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Abstract

The growth of laminar—turbulent band patterns in plane Couette flow is studied
in the vicinity of the global stability threshold Re, below which laminar
flow ultimately prevails. Appropriately tailored direct numerical simulations
are performed to manage systems extended enough to accommodate several
bands. The initial state or germ is an oblique turbulent patch of limited extent.
The growth is seen to result from several competing processes: (i) nucleation
of turbulent patches close to or at the extremities of already formed band
segments, with the same obliquity as the germ or the opposite one, and
(i1) turbulence collapse similar to gap formation for band decay. Growth
into a labyrinthine pattern is observed as soon as spanwise expansion is
effective. An ideally aligned pattern is usually obtained at the end of a long
and gradual regularization stage when Re is large enough. Stable isolated
bands can be observed slightly above Re,. When growth rates are not large
enough, the germ decays at the end of a long transient, similarly to what
was observed in experiments. Local continuous growth/decay microscopic
mechanisms are seen to compete with large deviations which are the cause of
mesoscopic nucleation events (turbulent patches or laminar gaps) controlling
the macroscopic behaviour of the system (pattern). The implications of these
findings are discussed in the light of Pomeau’s proposals based on directed
percolation and first-order phase transitions in statistical physics.

(Some figures may appear in colour only in the online journal)
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1. Context

The direct transition to turbulence in wall-bounded flows still raises open questions linked
to the metastability of turbulence and the possible coexistence of laminar and turbulent flow
in a finite range of Reynolds numbers. Significant progress has recently been made on pipe
flow in a cylindrical tube where a well-defined threshold could be defined by comparing the
rates for puff decay and puff splitting: splitting propagates turbulence while decay drives the
flow to the laminar state, so that turbulence can persist indefinitely with finite probability
when new puffs are produced faster than they collapse (Avila et al 2011, Barkley 2011,
Moxey and Barkley 2010). Plane Couette flow, the flow between counter-translating parallel
plates, represents another canonical flow situation with a direct transition observed while
laminar flow is linearly stable for all Reynolds numbers. With Re being defined as Uh/v,
where 2U is the relative speed of the plates, 2h the gap between them and v the kinematic
viscosity of the sheared fluid, two thresholds have been identified. Laminar flow is always
recovered in the long-time limit below the lower threshold Re,. Experiments performed
by the Saclay group (Bottin 1998, Bottin et al 1998) located it at Re, ~ 325. Featureless
turbulence is obtained above the upper threshold Re, and, between Re, and Re, laminar
and turbulent flows coexist in space. Provided that the aspect ratio—the ratio of lateral setup
dimensions to the gap—is sufficiently large, this coexistence manifests itself in the form of
oblique bands, alternately laminar and turbulent, at rest in the laboratory frame (Prigent 2001,
Prigent et al 2003). The Saclay experiments have shown that Re; & 410 and, in units of 4 as
used everywhere in the following, the streamwise wavelength of the turbulence modulation
is Ay & 110, while the spanwise wavelength A, varies from 55-65 close to Re; to 70-90
around Re,.

A previous study (Manneville 2011) was devoted to the decay of these bands for
Re < Reg, i.e. the turbulent — laminar transition. Here we examine the laminar — turbulent
transition for Re 2 Re,, not the early stage where a localized sufficiently strong perturbation
is turned into a turbulent spot but rather the late stage, i.e. the growth of a developed pattern
from a small but sufficiently extended turbulent patch. Turbulent spot dynamics in simple
shear flow was first studied by Lundbladh and Johansson (1991) numerically in computer
domains of size 128 x 2 x 64 at Reynolds numbers somewhat larger than those we are
interested in. Accordingly, their spots grew quickly while mostly keeping their initial ovoid
shape. Laboratory experiments were later performed in the same regime by Dauchot and
Daviaud (1995) and Tillmark (1995). In contrast, Bottin (1998) studied the behaviour of
spots in the vicinity of Re,, the determination of which she largely contributed to (see also
Bottin et al 1998). The spanwise dimension of her setup (L, = 284, L, = 72) was, however,
insufficient to show the bands and only her very latest experiments at doubled aspect ratio
could show a tendency to form oblique patches at steady state. In contrast, bands were
conspicuous in Prigent’s work with L, = 770 and L, = 340 (Prigent 2001, Prigent et al 2003),
but these researchers studied only patterning well above Reg, closer to Re, by gradually
decreasing Re.

Direct numerical simulations (DNS) of the Navier—Stokes equations in domains
sufficiently extended to be of interest to pattern formation have been performed by Duguet
et al (2010) who considered the evolution of the flow from a sufficiently intense random noise
in a domain of size comparable to Prigent’s (800 x 2 x 356): the many spots left after a brief
viscous smoothing stage were seen to interact and generate a kind of labyrinthine structure
that became gradually organized into a patchwork of well-oriented domains separated by
grain boundaries (see movie 2 attached to their paper). Motivated by the work done on pipe
flow, Duguet er al (2011) next focused on the statistics of the laminar—turbulent interface
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in a spanwise-elongated but streamwise-narrow computational domain (10 x 2 x 250), i.e. a
confined quasi-one-dimensional (1D) configuration similar to a pipe. They pointed out the
competition between progress events (sudden expansion of the turbulent domain, reminiscent
of puff splitting) overcoming retreat events (sudden breakdown of turbulence, reminiscent
of puff decay) beyond some threshold located in the vicinity of Reg but possibly slightly
different. Their elongated domain, however, did not allow the development of an average
large-scale laminar flow outside the turbulent domain induced by Reynolds stresses inside
it, as pointed out by e.g. Lundbladh and Johansson (1991) in their DNS, by Dauchot and
Daviaud (1995) or Tillmark (1995) in their experiments, by Schumacher and Eckhardt (2001)
using DNS with artificial stress-free boundary conditions, by Barkley and Tuckerman (2007)
and Barkley (2011) using their oblique narrow domain or by Lagha and Manneville (2007b)
using a model.

In recent years, we have been involved in a numerical study of plane Couette flow
dedicated to large-aspect-ratio systems free of limitations implied by confinement in the
streamwise direction (Duguet et al 2011) or the skewed streamwise direction (Barkley and
Tuckerman 2005). Aiming at the same goal as Duguet et al (2010) but at a much reduced
computational cost, we validated a modelling strategy based on DNS at controlled under-
resolution (Manneville and Rolland 2010). The subsequent sections of this paper expand
(section 2) and discuss (section 3) our results with a focus on the growth of patterns.
See (Manneville 2011) for further details of the computing methodology. In that paper, decay
is shown to result from a small-scale stochastic process generated by chaos in the range of
Reynolds numbers where turbulent bands are present. The transient nature of this chaos makes
decay of turbulent bands toward laminar flow possible. Competition, however, exists between
local decay and contamination of locally laminar flow by turbulence at the laminar—turbulent
interface.

As conjectured by Pomeau (1986), directed percolation—as involved in e.g. flow
through porous media, forest fires or propagation of epidemics—becomes a relevant
framework (Hinrichsen 2000) to interpret the transition from expanding to retracting
turbulence at the extremities of an oblique band segment. In order to operate, this
contamination process first demands that the continuous band be broken by the opening of a
sufficiently wide laminar gap. In turn, the opening of such a gap results from large deviations
of the small-scale transient chaotic dynamics. Here, growth from a germ (a localized patch of
turbulence) at Re 2 Re, will be shown to involve the same directed percolation process, now
biased towards growth instead of decay, and the same large-deviation effects. The latter will
produce either the nucleation of a turbulent bud oriented in the direction complementary to
that of the considered oblique turbulent band segment, or the collapse of a large region taken
in the turbulent patch, namely the opening of a laminar gap or the relaminarization of a newly
born turbulent bud.

2. Results

2.1. The growth experiment

Simulations make use of CHANNELFLOW, the open-source software developed by
Gibson (1999). This software is a pseudo-spectral Fourier (x) x Chebyshev (y)x Fourier (z)
de-aliased scheme integrating the Navier-Stokes equations. A good compromise between
computational load and realism has been found for N, = L, and N, =3L,, N, being the
numbers of collocation points used in the evaluation of in-plane dependence of nonlinear
terms, and the number of Chebyshev polynomials N, = 15. This resolution may seem quite
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low but all the features of the transitional regime appear to be well preserved (self-sustaining
process, laminar—turbulent coexistence, and pattern selection with A, and A, comparing
favourably with experimental values). The price to be paid is just a moderate shift of the
transitional range [Rg, Ri] by about 15% from [325, 410] down to [275, 360]. A thorough
validation of the numerical procedure can be found in Manneville and Rolland (2010). On
the other hand, we are able to study domains with typical size L, > 400, L, > 250, and
perform many statistically significant experiments using merely the power of a desktop
computer.

The general conditions used to study the decay of bands (Manneville 2011) also hold
for the growth from a germ studied here, as it depends on the Reynolds number. The only
difference is the size of the domain, which has been slightly enlarged from (432, 256) to (468,
272) in an attempt to delay the effects of periodic boundary conditions as much as possible
without greatly increasing the computational burden. In the following, images will display the
field of local perturbation energy averaged over the thickness:

1! .
~1

where V= v — yX, v is the total velocity field and yX the laminar flow. When necessary, we

shall superpose the streamlines of the in-plane velocity perturbation field i, X + i1,Z averaged

over the thickness:

_ 1 +1
ux,z(xﬂz’t)zzf dyux,z(xa y,Z, t)v (2)
-1

subsequently mildly filtered as explained in Manneville (2011), or display the local intensity
of this flow as defined by \/u2 +u2. On some occasions, taking advantage of in-plane periodic
boundary conditions, we shall display a 2 x 2 matrix tiling of the solution to offer a better
view of the pattern obtained. Graphs will show the distance to laminar flow defined as

At) = : //dxdz\/2e(x,z,t). 3)

LiL,

The same germ, shown in figure 1, has been used for all simulations, prepared from a
small isolated turbulent oblique patch obtained at Re = 278.75 in the (432, 256) domain,
and placed in the (468, 272) domain. The germ was extracted as a snapshot from a decay
experiment, long before the latest stage of viscous relaxation, at a time when a single sizeable
area of developed turbulence is still present, elongated and obliquely oriented, with typical
width/length of the order of a turbulent band width (Manneville 2011). Starting from such a
mature spot as the initial state has the advantage of skipping the early stage of growth from
more limited but strongly perturbed flow and to better focus on the selection processes at work
during the formation of the turbulent band pattern. Starting from highly localized initial states
would work when Re > Re, and growth is essentially a deterministic process as studied
by Lundbladh and Johansson (1991) and Dauchot and Daviaud (1995) but, for Re 2 Re,,
most would decay. The very first growth stage indeed sensitively depends on the shape of
early spots and the intensity of turbulence inside them, as shown by Bottin (1998). On the
other hand, starting from a random initial field like Duguet er al (2010) would not produce
sufficiently isolated spots (see their movie 2). Displaying streamlines of the mean in-plane
flow as in figure 1 might be misleading in that this overemphasizes long-distance interactions
while the flow is in fact exponentially weak away from the turbulent area. This has, however,
the merit of reminding us of potential reconnection problems when several spots interact, a
situation here mimicked by the periodic boundary conditions.
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Figure 1. Averaged local perturbation energy defined by (1) and averaged in-plane velocity
streamlines defined from (2) for the turbulent spot used as a germ in growth experiments.
The germ has been shifted at the centre of the domain by taking advantage of the periodic
boundary conditions. The streamwise direction is horizontal. Colour coding for e(x, z, t) to be
used everywhere in the following: from blue for e &~ 0 to yellow and next red for e > 0.1.
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Figure 2. Time series of the distance to laminar flow as a function of time for several Reynolds
numbers from the same initial condition.

Figure 2 recapitulates the findings in terms of the distance A to laminar flow as a function
of ¢ (in units of the advection time /U as used everywhere in the following) for different
values of Re. The first observation is that, for the values of Re considered, all above Re, ~ 275,
mature spots in fact decay in quite a short time for Re < 282.50. The second observation
is that for Re > 282.5, the system can reach several asymptotic states with different values
of the distance to laminar flow. An illustration of states reached when the simulations were
stopped is given in figure 3. For Re > 285, statistically steady solutions all correspond to
three more or less well-formed bands. At Re = 283.75 a complicated, unsteady, disorganized
pattern with two to three bands is obtained. A single isolated band survives for Re = 282.50. It
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20000

2825 t
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Figure 3. States reached when simulations were stopped for, from left to right, Re =282.5
(single band), Re = 283.75, Re = 285, Re = 286.25, and Re = 287.5. The streamwise direction
is vertical. The same colour coding as in figure 1.

t =600
t=800
t=1000
t=1200
t= 1400

Figure 4. Turbulent budding at the start of the experiment for Re = 285. Times are indicated to
the left of the corresponding images. The streamwise direction is vertical.

should be recalled that, from previous experiments (Manneville 2011), three stable continuous
bands were systematically obtained upon decreasing Re adiabatically. The slight change in the
dimensions of the domain, from (468, 272) here to (432, 256) there, is likely to explain that
bands were less prone to irregular widths in the smaller domain, when compared to what
is seen in figure 3 for Re > 285. The smaller domain is indeed presumably closer to fitting
integer multiples of the patterns’ optimal wavelengths in the range of Re considered here.
A last remark is that, still from the consideration of variations of A with time, growth can take
place at different speeds with plateau stages. The rest of this paper aims at interpreting these
observations in terms of individual, competing or cooperating processes.

2.2. Growth at Re =285

This experiment best exemplifies the different processes at work and the different stages
observed in wide enough domains with periodic boundary conditions. On general grounds
several qualitatively different periods can be distinguished, characterized by the occurrence of
specific events. Borrowing the terminology from Duguet ef al (2011), we call a progress event
an episode increasing the turbulent fraction and a retreat event an episode where turbulence
breaks down over some region. In contrast with processes observed by Duguet et al generally
involving a few streaks, our events rather develop at the scale of the width of the turbulent
patch considered as illustrated below. The phenomena that we shall encounter will happen
repeatedly, throughout the growth process.
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Figure 5. The formation of a small turbulent bar next to the germ, here called splitting. Re = 285.
The streamwise direction is vertical.
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Figure 6. The formation of the chevon pattern and next the diamond. The central and rightmost
images display 2 x 2 tilings of the local intensity of the mean in-plane flow corresponding to the
images to their immediate left (decimal logarithms, colour scale from blue (—10) to yellow (—5)
tored (—1.7 =1log;(0.02)). Re = 285. The streamwise direction is vertical.

e Early after the start of the experiment, the system attempts to grow a turbulent branch
oriented along the direction symmetrical to that of the initial oblique bar with respect
to the streamwise axis. Figure 4 illustrates this nucleation process that we call budding.
In that case, the bud immediately breaks down and the net result is a longer turbulent
segment along the original direction.

e Soon after, another growth process takes place, reminiscent of spot splitting in plane
Poiseuille flow (Carlson et al 1982) or puff splitting in pipe flow (Avila er al 2011),
namely the development of a small turbulent patch parallel to the original turbulent bar
and separated from it by a quasi-laminar zone. This process is depicted in figure 5. Here
again, the newly created turbulent zone breaks down immediately while the length of the
patch has increased.

e At about t =8 x 10%, a budding event starts but the newly created branch no longer
decays and a chevron pattern is obtained, see figure 6 (left and centre-left). This chevron
can still be considered as an isolated object as suggested by the representation of the
intensity of the mean in-plane flow (central image).

e Each arm of the chevon next grows along its own direction, until they form a nearly closed
diamond-shaped region. The flow inside the diamonds has a complicated pattern but
remains extremely weak. Budding of a turbulent segment at the other end of the primary
branch at ¢ &~ 1.56 x 10* helps to close the diamond as in the images at r = 1.64 x 10*
(figure 6, right). Wide quasi-laminar domains are present at the centre of the diamond
and the very same two processes, budding and splitting, operate to fill its interior with
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Figure 7. The late stage of growth for Re = 285 from t = 1.75 x 10* tor = 3.75 x 10*. All images
are 2 x 2 tilings of the solution. The streamwise direction is vertical.

banded turbulence. Compound events frequently occur, i.e. the nucleation of bar-like
patches aligned opposite to the local main growth direction and separated from their
parents by a small laminar gap, the traces of which are easily identified in the two leftmost
images in figure 7. The filling is slow but statistically monotonic. It resembles a trial-and-
error process with progress events overcoming retreat events when turbulence collapses
over sizeable parts of the newly created turbulent patches. These processes eventually
select a pattern oriented along the direction opposite to that of the initial growth, with the
dominant orientation mostly leaning to the left with respect to the streamwise direction
(two leftmost images at ¢ = 1.75 x 10* and ¢ = 2.25 x 10*), next leaning to the right
(t =2.75 x 10* and ¢ = 3.25 x 10*), before eliminating defects to yield a perfect banded
pattern, here illustrated at ¢ = 3.75 x 10*.

e So, for t > 3.55 x 10, a nearly steady state with three well-formed bands prevails (six
when taking into account the 2 x 2 tiling of figure 7); but with a trace of instability of the
width of the turbulent bands. This instability evolves into small transversely oriented band
fragments that temporarily and locally perturb a given band, cf the image at t = 4 x 10*
in figure 3 (centre), which seems to be the way the system finds to solve the mismatch
between the size of the domain and its optimal wavelength at the corresponding value
of Re.

2.3. Growth for Re > 282.50

Let us first consider the cases with Re > 285, namely Re = 286.25 and Re = 287.50. The
faster increase of the distance to laminar flow observed in figure 2 can be attributed to a
faster spanwise growth, itself due to a smaller probability of turbulent bud decay, so that a
connected chevron pattern is observed much earlier. For Re = 286.25, the system gets stuck
from ¢ &~ 7.5 x 10° to 1.5 x 10* in a configuration similar to what is observed for Re = 285
at t = 1.75 x 10* (figure 7, left image) with a wide laminar domain that the system finds
difficult to fill. This corresponds to the plateau seen on the corresponding time series of the
distance to laminar flow in figure 2. The slow growth that follows the plateau is quite similar
to the behaviour recorded for Re = 385, with the same processes involved. In contrast, for
Re =287.5, the growth is much more regular, with just a saturation when the three-band
configuration is reached.

In both cases, the late growth stage to the defect-free pattern configuration is much
slower than the reorganization stage observed at similar Re during the experiment starting
from featureless turbulence (Manneville 2011) where laminar troughs were progressively
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Figure 8. Late stage of growth at Re = 283.75 from ¢ = 10* to r = 3.5 x 10* (2 x 2 tilings). At
t = 3.5 x 10* the system has returned close to its state at £ = 2 x 10*. The streamwise direction is
vertical.

created in a uniformly turbulent system with adapted wavelength from the start and no
anomalously wide laminar regions. In contrast, here pattern formation crucially involves
turbulent patches in the form of bars growing at their extremities along their main axis, which
generates wide laminar domains to be reduced by large deviation processes only (budding/
splitting).

We next turn to the cases with Re < 285, namely Re = 283.75 and Re = 282.50. The
early and medium growth stages closely correspond to what is observed for R = 285 in terms
of time series of the distance to laminar flow (figure 2). However slight frequency differences
in the processes at work drive the system to unsaturated patterns, i.e. with turbulent fractions
smaller than what could be expected from earlier studies (Manneville 2011). This is due to a
larger decay rate for turbulent patches issued from budding and splitting, which mainly limits
the possibility of branching while the growth speed along the main growth direction remains
approximately constant. This decay rate increases when Re is decreased, which has important
consequences for the pattern obtained in the long-time limit:

e For Re =283.75 (figure 8), the chevron pattern in some sense nearly degenerates with
a dominant nearly connected diagonal band and short lateral branches (r = 1.2 x 10%).
Lateral branching occurs repeatedly and a complicated pattern results, following the
same trends as when Re is larger, although the system experiences more difficulty in
filling all the laminar patches. As a result, the turbulent fraction saturates at a smaller
value than when perfect or nearly perfect patterns are reached for Re > 285. Furthermore,
the defective pattern at r = 3.5 x 10* has returned close to its state at = 2 x 10*, while
other configurations with a somewhat different topology but roughly the same turbulent
fraction, e.g. the state at t =2.75 x 10*, have been visited in the meantime. This does
not prove that the time-asymptotic regime is unsteady due to frustration hampering the
regularization of the pattern, but suggests that the transient towards the permanent regime,
if steady, is extremely long due to the long time scales involved in the large deviation
processes at work.

e For Re = 282.5, whereas budding and splitting still take place at roughly the same rate,
the decay of newly created turbulent patches is large enough that the chevron cannot
develop, since the lateral branch is destroyed before having a chance to produce a
nontrivial pattern. Since the turbulent segment still continues to grow, a single band
is obtained in the long-time limit. Although specific to the in-plane periodic boundary
conditions, the interesting phenomenon here relates to how the large-scale quasi-laminar
flow around the turbulent region reconnects (figure 9), as such reconnection processes
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t= 10000
t = 10000
t=12800

t= 20000

Figure 9. Late stage of growth at Re = 282.50. In each group, the local distance to laminar flow
and the streamlines of the (uy, u;) field are depicted in the left image and the intensity of the
(ity, it;) field in the right image (decimal logarithms, colour scale as in figure 6). Top left: t = 10*,
the two tips are separated by a laminar gap. Top right: 7 = 1.28 x 10*, reconnection. Bottom:
t =2 x 10%, continuous band. The streamwise direction is vertical.

also take place in the other cases. At t = 10* (top-left images) a sizeable gap is open
with the (it,, it.) field displaying a saddle point. At = 1.28 x 10* (top-right images), the
gap is being filled with turbulence. The large-scale flow is most intense at the turbulent
laminar interface and clearly affects the budding process that took place a little earlier
(t =1.17 x 10*). It is also seen to play a role in the elimination of the irregularities
of the width of the turbulent band just after the reconnection, leaving us with a nice
continuous band here featured at t =2 x 10* (figure 9, bottom images). Barkley and
Tuckerman (2005) and Tuckerman and Barkley (2011) found such isolated band states
using their skewed-streamwise confined domain close to the global stability threshold.
The present observation shows that such states are possible stable configurations also in
weakly constrained periodic domains provided that the aspect ratios are compatible with
the preferred band angle at the relevant Reynolds number.

2.4. Decay for Re < 281.25

No sustained pattern has been obtained for Re < 282.50 when starting from the germ
displayed in figure 1. At Re = 281.25, laminar flow is recovered at the end of the interesting
long transient illustrated in figure 10. During this transient, the turbulent fraction falls to quite
small values at t & 800, 4300 (o) or 6500 (o) but the systems recovers with turbulent patches
at least as large as the initial germ at ¢ ~ 1800, 2500, 4000, 5700 (o) or 8000 (o), experiencing
arapid collapse after  ~ 9200 (o). A similar behaviour is observed for Re = 280 and 278.75
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Figure 10. Decay of the germ for Re = 281.25. Top: time series of the distance A to laminar flow.
Bottom: snapshots of the solution at the instants identified by open circles (o) in the graph. The
streamwise direction is vertical.

but transients are much shorter (see figure 2) due to an increase of the collapse probability
when Re is decreased. This is in line with Bottin’s study of triggered spots (Bottin 1998).
Any statistical analysis is, however, still out of reach since it would be necessary to vary
the size, the shape and the intensity of the initial germ, which is unfeasible, even with our
under-resolved numerics.

3. Discussion

In section 2, we have presented the phenomenology of the turbulent pattern growth in
plane Couette flow. DNSs at reduced resolution were performed in domains wide enough
to accommodate several bands. All the qualitative characteristics of the laminar—turbulent
transition were preserved, in particular the self-sustaining process (Waleffe 1997) at the scale
of the width of a pair of streaks (minimal flow unit or MFU, i.e. microscopic), transient
chaos in the transitional range (Eckhardt et al 2008) and the mesoscopic organization of
turbulence in bands (Prigent et al 2003), at just the price of a slight but systematic discrepancy
in the quantitative predictions, such as the observed 15% downward shift of the [Reg, Re]
interval. Accordingly, we focused on the identification of qualitative processes rather than on
quantitative statistical estimates. Our observations give unambiguous support to seminal ideas
put forward by Pomeau (1986) and further developed by him (1998) about the transition to
turbulence in globally subcritical systems.

In Pomeau’s views, state coexistence implied by subcriticality has crucial consequences
when dealing with the laminar—turbulent transition in extended geometry. In this case, lateral
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boundary conditions at large distances are sufficiently weak to allow an understanding of the
flow in terms of some spatiotemporal dynamics defined on a lattice of coupled local sites
evolving among several possible states. Fronts expected to separate homogeneous domains
of sites in different states were conjectured to fluctuate when one of these states was chaotic
while the other was regular. Accordingly, directed percolation—a stochastic contamination
process studied in statistical physics (Hinrichsen 2000)—was proposed as an appropriate
framework to discuss the phenomenon. In the transitional range of wall-bounded flows,
laminar flow is locally stable and would quite naturally be the absorbing state, which can
evolve towards nontrivial dynamics only by contamination from neighbours; in turn, locally
turbulent flow would of course play the role of the active state. Introducing transiently
chaotic local dynamical sub-systems coupled in a chain, he then proposed an implementation
of this statistical physics concept in terms of spatiotemporal intermittency, see Chaté and
Manneville (1988) for a concrete application.

A second ingredient of Pomeau’s approach is rooted in an analogy between the
subcritical transition to turbulence in extended systems and first-order phase transitions in
thermodynamics (such as the solid-liquid transition), and particularly with the associated
kinetic aspects involving the nucleation of one phase inside the other (Pomeau 1998): the
new phase develops around germs and the transition takes place when local fluctuations larger
than some critical germ are present, the new phase then invading the system. This framework
was tested by Bottin and Chaté (1998) within the framework of spatiotemporal intermittency
in the case of a discontinuous transition, and shown to be relevant (Manneville 2009) in a
model of plane Couette flow partially accounting for its subcritical transition (Lagha and
Manneville 2007a). In both cases, the nontrivial role of streamwise anisotropy and turbulent
band organization was, however, neglected, which is no longer the case here.

Pomeau’s educated guesses are indeed well illustrated by our experiments that reproduce
the transitional range more realistically than previous modelling attempts (Bottin and
Chaté 1998, Lagha and Manneville 2007a, Manneville 2009). During decay experiments
reported in Manneville (2011), two basic processes were pointed out, one microscopic (MFU
scale): the withdrawal of band fragments at their extremities, and the other mesoscopic (band
width scale): the opening of a sufficiently wide laminar gap inside a long enough band
segment. In growth experiments studied here, two complementary basic processes with similar
characteristics are present, one microscopic: the growth of band fragments at their tip and
along the direction of their length (at the statistical level), and one mesoscopic, in two forms:
splitting, nucleation of a turbulent segment locally parallel to the band, but at a distance from
it, and budding, transversally oriented turbulent offspring at a band segment extremity.

Probabilities attached to local processes—collapse of turbulent streaks and contamination
of laminar flow by nearby turbulence—control a phenomenon akin to directed percolation,
either biased towards decay for Re <275 as seen previously (Manneville 2011) or towards
growth as seen here for Re 2 282.5. A threshold Re’g, similar to that of directed percolation,
would then be obtained by optimization as a lower bound on Re for local growth from a
germ with variable size, shape and turbulent intensity, which at any rate is out of reach with
the present numerical capabilities. One would therefore have Re;, < 282.5 but >275 since
decay is effective at Re,. However, the transition need not be strictly analogous to directed
percolation, i.e. continuous, second-order, with critical exponents in the same universality
class (Hinrichsen 2000), as there are examples of similarly defined non-equilibrium processes
experiencing discontinuous transitions even in one dimension (Dickman and Tomé 1991)'.

! In contrast, Barkley (2011) indicates that for transitional pipe flow, which effectively behaves as a 1D system, the
critical properties of 1D directed percolation might apply.
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Growth and decay due to large deviations (splitting, budding, combination of both, and
turbulence collapse at the scale of the band width) are indeed conspicuous and the overall
dynamics can be understood from a detailed examination of properties of individual events,
e.g. the occurrence of spanwise growth, the irreversible invasion of the domain by a labyrinth
of band segments with two symmetrical orientations, the final regularization of the pattern
by elimination of defects of all sorts or the fact that, when the decay rate of newly created
turbulent patches is too large, the system does not enter the regime of labyrinthine growth but
builds up a single band.

The little-constrained quasi-2D geometry of our experiments offers many more
possibilities than the more constrained quasi-1D geometry of Duguet ef al (2011) for plane
Couette flow (or pipe flow considered by Moxey and Barkley (2010) or Avila et al (2011)).
Such a versatility is accordingly much harder to frame quantitatively at the probabilistic level.
For example, it does not seem possible to define a threshold by just comparing the probability
for retreat events and a single type of progress event as done by Duguet et al (2011), in analogy
with decay and splitting rates considered by Avila et al (2011). The many specific processes
discussed above are undoubtedly too small-scale to be reliably estimated at the quantitative
level with our simulations at reduced resolution. However, this does not reduce the generic
character of their relevance.

As a final remark, let us consider decay from a germ, here observed at Re < 281.25.
First, the general behaviour during long transients (see figure 10) is extremely similar to the
findings of Bottin (1998) and we expect that a statistical study would produce exponentially
decreasing lifetime distributions as in the laboratory, but even at reduced resolution, this
would imply a tremendous amount of work with little return. It is, however, interesting to
observe that, for Re between 281.25 and 282.5, the chosen germ is clearly at the border of the
attraction basin of laminar flow. In contrast with edge states that were obtained much beyond
Re, but at a small distance from laminar flow (Duguet et al 2009), the solution followed here
appears far enough from laminar flow, mostly because its spatial extension varies wildly. This
might reveal the actual role of these edge states because, at its closest approach to laminar
flow, the solution which is followed here has a spatial structure that, apart from being much
less symmetric, is tightly localized and looks similar to observed typical edge states, e.g. at
t =4.3 x 10 and 6.5 x 10°. Edge states are therefore unstable structures visited during long
transients. The corresponding intermittent dynamics is then in two stages: (i) deterministic
escape from edge states up to extended enough turbulent patches and (ii) stochastic return
to edge states according to the general spatiotemporal dynamics governing turbulence in the
transitional regime. This takes place in a very limited range of Reynolds numbers around Re,
where growth and decay via large deviations have similar probabilities, hence near-complete
breakdown and recovery. Final decay (here for ¢ > 9.2 x 10°) is eventually understood as
due to a large deviation missing the edge state and ejecting the system directly to laminar
flow. These trajectories, however, live in a region of phase space that is separated from the
region corresponding to well-formed bands that, for all practical purposes, can be considered
as stable down to Re,. They find their way to sustained turbulence only at larger Re when
growth overcomes decay by a sufficient amount. Incompletely saturated states can be reached
owing to frustration imposed by boundary conditions set at large lateral distances, at least as
long as Re is not large enough to ensure defect healing.

To conclude, whereas a large body of work has been devoted to systems confined by
periodic conditions at a small distance (MFU) where small-scale coherence and temporal
behaviour are important, our study relates to the fully spatiotemporal dynamics of systems
in extended geometry more relevant to laboratory experiments and for which the conceptual
framework of phase transitions proposed by Pomeau (1986, 1998) appears most adapted. In
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particular, it is suggested that large deviations and nucleation processes, inherent in first-
order transitions, govern the transition to/from turbulence, while processes akin to directed
percolation drive the details of growth/decay processes.

The main objectives of future work should thus be the elucidation of the hydrodynamical
mechanisms by which the laminar—turbulent interface maintains itself or moves, and, when
it moves continuously by local processes at the scale of a few streaks at the tip of turbulent
segments or, in contrast, by jumps at the scale of several streaks, i.e. budding, splitting or
collapse. The role of large-scale flows generated by Reynolds stresses inside the turbulent
patches should also be scrutinized.

In view of the close correspondence between our results and experimental findings or
fully resolved simulations at moderate aspect ratio (band decay, growth from a germ and
general band organization), we are confident that the results presented here are generic and just
shadow the physical situation at Reynolds numbers about 15% larger. Confirmation from fully
resolved numerics (as well as dedicated laboratory experiments) would, however, be welcome,
in particular to rank the probabilities of the different processes observed, and possibly define
appropriate thresholds as in Duguet ef al (2011) or Avila et al (2011). Finally, beyond the
specific case of plane Couette flow, other wall-bounded flows such as channel, rotor-stator and
boundary layer flows would warrant a similar study, in view of their technical importance.
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