periodic orbits (UPO), play a fundamental role in
chaos theory [33], allowing to predict the statistics of global ob-
servables from their knowledge. Through the concept of transient
chaos [152], UPOs offer a nice explanation to the exponentially de-
caying distributions of lifetimes of puffs observed in HPF [50]. As



352 P. Manneville / European Journal of Mechanics B/Fluids 49 (2015) 345–362
a matter of fact, the intersection of stable and unstable manifolds
attached to them (support of trajectories asymptotically reaching
them forward or backward in time, respectively) generate homo-
clinic or heteroclinic tangles rooting chaos as early envisioned by
Poincaré [122]. They form the backbone of a repeller character-
ized by a fractal series of lobes in which the details of the phase
space trajectory seem to evolve chaotically before being expelled
towards the fixed point representing the laminar flow.

It is often said that the decaying exponential distribution is
the signature of a memoryless process. However, when sticking to
the deterministic dynamical systems point of view, on just the
contrary, there is indefinite memory of initial conditions which
however remain unknown: Sensitivity to initial conditions, the lack
of detailed knowledge about them, and the fractal structure of the
repeller account for the distribution of lifetimes [51]. It is indeed
not difficult to build models producing exponentially decreasing
distributions of transient lifetimes [98, pp. 240–241], so that the
result can be the same as for a genuinely random Poisson process
but the actual explanation is conceptually very different.

The generic scenario describing the transition from a repeller
(transient chaos) to an attractor (sustained chaos) is the crisis
[65,119] taking place at some well-defined crisis condition Recr
with mean lifetimes diverging as some inverse power of |Re −

Recr|. Such a value might however not exist in wall-bounded flows
within the MFU scheme. For example, in a MFU box of size 8π ×

2 × 2π (in units of the half-gap h) turbulence in PCF seems to re-
main in a regime of transient chaos, the mean lifetime increasing
with Re but without sign of divergence for Re < ∞ [143]. Similar
results have been obtained in HPF with a short numerical pipe of
length L = 5D [74]. This is however not a sufficient reason to ex-
clude that, outside the restrictedMFU context, there could not be a
threshold beyond which turbulence is really sustained. By placing
periodic boundary conditions at finite and small distances, theMFU
assumption and all the results which rests on it cannot include a
whole class of perturbations able to destabilize solutions found on
that basis in a quite extreme and novel way. For PCF and other pla-
nar flows that are quasi-two-dimensional (2d) systems, periodic
solutions in MFUs of in-plane size (ℓx × ℓz) are also solutions in
domains (nxℓx × nzℓz) with (nx, nz) any integers. Forbidding per-
turbations of wavelengths greater than ℓx or ℓz by construction,
the periodic boundary conditions strongly constrain the system
and endow it with highly nonphysical spatial coherence. For HPF,
a quasi-1d system, the same holds but only for periodicity along
the axis. This mere observation should temper the extrapolations
about the transient character of turbulence [74,143], as long as
such claims are made on the basis of considerations at the MFU
scale. As a matter of fact, together with J. Philip, in [121] I scruti-
nized the passage from chaos to spatiotemporal chaos by DNS in
domains of in-plane diagonal ranging from 17 (∼MFU, temporal
chaos) to 140 (spatiotemporal chaos with laminar–turbulent co-
existence), pointing out the necessary decay of streamwise corre-
lations beyond theMFU length to form the pattern observed in PCF,
and calling for the introduction of standard concepts of pattern for-
mation, as now discussed.

2.3. Coexistence in physical space and spatiotemporal issues

2.3.1. Patterning à la Ginzburg–Landau
The standard way to introduce space–time dependence is to go

from Stuart–Landau-type of equations governing the amplitude of
bifurcated states to time-dependent Ginzburg–Landau (GL) equa-
tions governing the supposedly slow space–time dynamics of am-
plitudemodulations, i.e. envelope equations [98,32]. The approach
is most straightforward when the bifurcation is supercritical with
saturating cubic nonlinearities. For a stationary pattern forming
instability like thermal convection, this yields a cubic Complex-
Ginzburg–Landau equation with real coefficients, RGL3 for short.
The simplest way to pass to the subcritical case is by assuming that
saturation is not achieved at lowest order but that quintic non-
linearities will do the job, hence the RGL5 equation, with the co-
existence in phase space typical of subcriticality translated into
a coexistence in physical space. Like RGL3, RGL5 derives from a
potential functional. It predicts that a domain wall between the
bifurcated state and the base state moves so as to decrease the
global potential, except at the value of the control parameterwhere
the potentials corresponding to each state are equal, the so-called
Maxwell plateau well-known in the theory of first-order thermo-
dynamic phase transitions (vis. liquid–gas). Introducing a subdom-
inant cubic termwith a coefficient tunable via a non-local feedback
arising from Reynolds stresses, the model put forward by Hayot &
Pomeau [68] offered an explanation to laminar–turbulent coexis-
tence at scales large when compared to those involved in the SSP.
Owing to the way local and global processes were treated, the ap-
proach could however not fully account for the spiral turbulence
regime of CCF, but it partly motivates the modeling of the banded
regime of PCF sketched in Appendix B.

In the same vein, Pomeau pointed out earlier [123] that, when
the system displays an internal periodicity scale, near theMaxwell
plateau, the subcritical invasion of one state into the other be-
comes nontrivial due to lockings of the length of the growing do-
main onto multiples of the internal period. This process was later
called snaking by Knobloch [83] from the aspect of the bifurcation
diagram of corresponding multiple steady states. For PCF develop-
ing in domains that are spanwise extended but streamwise con-
fined, spatial periodicity at the scale of individual streaks may be
expected to arise from the SSP. Snaking was indeed found in that
system [142] but the presence of turbulence in the form of local
low-dimensional chaos complicates the picture. In that geometry,
the growth of turbulent domains has indeed been shown to be
more relevant to a stochastic process [47] that will be discussed
later.

Patterning has also been examined within the GL framework
from a phenomenological standpoint, but in a completely differ-
ent setting, by Prigent et al. in CCF (experiments) [124,125] and
by J. Rolland andmyself in PCF (under-resolved DNSs) [131]. Being
interested in the transition near Ret in CCF and observing that the
spirals continuously faded awaywhen the shearwas increased, Pri-
gent et al. considered the emergence of order at decreasing Re as a
supercritical bifurcation at increasing (Ret−Re). Themodulation of
turbulence intensity was captured by a set of two envelopes serv-
ing as order parameters, one for each of the possible spirals, left or
right. Next, the bifurcation was described using two coupled cubic
complexGinzburg–Landau equations (CGL3) appropriate to the su-
percritical emergence of order. Finally, noise was added to account
for background turbulence in the featureless regime, transforming
the equations into a Langevin system. This description was then
put on a quantitative basis by fitting the parameters in the model
against experiments. Spirals were shown to be well described by
GL equations with all their coefficients real, supporting the claim
they are not propagating waves but more simply static modula-
tions of the turbulence intensity trivially transported by the mean
rotation rate. The variation of the nonlinear interaction coefficient
with the control parameter also appeared fully compatiblewith the
fact that a single spiral orientation is selected far enough from Ret.
Finally and perhaps not unsurprisingly, the Langevin-like contribu-
tion was shown to delay the ordering and lower Ret to an apparent
valuemuch belowwhat could be extrapolated from thewell estab-
lished nonlinear regime far from Ret. Similar results were obtained
in PCF [131]. Tuckerman et al. [161] also characterized that transi-
tion using their narrow and oblique computational domain. They
obtained Ret ≈ 440 significantly larger than the value found in the
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experiment Ret ≈ 415 (itself probably somewhat overestimated;
see note 3, p. 5). The two findings could be reconciled by recogniz-
ing that the effects of orientation fluctuations present in the labora-
tory [125] and in the numerics in extended domains [44] are killed
in the oblique but narrow computational domain: Fixing the orien-
tation beforehand strengthens the flow coherence and pushes the
advent of featureless turbulence to larger values of Re. The study
to be presented in Appendix A supports this interpretation.

2.3.2. Directed percolation and spatiotemporal intermittency
Extending his analysis of the peculiarities of front propagation

in spatially unfolded subcritical cellular instabilities, Pomeau [123]
also suggested that, when one of the states in competition is
chaotic, the dynamics of the front separating domains in different
states is presumably stochastic. He further conjectured that the
process underlying the laminar–turbulent coexistence is akin to
directed percolation (DP) to be studied using the tools of the theory
of critical phenomena [148].

In statistical physics, DP [82] is a stochastic process defined
on a lattice where nodes can be in one of two states, either ‘on’
or ‘off’, usually termed active and absorbing respectively. Next, a
node in the active state can spontaneously decay to absorbing
with some probability whereas a node in the absorbing state can
only be reactivated by contamination from active neighbors, again
with some probability. Activity propagates to infinity if contam-
ination is strong enough, otherwise the final state is entirely ab-
sorbing. Transitional wall-bounded flows are obviously eligible to
such a framework: Local chaos features the active state with finite
lifetime, while laminar flow, being linearly stable, is absorbing in
the required sense. Accordingly, turbulence should spread by con-
tamination only, with the turbulent fraction – the relevant order
parameter – taking non zero values only above the putative thresh-
old when contamination is able to overcome spontaneous decay at
large enough Reynolds numbers.

The Ising model works as a prototype for phase transitions in
equilibrium thermodynamics [148]. It accounts for the ferromag-
netic ordering of a paramagnet below its critical temperature (the
Curie point). In the same way, DP is the prototype of models for
non-equilibriumphase transitions, owing to the irreversible nature
of the decay into the absorbing states [72]. In both cases, the sta-
tistical properties of the system considered do not depend on its
microscopic definition but on global characteristics such as the
symmetries of the order parameter and the space dimension,
defining universality classes. Near the critical value of the control
parameter, temperature for the ferromagnetic transition, decay or
contamination probability for DP, the statistical properties are sin-
gular and vary as power laws of the distance to criticality charac-
terized by sets of critical exponents [148].

In fact, DP is a purely stochastic process whereas the descrip-
tion of fluid flow via Navier–Stokes equations is deterministic.
Deterministic processes behaving as DP can however be easily con-
structed in terms of coupledmap lattices [23]. The simplest imple-
mentation relevant to our problem involve arrays of sub-systems
governed by identical maps displaying transient chaos close to a
crisis point [119] and coupled to neighbors on the lattice through
diffusion. A given node of the array stays active as long as its evo-
lution is chaotic, becomes absorbing after a certain number of it-
erations depending sensitively on its initial condition, but can be
reactivated through coupling to its neighbors if some of them are
still active. In that way, transient local chaos can be converted
into sustained spatiotemporal chaos upon variation of the coupling
strength or some parameter controlling the local dynamics. Spa-
tiotemporal intermittency (STI) is the term coined to refer to this
kind of transition that reconciles determinism and stochasticity for
systems distributed in space, stochasticity being induced by chaos
in the local dynamics. Above all, it permits us to understand that
turbulence can be sustained even if, at the local scale, it is only tran-
sient.

In one space dimension, Barkley [10] constructed a two-variable
coupled map lattice mimicking transitional HPF along the lines
suggested above, with local dynamics apt to describe transient
local chaos, completed by diffusive coupling with neighbors, and
a term accounting for advection of the shear. By adjusting a small
number of parameters and varying just one featuring Re, he was
able to reproduce the different regimes of puff decay, puff splitting,
and continuous turbulence growth observed experimentally [3],
giving evidence that the transition at Reg was DP-like, with
exponents in the corresponding universality class (at least within
his model).

2.3.3. Nucleation, large deviations and extreme values
Though DP critical exponents can be recovered in some

cases [10,145], STI appears to be richer than plain DP, in particular
with respect to the continuous/discontinuous character of the
transition [14]. With an appropriate local dynamics, the STI
transition can indeed be discontinuous and first-order like. This
possibility was explored by Bottin & Chaté [17] who showed that,
in two space dimensions (the in-plane directions of PCF) the decay
of sustained spatiotemporal chaos may be due to the nucleation of
sufficiently wide laminar holes.

Nucleation was not explicitly mentioned by Pomeau in [123],
but he scrutinized the analogy with first-order transitions in a
much deeper way in a follow-up of the book with Bergé and Vi-
dal [13]. Written in French this second book was unfortunately
never translated into English. He insisted on the concept of germ, a
fluctuation in a region of physical space that has tumbled from the
formerly stable state into the new state, and that of critical germ.
In the transition to turbulence, artificial germs were used in trig-
gering experiments and the amplitude of the perturbation was the
control parameter. Here, in the transition from turbulence, natu-
ral breakdown of featureless turbulence is of interest and fluctua-
tions are intrinsic to the turbulent regime. The critical quantity is
rather the size of the fluctuation: below critical it recedes in the
long term, above critical it grows and the new state irreversibly in-
vades thewhole system. Themodel used by Bottin & Chatéwas just
analogical anddidnot attempt to reproduceNavier–Stokes dynam-
ics. Using a reduced model derived from primitive equations [86],
I studied the decay of turbulence and could show that feature-
less turbulence indeed breaks down when Re is decreased sim-
ilarly to what can be expected from a nucleation process [101].
The distribution of sizes of laminar holes was studied as a func-
tion of Re. They were shown to display power-law tails in the form
Π(S) ∼ S−α where S is the surface of the laminar hole. Exponent
α was found to decrease from values >3 at high Re to values <3
when the relaxation to laminar flow was observed, at the end of
a long transient during which a laminar germ of size above some
critical size was seen to invade the rest of the domain still in the
STI state. The value α = 3 quoted above corresponds to a thresh-
old below which the variance of the distribution of sizes S is infi-
nite, whichmeans that the occurrence of a germbeyond the critical
size is bound to appear in the system, while for α > 3 the variance
is finite so that large germs beyond critical size have a negligible
probability to appear. Themain consequence of this result was that
the conversion of transient local chaos into sustained global spa-
tiotemporal chaos happenswhether or not the lifetime of local chaos
diverges, this local lifetime being obtained in the low-dimensional
dynamical system setting valid in the MFU context.

The model I considered [101] was however imperfect in that it
did not reproduce the bands (see Appendix B). Studying the decay
of bands for Re / Reg in DNSs of Navier–Stokes equations [103],
I could in fact observe a nice combination of the two processes
described earlier: (i) the nucleation of a laminar gap of length
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commensurate to the width of the turbulent band itself, and
(ii) a slow stochasticwithdrawal of turbulence by elementary steps
corresponding to the breakdown of turbulence at the scale of a
streak. The second stage is essentially what can be expected for
the retraction of an active domain below the percolation threshold
in 1d (here in the direction of the length of the band fragments left
after the nucleation of a laminar gap). The complementary problem
of growth from a germ for Re ' Reg was also studied in the same
conditions [104]. As soon as the germ is sufficiently large it takes
an oblique shapewith a given orientation. At large scale it grows by
nucleating turbulent blobs of the same or the opposite orientation,
near its tips. This process stays in competition with the collapse of
band fragments of similar size, but with a bias towards growth. At
the same time, a local stochastic birth-and-death process governs
the streaky structures, again biased towards growth as in DP above
threshold.

A proper account of the effective two-dimensionality of PCF
seems essential since, by contrast, spanwise elongated but stream-
wise narrow computational geometries that do not permit orienta-
tion changes only produce processes closer to standard DP, either
at decay [145] or during growth [47]. A complete 2d treatment is
however complicated by the presence of large scale flows that de-
velop as a response tomeanReynolds stress distributions [68,9,87].
They contribute to all processes active in the transitional range, in
particular in the growth of spots from germs as soon as they be-
come sufficiently large, breaking the streamwise symmetry [48],
shaping the bands [104], and introducing non-local effects possi-
bly responsible for the selection of their wavelength [68] (see also
Appendix B).

Nucleation is a large deviation process that has already been
proposed to account for puff collapse in HPF [63]. Studying band
breaking in PCF [103], I arrived at the same conclusion that turbu-
lence decay involves large deviations nucleating sufficient laminar
gaps. Laminar gaps, large or small, leave their mark on the average
turbulent energy Et contained in the flow as dips, deep or weak,
in the time series of that quantity. Below Reg, when turbulence is
transient, Et ultimately decays to zero. Above Reg it is not supposed
to do so but it fluctuates greatly and its time series displaysminima
that indicate more or less pronounced failed attempts to relax to
laminar flow. In collaborationwith Lucarini andhis coworkers [56],
I studied the statistical properties of breakdown in the vicinity of
Reg by considering the distribution of extreme minima of Et in a
systematic but strictly empirical way. Depending on the value of
Re, the series of minimawere distributed according to one of three
possible extreme-value laws, with behaviors discriminated by the
sign of the shape parameter κ that describes the tail of the distri-
bution [90]. At larger Re, κ was negative, indicating a Weibull dis-
tribution that is bounded from below, hence sustained turbulent
bands. When Re decreases, the sign of κ changed and the distri-
bution changed to a Fréchet law with exponentially decaying tail,
hence exponentially small but finite probability to decay. Even if
the experiment was not long enough to observe decay, the value of
κ determined from finite (but still long enough) time series could
thus tell us whether turbulence was transient or not, whether Re
was below or above Reg. In this perspective the value of Re when
κ = 0, i.e. a Gumbel distribution for the minima, defines Reg in
an objective way for extended open flows of experimental inter-
est [56].

3. Concluding remarks

Over the years, the problem of turbulence has rather been
treated as the problem of the transition to turbulence, as formu-
lated by Landau [89] and Ruelle & Takens [133]. Implicit was
the modal approach directly stemming from the conventional ap-
proach to hydrodynamic stability. By modes it is generally meant
spatiotemporally coherent structures evolving under some specific
autonomous dynamics that can further serve as elementary bricks
to understand the behavior of the system as awhole via their inter-
actions. Most usually these coherent structures arise from neutral
eigenmodes of the linear stability operator further extrapolated to
the weakly nonlinear regime. This situation is typical of normal
systems, of which Rayleigh–Bénard convection is a good example,
convection cells being the relevant coherent structures [117]. The
transitional range of wall-bounded flows is not amenable to such
an approach because the laminar profile is linearly stable in that
range, so that there are no neutral modes to start from.

First considering the transition to turbulence, Re being swept
up, non-normal amplification and by-pass are the rules. Obtain-
ing relevant coherent structures is a hard task that has been
accomplished only recently within the framework of dynamical
systems theory [51,81]. The MFU concept has been instrumental
in this quest, focusing on nonlinear interactions in a context of
strong coherence reinforced by the periodic boundary conditions
set at short distances. All the concepts associated with temporal
chaos are then fully applicable butmay not be relevant since crucial
perturbations breaking the symmetries of the coherent structures,
especially those corresponding to subharmonic modulations, are
forbidden by assumption. As a consequence, over the whole range
of Reynolds numbers relevant to the transition, while local chaos
is most certainly transient as long as strict MFU conditions are as-
sumed, turbulence understood as spatiotemporal chaos can still be
sustained due to interactions at scales larger than the MFU size:
From the theory of pattern formation [32,98] one can expect that
the effective number of degrees of freedom involved in the sys-
tem under consideration is an extensive quantity [134,121] that
increases like its size evaluated in terms of the number of co-
herent structures restricted to supposedly isolated MFUs, i.e. lin-
early with the axial coordinate in HPF and quadratically with the
streamwise and spanwise direction in PCF and other effectively
two-dimensional systems. Furthermore, a wide class of easily ex-
citable perturbations is now accessible, that render the coherent
structures highly unstable as soon as domains a fewMFUwide and
long are considered, much more unstable than what can be esti-
mated on a local basis, especially owing to the existence of long-
wavelength (spatial) phase modes.

This very observation supports my belief that, in all circum-
stances of practical interest for wall-bounded flows, the dy-
namical system approach at the MFU scale is really valuable to
identify nonlinear mechanisms at work, e.g. the SSP [67,166] and
other more subtle effects like bursting [81]. But I also think that
it cannot give reliable information on the long term sustainment
of turbulence, on its statistics when sustained, nor on the shape
of the most dangerous perturbations living on the basin bound-
ary of the laminar flow. If strict coherence is no longer the master
word in even moderately extended systems, tools from different
fields are necessary. I have been advocating some of those that
were developed in a statistical physics framework and can give def-
inite answers in these circumstances, e.g. the decay/growth of tur-
bulent spots in terms of large deviations in weakly confined PCF
domains, or the decay/splitting of puffs in realistic experimental
conditions [63,146].

Now considering the transition from turbulence in extended
geometries, Re being swept down, we do not face a conventional
situation with laminar competing states, base state and bifurcated
state, for which local thermodynamic equilibrium allows one to
deal with a stability problem in a deterministic framework due
to negligible thermal fluctuations. Here the case is interesting
since the reference state, i.e. featureless turbulence at high Re,
exhibits strongmacroscopic fluctuations of intrinsic origin. Though
turbulent noise is not thermal noise, it is tempting to consider the
analogy with thermodynamics equilibrium and thermodynamic



P. Manneville / European Journal of Mechanics B/Fluids 49 (2015) 345–362 355
transitions seriously and to understand turbulence collapse
as a first-order phase transition [13]. Laminar–turbulent state
coexistence would then correspond to a Maxwell plateau without
properly defined free energy, with turbulence possibly ‘‘under-
cooled’’ and laminar flow ‘‘over-heated.’’ The actual transition
would be controlled by the presence of germs bigger than some
critical germ arising spontaneously in the turbulent phase or
artificially in the laminar phase as long as it is linearly stable.

Whatever the intensity of the noise, the first step in the the-
oretical approach to phase transitions is the mean field approxi-
mation [148], rendering the problem equivalent to deterministic
bifurcation theory. It becomes therefore natural to try to extend the
approach to patterning observed in the transitional range of PCF
and to understand it as the result of a standard cellular instability
of the featureless regime, which is themain objective of the reduc-
tionist attempt sketched in Appendix B. Trying to identify mecha-
nisms for turbulence intensitymodulations from the consideration
of primitive equations indeed seems an interesting challenge.

To conclude, the long standing problem of the transition to tur-
bulence has gone through important advances from laboratory and
computer experiments, appropriately combined to mathematical
developments and concepts borrowed fromstatistical physics. This
progress certainly improves our understanding of specific tran-
sitional flows that might benefit applications to control in other
wall-bounded flows. From a more general viewpoint, the problem
of patterning over a turbulent background also questions the gen-
eral theory of far-from-equilibrium nonlinear dynamics and com-
plex systems in an original way.
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Appendix A. Simulations of PCF in domains of moderate size

A.1. Computational methodology

Numerical simulations of PCF have been performed using Gib-
son’s open software ChannelFlow [60]. This pseudo-spectral code
treats the wall-normal dependence y using Chebyshev polynomi-
als and the in-plane dependence (streamwise x, spanwise z) by fast
Fourier transforms. Domains able to fit at least one pattern wave-
length (λx, λz) in each direction have been chosen. Two sizes have
been considered, a small one Ds with Lx = 108 and Lz = 64,
i.e. one oblique band, and a large one Db with Lx = 128 and
Lz = 160, i.e. two to three oblique bands [124]. According to
previous work [44,8,102], the resolution is thought to be reason-
ably good with Ny = 33 Chebyshev polynomials, and Nx = 3Lx,
Nz = 6Lz , where Nx,y are the numbers of Fourier modes after de-
aliasing (three-half the number of evolving Fourier modes). Ac-
cordingly, no significant shift of the transitional range [Reg, Ret]
is expected [102]. Some of the results below have been presented
at the ETC14 conference [106].

Several experiments have been performed starting from a uni-
formly turbulent state at Re = 470 stemming from random initial
conditions. The Reynolds number was then decreased regularly by
steps δRe down to turbulence decay. Plateaus in Re had a fixed du-
ration δt . The state obtained at the end of a plateau served as an
initial condition for the next step downwards while, on the other
hand, the simulation at the current value of Re was continued till
statistical equilibrium was reached and maintained steady over a
significant period of time. Steadinesswas appreciated frommovies
and from time series of ‘‘distance’’ to laminar flow measured as
the average mean perturbation energy Et = [2LxLz]−1


+1
−1

1
2v

2 dx
dy dz (where v is the departure from laminar flow), typically over
more than 5 × 103h/U .

When the duration δt of the plateau is small, typically 500 h/U
or less, the system has just enough time to learn that the Reynolds
number has changed – viscous time τv in units of h/U is numer-
ically equal to Re – but not enough time to adjust its pattern. In
order to keep the flow turbulent at values of Re as low as possi-
ble, I chose to avoid quenching the flow from large values of Re
where the flow is uniformly turbulent down to values in the tran-
sitional range. This is because deep quenches are immediately fol-
lowed by a viscous relaxation stage that may leave an insufficient
disturbance level from which turbulence has a finite probability
not to recover, even if the final Re is well above Reg.

A.2. Results

In the present study, I have been primarily interested in the
Fourier analysis of the large scale spatial modulation of the
perturbation energy averaged over the upper layer 0 ≤ y ≤

1, et(x, z, t) =
1
2

 1
0 v2dy, which captures the turbulent activity

quite well. Similar results have been obtained with Ds and Db
but larger confinement effects are expected in the smaller domain.
Laboratory experiments show that the angle of the pattern with
the streamwise direction increases as Re decreases. So, the larger
domain Db was chosen to study how this orientation change can
be reproduced by numerical simulations with periodic boundary
conditions.

In both cases, as long as the turbulent regime was essentially
uniform, upon decreasing Re from 470 as described earlier with
δt = 500 and δRe = 20or 10, the system rapidly equilibratedwhile
staying featureless. As the transitional rangewas approached, I still
kept δt = 500 from Re = 320 downwards but slowed down the
decrease of Re by taking δRe = 5.

In Ds no trace of large scale patterning was found for Re ≥ 410
though disorganized regions where turbulence intensity was de-
pleted, called laminar troughs in the following, were observed. For
Re ≤ 395, in all cases, the steady state regime obtained by con-
tinuing the simulation corresponded to one well-formed stable
turbulent band either leaning to the left or to the right of the
streamwise direction, as expected from symmetry considerations.
The situation for Re = 400 and 405 was more complex, as can be
understood from Fig. A.2 which displays time-series of Et as func-
tions of time. A large turbulent fraction implies a high value of
Et, while the presence of laminar troughs corresponds to a lower
value. Parallel examination of snapshots taken all along the simu-
lations helpedme to characterize the flow regime. In the examples
shown, at Re = 405 featureless turbulence is observedduringmost
of the time except for a brief episode with a well-formed band. At
Re = 400, featureless episodes are now scarce, separating longer
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Fig. A.2. Time series of the turbulent energy in the small domain (108 × 64) for Re = 405 and 400, suggesting a discontinuous transition at Ret .
periodswhere a definite pattern is conspicuous, i.e. left or right ori-
ented single bands possibly perturbed by the presence of disloca-
tions. Reentrance of featureless turbulence at Re = 400 and band
intermittency at Re = 405 are complementary facets that suggest
one to locate Ret somewhere in-between and point to a small hys-
teresis characteristic of a discontinuous transition (weakly first-
order in the terminology of phase transitions) further subjected to
a strong noise associated with the background turbulence.

Results equivalent to those in Ds were obtained in Db for Re
down to 410 and, again, the neighborhood of Ret was crossed fast
so that bands appeared for Re ≤ 395. A well-formed three-band
pattern developed from the states left at the end of the steps at
Re = 395 and 390, whereas two bands emerged for Re ≤ 380. In
another experiment, by decreasing Re more carefully by steps of
length δt = 3500 still with δRe = 5 from a three-band pattern at
Re = 380, the three bands could bemaintained down to Re = 340.
At Re = 335, awavelengthwas lost in the spanwise direction via an
Eckhaus-like instability and a two-band pattern was obtained that
finally decayed for Re < 325. Since in the smaller system, the band
pattern was observed to decay at Re = 330 after a very long tran-
sient (>104h/U), the two-band states obtained at Re = 330 and
325 are probably also transient, though decay was not observed
before the programmed end of the experiment (tf = 5 × 103h/U).

The three-band state at Re = 380 alluded to above was ob-
tained from a two-band state at Re = 370 that was Eckhaus-
unstable upon increasing Re. So, in Db, there exists a whole range
of multi-stability with hysteresis, where two- and three-band pat-
terns can be obtained depending on the experimental protocol.
This is summarized in Fig. A.3 that displays the intensity of pat-
terning as a function of Re, i.e. the squared modulus of the dom-
inant peak in the central part of the spatial Fourier spectrum of
et(x, z, t) averaged over at least 80 spectra separated by at least
50 h/U (units for turbulence intensity are arbitrary). Standard de-
viations have been computed but not shown here for the sake of
clarity because points all correspond to well-established patterns,
the intensity of which does not fluctuate much.

Points shown correspond to spectra displaying a single domi-
nant peak, either two bands, i.e. with wave numbers (1, +2) or
(1, −2), or three bands, i.e. (1, +3) or (1, −3). Their respective
harmonics (2, ±4) or (2, ±6) were about one order of magnitude
smaller, significantly above the level of the rest of the spectrum.
Squares and circles correspond to modes with wave numbers
(1, ±3) and (1, ±2), respectively. Different colors (on line; in print,
Fig. A.3. Order in the pattern measured by the mean value of the modulus of the
dominant Fourier component squared, here called ‘intensity’, as a function of the
Reynolds number for the large domain (128 × 160). See explanations in the text.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

various shades of gray) correspond to experiments performed un-
der different protocols. The experiment with δt = 500 is shown in
black and the one with δt = 3500 in blue. The two marks in green
at Re = 380 and 385 have been obtained from the correspond-
ing result at Re = 370 and the mark in red at Re = 395 from the
three-band state at Re = 390.

As noted earlier, only values corresponding to simple final
states considered as steady over sufficiently long (but finite) du-
rations are reported, hence nothing for Re ≥ 400. Multi-stability is
easily understood as a result of periodic boundary conditions. Dis-
crete jumps from one orientation to the other are therefore similar
to those observed in CCF [124,125] where they were due to peri-
odicity along the azimuthal direction. The more continuous varia-
tion experimentally observed in PCF [124,125] is presumably due
to less stringent streamwise and spanwise boundary conditions.

No data can be seen in the upper part of the transitional range
for Re > 395, the center of the spectrum was always found with
complex structure forbidding the unambiguous isolation of a dom-
inant mode. As illustrated in Fig. A.4, for Re = 400, intermittent
staggered arrangements of streamwise elongated laminar troughs
(t = 7450) evolved into chevron patterns (t = 9600) that later
decayed to mostly featureless turbulent flow riddled with smaller
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Fig. A.4. Snapshots of the solution in an experiment at Re = 400 for t = 7450 (top left), 9600 (top right), and 11800 (bottom left), featuring the turbulent energy averaged
over the upper layer 0 ≤ y ≤ 1. Streamwise direction is vertical. In order to enhance the appearance of the patterns, the images display a 2×2 tiling of the pattern permitted
by the in-plane periodic boundary conditions. Bottom-right: center of the Fourier spectrum in the chevron pattern displayed just above.
laminar patches (t = 11800). The Fourier spectrum averaged
over the period when the chevrons are conspicuous (bottom right
panel) accordingly shows two symmetrical peaks but, in contrast
to what happens at lower Re, they are broadened and conditional
averaging has to be performed in order to obtain them. Only the
central part nx ≤ 3, |nz | ≤ 50 is shown; the broad humps centered
around |nz | = 35 correspond to the streamwise streaks withmean
spanwise period ≈ Lz/35 = 4.6. The chevrons are reminiscent of
what was observed in the upper transitional range of CCF [125],
except that here they are intermittent rather than steady.

At larger Re, patterns organized over the whole width of the
domain have not been observed but only localized tatters appear-
ing intermittently, either streamwise elongated patches or oblique
laminar ribbons as illustrated in Fig. A.5 for Re = 405. The bottom-
right panel displays the very center of the Fourier spectrum cor-
responding to the localized oblique laminar ribbons shown in the
bottom-left panel. These ribbons make an angle of 20.2° with re-
spect to the streamwise direction, i.e. less than 22.6° for a three-
band pattern fitting the domain but more than 17.4° for an ideal
four-band pattern. The angle and spanwise localization manifest
themselves in the Fourier spectrum that, besides a main peak at
nz = −3, contains substantial power at nz = −4 and also signifi-
cant power at nz = −2 and −5, as well as in a wing at positive nz
from +2 to +5, which nicely account for a main mode modulated
by a localized envelope.

For Re ≥ 405, oblique patches become rare but streamwise
elongated ones persist to large values of Re though becoming
smaller and smaller. Fourier spectra conditionally averaged over
short durations may accidentally present some structure reflect-
ing the short lifetime of laminar troughs arrangements. However,
above Re ≃ 400, the determination of an order parameter in the
sense of phase transitions from Fourier spectra seems quite del-
icate. Progress in this domain (larger domains approaching the
‘‘thermodynamic limit’’ and longer durations for better statistics)
would be obtained only through a detailed study of space–time
correlations that is much beyond my present computational capa-
bilities.

A.3. Discussion

These results compare favorably with earlier empirical results,
experimental [125] and numerical [44], giving a reliable quantita-
tive access to the orientation changeswith Re. In particular, images
in Figs. A.4 and A.5 are remarkably similar to those in figure 3.28
in Prigent’s thesis [124] at similar Reynolds numbers (see note 3).
The periodic boundary conditions however freeze the orientation
over finite intervals of Re, implying slightly subcritical transitions
via Eckhaus-like dislocation nucleation (3 → 2 bands at Re & 335,
2 → 3 bands at Re . 380) and the intermittent occurrence of
laminar troughs leaning at smaller angles for Re & 400. They also
contradict observations made in [161] where a continuous transi-
tion at a much higher threshold Ret ∼ 440 was mentioned. This
discrepancy can be attributed to the role of the geometry used
by Barkley and Tuckerman which, forbidding orientation fluctua-
tions and severely reinforcing the streamwise coherence, has a ten-
dency to delay the occurrence of featureless turbulence towards
larger Re, whereas the quasi-1d character of the domain justifies
the observed continuous nature of the transition as in other simi-
lar circumstances [23,10,145].

Appendix B. About models of laminar–turbulent patterning

B.1. Context

Much as Waleffe’s modeling [165] accounts for the process
by which turbulence is locally maintained, the modeling adapted
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Fig. A.5. Snapshots of the solution in an experiment at Re = 405 for t = 7350 (top-left), t = 8100 (top-right), and 10050 (bottom left); same representation as for images
in Fig. A.4. Bottom-right: center of the Fourier spectrum corresponding to localized oblique laminar ribbons on the left.
to extended systems is expected to enlighten the nature of
the laminar–turbulent coexistence characterizing the subcritical
transition to turbulence in wall-bounded flows.

The pioneering work of Barkley for pipe flow [10,11] treats
turbulence as the result of a local ‘‘chemical reaction’’ between
two variables, one characterizing the mean shear (u) and the other
the local turbulence level (q). Spatial dependence along the axis of
the pipe is next introduced in the form of an effective diffusion of
q. Adding axial transport of u and q then leads to what is known
as an advection–reaction–diffusion model. A clever choice of the
reaction part led him to account for the whole transitional range
quantitatively by scaling Re appropriately. An ad hoc extension
to PCF [11] was however less convincing. Keeping up with the
reaction–diffusion concept, in Ref. [105] I proposed to interpret
patterning as the result of a Turing instability [114].

The model supporting my conjecture relied on Waleffe’s
system [166] for the local reaction part. The corresponding dynam-
ical system, which does not encrypts any large-scale space depen-
dence, can be termed zero-dimensional (0d). This assumption was
relaxed by introducing, on purely phenomenological grounds, ef-
fective diffusivities akin to turbulent viscosities in the direction of
the wavevector of the putative pattern, i.e. a one-dimensional (1d)
reaction–diffusion model. According to the mechanism of a stan-
dard Turing instability [114], when the diffusion coefficient con-
trolling streamwise perturbations (Waleffe’s variableM , similar to
Barkley’s u) was taken much larger than that of the streak insta-
bility mode (variable W , playing the role of q) a periodic pattern
was obtained, retaining the subcritical character of the transition
at Reg [105]. Despite its interest, the main limitations of the model
were the simplicity of the large-scale dynamics reduced to a naive
but plausible turbulent diffusion and, above all, the arbitrariness in
the orientation of the space coordinate unable to explain the origin
of the obliqueness of the laminar–turbulent bands, both calling for
a more realistic introduction of large scale dependence in physical
space.

My involvement in the construction of models based on
weighted residual approximations [57] of primitive equations dates
back to the early Eighties, at that time for thermal convection [97].
Recently, I attacked the problem of 2dmodeling of PCF in the same
perspective. The derivation first involves a systematic decomposi-
tion of the wall-normal (y) dependence of the hydrodynamic fields
on a complete functional basis. Next, a projection of the full three-
dimensional Navier–Stokes equations is performed on the same
basis, which singles out the Galerkin method among the vast fam-
ily of weighted residual methods [57]. This leaves one with an
infinite set of partial differential equations depending on the in-
plane coordinates (x, z) and time t . Finally, a severe truncation of
this set is performed by retaining the very first Galerkin ampli-
tudes, which yields a 2D model partially accounting for the third
dimension through the shape of the corresponding wall-normal
modes.

For PCF, this approach was first developed using the trigono-
metric basis permitted by stress-free boundary conditions [99].
Yielding the most natural 2D extension of Waleffe’s model, it re-
produced the local SSP and the subcritical nature of the transition,
but strongly underestimated Reg. The model was subsequently
adapted to no-slip boundary conditions with M. Lagha [86] us-
ing the Galerkin basis introduced in [62, p.199ff] that I previously
considered in the context of thermal convection [97]. A more re-
alistic Reg was obtained but the expected band pattern failed to
show up [101]. This failure was attributed to an exaggeratedly re-
duced effectivewall-normal resolution since direct numerical sim-
ulations have shown that a slight improvement is sufficient to
recover the bands [102]. A straightforward option was therefore
to push the truncation of the Galerkin expansion to a higher order.
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Fig. B.6. Left: perturbation energy contained in the reconstructed solution as a function of the number of polynomials compared to that in the original numerical solution
(dashed line). Right: relative residual energy. Re = 370 as blue square dots, and Re = 450 as red round dots. (Color on line).
B.2. A model for plane Couette flow with some preliminary results

The improved model derived with K. Seshasayanan [144,107]
was obtained by closely following the approach developed with
M. Lagha [86]. The main novelty was that, to avoid difficulties
linked to the treatment of the continuity equation, we adopted
a velocity–vorticity formulation (v, ζ ) [137, p.155ff] but we used
the same basis. Thewall-normal velocity and vorticity components
were expanded as

v =

jmax
j=1

Vj(x, z, t)fj(y), ζ ≡ ∂zu − ∂xw =

j′max
j′=0

Zj′(x, z, t)gj′(y),

with fj(y) = (1− y2)2Pj(y) and gj′(y) = (1− y2)Qj′(y). Pre-factors
(1 − y2)2 and (1 − y2) ensure that the boundary conditions on v

and ζ at y = ±1, v = ∂yv = ζ = 0, are automatically fulfilled.
Polynomials Pj(y) andQj′(y) are of degree j−1 and j′. This labeling is
chosen so that, when taking the continuity equation into account,
a consistent truncation is obtained with jmax = j′max, hence three
fields for jmax = 1 in [86].

The generic formof the equations for amplitudesVj and Zj, given
in [107]which is currently not accessible, is repeated here formore
specificity:

δi
j(∂xx + ∂zz) + aij
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δ′i
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j
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Nonlinear terms N (V )
j and N (Z)

j are quadratic expressions of the
velocity component amplitudes Uj, Vj, Wj:

N (V )
j = (∂xx + ∂zz)


qikj [∂x(UiVk) + ∂z(WiVk)] + q′ ik

j (ViVk)


− r ikj [∂xx (UiUk) + 2∂xz (UiWk) + ∂zz (WiWk)]

− r ′ik
j [∂x (UiVk) + ∂z (WiVk)] ,

N (Z)
j = sikj


∂xz(UiUk − WiWk) + (∂zz − ∂xx)(UjWk)


+ s′ikj [∂z(UiVk) − ∂x(WiVk)] .

The in-plane velocity components contain uniform contributions
that have to be dealt with separately [137]. Setting Uj = U j + Uj,
Wj = W j + Wj, for the uniform parts (U j,W j) one gets:

δi
j∂tU i + s′ikj UiVk = Re−1 ni

j U i,

δi
j∂tW i + s′ ikj WiVk = Re−1 ni

j W i,
where the overline means space averaging over the whole domain
under study (in-plane periodic boundary conditions assumed). Ev-
erywhere repeated identical upper and lower indices correspond
to implicit summation, all coefficients being straightforwardly ob-
tained as integrals of polynomials over y ∈ [−1, +1] at the projec-
tion step.

Besides being easy to use the chosen basis captures the wall-
normal dependence of the flow quite efficiently, as illustrated in
Fig. B.6. Two reference numerical solutions obtained in the large
domain (128 × 160) of Appendix A (subscript ‘ref’ in the follow-
ing) have been projected on the polynomial basis and then recon-
structedusing an increasingly large number ofGalerkin amplitudes
for Re = 370 (two band solution) and Re = 450 (featureless
state). The left panel in Fig. B.6 displays the perturbation energy
contained in the different reconstructions compared to that in the
reference states. In the right panel, the nearly exponential decrease
of the point-wise residual


(v−vref)2/


(vref)2 gives a good idea of

the convergence of the expansion. The reconstruction ismarginally
better at Re = 370 than at Re = 450. This can be understood from
the contribution of the laminar regionwhich is certainly better ren-
dered than the turbulent region that, whether banded or feature-
less, requires better resolution close to the walls.

The numerical implementation by K. Seshasayanan and some
preliminary simulations are described in detail elsewhere [144].
Truncation at jmax = 3, i.e. seven Galerkin amplitudes, has been
selected because it allowed us to include one correction of each
parity, odd and even, to the previous three-field model of [86]
while being presumably accurate enough (Fig. B.6, right panel).
Fig. B.7 (left panel) displays a snapshot of the perturbation energy
contained in the solution at steady state for Re = 151 in a domain
of size 680 × 340, comparable to that of Prigent’s experimental
setup [124]. From that picture it is clear that the model is able to
reproduce the patterning in its own transitional range [Reg, Ret] ∼

[150, 159]. The right panel of Fig. B.7 shows the state of the flow
in a domain of nearly identical size (682 × 341) obtained using
ChannelFlow like in Appendix A but strongly under-resolved in
wall-normal direction with Ny = 11 Chebyshev polynomials [102]
instead of 33 above.

In both cases, patterning appears at values of Re smaller than
in experiments [125] or in the well-resolved numerics of [44] and
Appendix A, for the reason already indicated in Section 1.2 about
under-resolved DNSs. Of course this effect is even more important
in the seven-field model than is the DNS with Ny = 11 that re-
solves the flow more finely though not yet enough to recover the
actual transitional range. From Fig. B.7, it is also apparent that the
pattern obtainedwith themodel has smaller streamwise and span-
wise wavelengths than expected. This is again an effect of effective
wall-normal under-resolution since DNSswith Chebyshev polyno-
mials show that, when Ny is decreased, the streamwise coherence
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Fig. B.7. Field of perturbation energy from a simulation of the seven-field model at Re = 151 (left, courtesy of K. Seshasayanan) and from a DNS using ChannelFlow [60]
with Ny = 11 Chebyshev polynomials at Re = 250, adapted from [102]. Domain size is ≃ 680 × 340. (Color levels on line).
of streaks is diminished so that for Ny < 11 remaining turbu-
lent fields do not show bands and resemble those obtained with
the three-field model [102]. In this respect, polynomials used here
seem to do better since the streamwise coherence is indeed im-
paired but bandswithphysically credible obliquity are still present.

B.3. Perspectives

Contrasting with under-resolved simulations that behave as
black boxes, the model presents itself as a closed set of equations.
It has been obtained in a systematic way and seems to encode the
most relevant features of the transition to turbulence in PCF in-
cluding the bands, provided that truncation takes place just beyond
lowest order, i.e. seven fields. Going furtherwith analytical approx-
imations is thusmanageable via explicit scale separation (local SSP
vs. pattern), averaging, and adiabatic elimination of enslaved de-
grees of freedom, yielding higher degree terms fromquadratic ones
as in [105], and explicit anisotropic expressions for the turbulent
diffusion terms. Remarkably enough, the complete solution con-
tains uniform in-plane mean-flow components [137, p.155ff] that
are obtained as space averages of Reynolds stresses [107] respon-
sible for a non-local feedback (see the corresponding equations in
themodel above). This feedback termclosely corresponds to the in-
tegral term controlling the relativewidth of the turbulent and lam-
inar domains in cylindrical Couette spiral turbulence, as introduced
by Hayot & Pomeau in their RGL5 model [68]. An effective reduced
model – still being developed – is thus expected to emerge from the
whole procedure. Beyond the 1d model that I introduced in [105],
it should thus be fully realistic and, wishfully, able to predict (and
explain the origin of) the patterning in PCF and other similar flows.
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