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Coherent structures in transitional plane Couette flow
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We briefly review the recent work on turbulent coherent structures in the transition to and from turbulence
in wall-bounded flows, with special emphasis on the plane Couette flow for which these structures self-
organize to form a pattern of bands alternately laminar and turbulent.
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1. Context

In applied mathematics coherent structures, e.g. solitary waves, are most often understood as special
solutions to partial differential equations that can further be turned into homo/heteroclinic solutions to
ordinary differential equations by an appropriate change of frame. On the other hand, in turbulence
studies they present themselves as some sort of large-scale organized motion that is persistent in time
and correlated in space on a small-scale turbulent background. The transition to turbulence in some
wall-bounded flows offers an interesting mixture of these two viewpoints.

The Reynolds number R is the usual control parameter for flows. It is defined as R = UL/ν, where
U is the scale of velocity fluctuations over some relevant length scale L, and ν is the kinematic velocity
of the fluid. In contrast with shear flows displaying inflection points in their velocity profiles (mixing
layers, jets and wakes, etc.), flows controlled by the presence of walls (pipe or channel flows, boundary
layers, etc.) are usually protected from inertial instabilities of the Kelvin–Helmholtz type that develop
at low R and experience an abrupt transition to turbulence at moderate R, well below the threshold for
viscous instabilities of the Tollmien–Schlichting type that are possibly effective at high R only. For a
review, see Manneville (2010, Chapter 7).

The two most emblematic cases are the flow in a pipe of circular cross section under a given pressure
gradient or mass flux, and the plane Couette flow between two parallel counter-translating plates. Both
are known to be linearly stable for all R, while becoming turbulent at moderately large R. The transition
is marked by an important hysteresis and characterized by the coexistence of laminar and turbulent
flows in some finite-width range of R. Below a lower threshold that we denote by Rg, ‘g’ for global, the
turbulence is only transient. Above a second threshold, denoted by us as Rt, an essentially uniform or
featureless turbulent flow prevails, and hence the subscript ‘t’.

As far as pattern formation is concerned, the pipe flow is a basically one-dimensional system. Its
case has recently been clarified (see, e.g. Avila et al., 2011; Barkley, 2011). Turbulent coherent struc-
tures travelling in laminar flow called puffs have finite lifetimes but, when R is large enough, can split
and contaminate the rest of the flow. The Reynolds number being conventionally defined as R = UD/ν

with U the mean fluid velocity and D the pipe diameter, below Rg ≈ 2,040 the decay probability is larger
than the probability of splitting so that, in the long term, the flow is laminar. On the contrary, above that
limit splitting wins and an intermittent mingling of laminar and turbulent flows can persist indefinitely.
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Fig. 1. Top: typical setup used to study plane Couette flow. Bottom: turbulent band pattern observed at R = 358, courtesy A.
Prigent, Saclay.

Threshold Rt for featureless turbulence has not been localized with the same degree of confidence but for
R ≈ 2600 puffs become slugs, domains filled with small-scale turbulence of ever increasing length due
to upstream fronts getting slower and downstream edges getting faster as illustrated and studied quan-
titatively by Duguet et al. (2010a). Despite some still finite probability of local and temporary collapse
of turbulence, this particular value of R could be identified with Rt since essentially uniform turbulence
is expected at the end of a sufficiently long pipe. One, however, still has to push R beyond ∼2,900 to
obtain uniform turbulence most of the time. Of course, all this holds provided that turbulence is triggered
by appropriate finite-amplitude perturbations since laminar flow can easily be maintained up to much
higher values, 10000 or more, in well-designed experiments with a low level of background turbulence.

Let us now consider the plane Couette flow (Fig. 1, top) which, on the one hand, is free from
complications arising from the overall downstream mass flux but, on the other hand, is effectively two-
dimensional, while with symmetries allowing relevant perturbations to stay at rest in the laboratory
frame. In a series of experiments, researchers at Saclay (for a review, see Prigent & Dauchot, 2005)
have determined the main characteristics of the bifurcation diagram. Here, the Reynolds number is
defined as R = Uh/ν, where ±U are the speeds of the moving plates and 2h the distance between them.
Below Rg ≈ 325, finite-lifetime turbulence is observed in the form of spots as shown by Bottin et al.
(1998). Above Rt ≈ 410, featureless turbulence prevails. Between these two values, at a large enough
aspect ratio (in-plane dimensions compared with gap) a steady regime of turbulence made of oblique
bands, alternately laminar and turbulent, has been observed by Prigent et al. (2003) (see Fig. 1, bottom).
They have also shown that the transition to featureless turbulence is continuous in the sense that the
modulation of the turbulence intensity decreases progressively as Rt is approached from below. On the
other hand, near Rg bands break down into spots which, having finite lifetime, decay to a laminar flow.

Some understanding of the processes sustaining turbulence has been obtained from the careful inter-
pretation of numerical simulations within the conceptual framework of the so-called minimal flow unit
(MFU). The MFU introduced by Jiménez & Moin (1991) is a computational domain extending over the
full wall-normal dimension of the considered system with periodic in-plane (streamwise and spanwise)
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boundary conditions set at a distance just necessary to maintain chaotic dynamics at the moderate val-
ues of R of interest. The mechanism proposed by Hamilton et al. (1995) involves streamwise vortices
inducing streaks that break down to regenerate the vortices. For the plane Couette flow, Waleffe (2003)
showed that this mechanism reaches some sort of optimal efficiency in an MFU of size ℓx × 2h × ℓz

with ℓx ≈ 12.8h and ℓz ≈ 4.2h.
Coherence of the flow at the corresponding scales supports an analysis of the dynamics in terms of

dynamical systems. Resting on exact solutions of Navier–Stoke equations (see, e.g. Gibson et al., 2009),
unstable periodic orbits and homoclinic tangles, this approach has led to an interpretation of turbulence
in terms of chaotic transients, as reviewed by Eckhardt et al. (2008), the frontier between laminar flow
and turbulence being associated to edge states and manifolds attached to them; see Schneider et al.
(2008) for the plane Couette flow.

Studies at the scale of the MFU are, however, by essence, unable to account for the most striking
phenomenon of transitional wall-bounded flows, namely the coexistence of laminar flow and turbulence
in physical space. This coexistence is attested at much larger scales in spatially extended systems rather
than in systems that are actually confined by in-plane periodic boundary conditions at distances of the
order of a few h. Experiments at Saclay have indeed been performed in systems of size (Lx × Lz) ranging
from (250h × 100h) in Bottin et al. (1998) to (700h × 300h) in Prigent et al. (2003). Laminar-turbulent
patterns, when observed in the largest systems, had roughly constant streamwise wavelengths λx ≈ 110h
and spanwise wavelengths ranging from λz ∼ 50h near Rt to ∼ 80h near Rg.

The first numerical study dedicated to the problem of bands has been performed by Barkley &
Tuckerman (2005a). They used a computational domain tilted with respect to the streamwise direction,
transversally long (! 40h) but longitudinally short (10h). This trick was very efficient in reproducing
the bands at limited computational cost, the price to pay being just a breaking of symmetry imposed in
advance between the two possible orientations allowed by the geometry. Later, the bands were obtained
in wide domains of sizes comparable to experimental ones by Duguet et al. (2010b) in close agree-
ment with laboratory findings. The latter simulations were extremely demanding from a computational
standpoint. By means of wall-normal under-resolved numerical simulations understood as a consistent
and systematic modelling strategy to be illustrated below, Manneville & Rolland (2010) showed that
the mechanism at the origin of bands was remarkably robust, provided that the resolution be sufficient
for rendering large-scale streamwise correlations. According to Philip & Manneville (2011), the same
reason explains that, mimicking streamwise coherence decay on a longer scale than the nominal size
of their oblique domain, Barkley and Tuckerman could obtain realistic bands despite periodic bound-
ary conditions at MFU distances in the longitudinal direction, whereas the bands are not present in an
MFU-long strictly spanwise-aligned computational domain.

2. Some results

Experiments have posed interesting pattern formation problems in the transitional range of the plane
Couette flow. It may thus seem valuable to perform simulations in the thermodynamic limit of large
aspect-ratio systems, while avoiding the ab initio restriction of Barkley & Tuckerman (2005b), i.e.
by taking Lx,z ≫ λx,z ≫ ℓx,z for long enough durations so as to reach a statistical equilibrium. Such
simulations are still computationally too much demanding in the fully resolved case (Duguet et al.,
2010b), which suggests resorting to controlled under-resolution as introduced above. The study has
been done using ChannelFlow, the open-source software due to Gibson (2010). This software
is a pseudo-spectral Fourier (x) × Chebyshev (y) × Fourier (z) de-aliased scheme integrating the
Navier–Stokes equations. A good compromise between computational load and realism was found by
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Fig. 2. Decay of bands for R = 273.75 < Rg in a system of size (432 × 256). A laminar gap opens in a turbulent band at t ≈ 2, 250
(left); the broken band then recedes regularly (centre: illustration at t = 5, 250). The same process next occurs on the remaining
bands down to final decay (right: illustration at t = 26, 250). Note that a band can break but recover temporarily and that the
laminar gap has to be sufficiently wide for regular withdrawal to take place (see Manneville, 2011). Streamwise direction is
horizontal. Colour coding of the local distance to the laminar flow: laminar is deep blue, turbulent ranges from yellow to red.

Manneville & Rolland (2010) for Nx = Lx and Nz = 3Lz, Nx,z being the number of collocation points used
in the evaluation of in-plane dependence of non-linear terms, and Ny = 15, the number of Chebyshev
polynomials used to describe the wall-normal dependence. This resolution may seem quite low but we
showed that all the qualitative features of the transitional regime were well preserved (self-sustaining
process, laminar-turbulent coexistence, and pattern selection with λx and λz comparing favourably with
experimental values). The price to pay was just a moderate shift of the transitional range [Rg, Rt] by
∼15% from [325, 410] down to [275, 360]. On the other hand, we were able to study domains with
typical domain size Lx = 432, Lz = 256 and perform many statistically significant experiments with the
power of a desk-top computer only.

Within this frame, the study was focused on the vicinity of the global stability threshold Rg, con-
sidering the decay of bands at R " Rg, their growth from a germ (a localized patch of turbulence) at
R ! Rg and the existence of metastable coherent structures at steady state. It turns out that a consistent
picture of what happens at the lower end Rg of the transitional range can be understood by noticing that
chaos is only transient at the MFU scale, but that local collapse at one place can be compensated by
contamination from neighbouring places.

2.1 Band decay or growth

Decay was studied in a system of size (432 × 256) fitting three bands in the vicinity of Rg. It appears
to be controlled by two processes: (a) the formation of a laminar gap within a long enough turbulent
segment and (b) a breakdown/renewal of turbulence near the segments’ extremities, biased towards
decay, making the segments recede regularly but only statistically; see Fig. 2 and Manneville (2011) for
a detailed report.

The growth from a germ was studied in a slightly larger system of size (468 × 272). A typical
experiment is illustrated in Fig. 3. In addition to process (b) now biased towards turbulence propa-
gation, growth was seen to involve a third process (c): the offspring of turbulent buds near segment
extremities, i.e. small turbulent patches with local orientations opposite to that of the main branch.
When process (c) is sufficiently active, the pattern readily grows in a labyrinthine fashion as already
observed by Duguet et al. (2010b). It then gets more regular by eliminating topological defects of any
nature, laminar patches, dislocations and grain boundaries between well-oriented subdomains, which
may take an extremely long time (a few 104 h/U); for details see Manneville (2012).

These empirical findings can quite naturally be cast into the conceptual frame put forward by
Pomeau (1986) who conjectured a connection with thermodynamic first-order phase transitions on the
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Fig. 3. Growth from a germ for R = 285.0 > Rg in a system of size (468 × 272). From left to right and top to bottom: t = 0, the
initial condition is an elongated and slanted turbulent patch; ‘unsuccessful’ branching of a turbulent bud around t = 1, 000–1, 500;
the germ next continues to grow along its original direction after several episodes similar to what happened at t = 1, 000, here
illustration at t = 6, 000; ‘successful’ branching at t = 9,200 marking the start of labyrinthine growth t = 15, 000, 19, 500, 29, 000;
cleaning from defects of all kinds ends in an ordered three-band pattern, here at t = 39,400. The same representation as in Fig. 2.

one hand, and directed percolation on the other. Crucial to a first-order transition, e.g. the liquid–gas
transition, is the problem of nucleation of one phase inside the other, whereas directed percolation is a
stochastic two-state contamination process governing, e.g. epidemics or forest fires (see Kinzel, 1983).

The second facet of Pomeau’s proposal implies understanding the turbulent state as active and the
laminar state as absorbing: Turbulence can decay to laminar flow spontaneously while the linearly
stable laminar flow cannot become turbulent by itself but only under finite amplitude perturbations
coming from neighbouring locations where the flow is turbulent. Depending on the local probabilities
of spontaneous collapse of turbulence and contamination from neighbours, both sensitive functions of
R, one will then get decay or growth at a statistical level depending on whether the system is below or
above some well-defined directed percolation threshold.

On the other hand, the formation of a laminar gap or the birth of a turbulent bud are in line with
the first-order character of the transition. They both result from fluctuations of the interface between
the laminar flow and the turbulence. Owing to small-scale chaos at the MFU scale, these permanent
fluctuations may evolve locally and temporarily into the large deviations producing wide indentations
in a band segment, either a laminar neck evolving into a laminar gap breaking the band that next recedes
at lower R, or a turbulent bud at the origin of a new differently oriented band portion at larger R.

The variation with R of probabilities of large deviations corresponding to processes (b) and (c) at the
origin of decay or growth of bands is reminiscent of the findings for the pipe flow with a competition
between puff decay and puff splitting pointing to the corresponding definition of Rg for that system.
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Fig. 4. Left: single steady band obtained at R = 282.5; domain size (432 × 256); same representation as in Fig. 2. Right: spanwise
profile of the perturbation energy averaged over the diagonal of the computational domain and over 20 realizations taken every
∆t = 100 h/U from t = 3, 500 to 5, 500 h/U for each size as indicated.

For the plane Couette flow (at least as it is reproduced in our under-resolved simulations) this criterion
would give R′

g ≈ 282 rather than Rg ≈ 275 as deduced from the persistence of bands down to this value.

2.2 Solitary bands

Whereas isolated puffs in the pipe flow do not seem to persist indefinitely but can just decay or split,
as shown by Avila et al. (2011) and others, for the plane Couette flow seemingly sustained isolated
bands have been observed by Barkley & Tuckerman (2005b) in experiments where the length of their
domain was progressively increased. Their computational protocol was progressively increased but the
orientation of bands fixed beforehand. We have attempted to recover these results in less restrictive
conditions (though subjected to under-resolution). Such states have indeed been found in a narrow
range of Reynolds numbers around Rg where band breaking is overcome by growth, so that the solitary
band is expected to persist despite stronger fluctuations than in their narrow elongated oblique domain.

Systems of sizes ranging from (336 × 200) to (504 × 288), keeping the angle roughly constant
(Lz/Lx ≈ 0.6, angle ≈30◦), have been considered at R = 282.5. This series was produced by taking a
one-band solution in domain (468 × 272), then stretching or compressing it to fit the other sizes and
next letting it reach statistical equilibrium. The particular case depicted in Fig. 4 (left) corresponds to the
size (432 × 256) at t = 5500 h/U . The profiles of the corresponding perturbation energy, averaged over
the diagonal, are displayed in Fig. 4 (right), which strongly suggests convergence of the oblique bands
towards a solitary coherent structure with well-defined shape in the large aspect-ratio limit. On the other
hand, the level of perturbation increases rapidly inside the laminar region as seen when considering the
size (336 × 200). For smaller sizes (namely 200 < Lx < 300), this level is high enough to trigger the
nucleation of new bands at smaller distances, ending into well-formed two-band states.

So, depending on the protocol, several different states are compatible at a given R and given size,
each being locally stable, i.e. stable provided that no sufficient time is left for large deviations to nucleate
a different one. The state that can naturally be obtained by decreasing R gradually, however, seems to
represent an optimum into which states with fewer bands can evolve, that is three bands for Lx ≈ 400.
The existence of such an optimal wavelength at a given R resonating with the dimensions of the domain
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can be analysed within a Ginzburg–Landau phenomenological description of the patterning (see Rolland
& Manneville, 2011).

3. Discussion

The application of pattern-formation concepts is standard in systems such as Rayleigh–Bénard convec-
tion where structures develop in a super-critical frame on a basically noiseless background (Cross &
Hohenberg, 1993). A transitional plane Couette flow, in contrast, appears to be a good system to test
the validity of the same approach but in a subcritical context where strong stochasticity induced by
turbulence plays a crucial role.

Whereas a large body of work has been devoted to systems where coherence at the MFU scale is
important, our study relates to systems in extended geometry more relevant to laboratory experiments,
and for which the conceptual frame of phase transitions proposed by Pomeau (1986) appears most
adapted. In particular, large deviations and nucleation processes inherent in first-order transitions are
suggested to rule the transition to/from turbulence while directed percolation properties govern the
details of growth/decay processes. Of course, it would remain to show that the appeal to controlled
under-resolution in order to reach the large aspect-ratios of interest is a valid procedure. However,
in view of the close correspondence between our results and experimental findings or fully resolved
simulations at a moderate aspect ratio (band decay, growth from a germ, general band organization), we
are confident that our computational protocol shadows the physical situation, apart from a slight shift of
the relevant Reynolds number range.

The approach is thus at odds with the recent extensive use of the theory of low-dimensional dynam-
ical systems which, on the other hand, is instrumental in interpreting the local breakdown of turbulence.
It should indeed be stressed that, by enforcing periodic boundary conditions at a distance of a few h,
the MFU assumption ‘freezes’ the flow to a temporal dynamics in a tiny portion of the phase space that
exclude large-scale modulations, and widely underestimates the number of unstable directions in the
phase space. This is not without consequences on the nature of the turbulent–laminar boundary and the
vicinity of what we call Rg, where spatiotemporal chaos needs to be accounted for.

We should, however, also take care of not translating classical results of statistical physics and
pattern formation theory too hastily. For example, it is tempting to develop a Ginzburg–Landau approach
adding noise to account for the turbulence (Prigent et al., 2003), which can be validated to a certain
extent (Rolland & Manneville, 2011) but keeps some phenomenological flavour, while the specificity of
hydrodynamic interactions may play an important role. Although this helps us understand some aspects
of the pattern formation, no concrete prediction can be made on, e.g. the dependence of lifetimes of
turbulent structures or other observables such as the angles and wavelengths, with the Reynolds number.
Hydrodynamics and especially the generation of large-scale flows in the laminar regions by Reynolds
stresses localized in the turbulent patches are indeed essential to the detailed mechanisms by which
turbulent segments break down or turbulent buds branch during transient stages, or by which bands
get sustained (Tuckerman & Barkley, 2011). This is of utmost importance in so far as the possible
application to more general wall-bounded transitional flows is concerned.
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Gibson, J. F., Halcrow, J. & Cvitanović, P. (2009) Equilibrium and travelling-wave solutions of plane Couette

flow. J. Fluid Mech., 638, 243–266.
Hamilton, J. M., Kim, J. & Waleffe F. (1995) Regeneration mechanisms of near-wall turbulence structures. J.

Fluid Mech., 287, 317–348.
Jiménez, J. & Moin, P. (1991) The minimal flow unit in near wall turbulence. J. Fluid Mech., 225, 213–240.
Kinzel, W. (1983) Directed percolation. Percolation Structures and Processes (G. Deutscher, R. Zallen & J. Adler

eds). Annals of the Israel Physical Society, vol. 5, Conference proceeding published in book form by Adam
Hilger, Bristol, 1983; Kinzel’s contribution is Chapter 18, pp. 425–444.

Manneville, P. (2010) Instabilities, Chaos and Turbulence, 2nd edn. Imperial College Press, London.
Manneville, P. (2011) On the decay of turbulence in plane Couette flow. Fluid Dyn. Res., 43, DOI:10.1088/0169-

5983/43/6/065501.
Manneville, P. (2012) On the growth of laminar-turbulent patterns in plane Couette flow. Fluid Dyn. Res. special

issue (BIFD11 conference, Barcelona July 18–21, 2011), Special issue: BIFD2011.
Manneville, P. & Rolland, J. (2010) On modelling transitional turbulent flows using under-resolved direct

numerical simulations: the case of plane Couette flow. Theor. Comput. Fluid Dyn., 25, 407–420.
Philip, J. & Manneville, P. (2011) From temporal to spatiotemporal dynamics in transitional plane Couette flow.

Phys. Rev. E, 83, 036308 [12p].
Pomeau, Y. (1986) Front motion, metastability and subcritical bifurcations in hydrodynamics. Physica D, 23,

3–11. See also Bergé, P., Pomeau, Y. & Vidal, Ch. (1998) L’espace chaotique, Hermann, Paris, Chapter 4
(in French).

Prigent, A. & Dauchot, O. (2005) Transition to versus from turbulence in subcritical Couette flows. IUTAM
Symp. on Laminar-Turbulent Transition and Finite Amplitude Solutions (T. Mullin & R. R. Kerswell eds).
Springer, pp. 195–219.

Prigent, A., Grégoire, G., Chaté, H. & Dauchot, O. (2003) Long-wavelength modulation of turbulent shear
flows. Physica D, 174, 100–113.

Rolland, J. & Manneville, P. (2011) Ginzburg–Landau description of laminar-turbulent oblique band formation
in transitional plane Couette flow. Eur. Phys. J. B, 80, 529–544.

Schneider, T. M., Gibson, J. F., Lagha, M., De Lillo, F. & Eckhardt, B. (2008) Laminar-turbulent boundary
in plane Couette flow. Phys. Rev. E, 78, 037301.

Tuckerman, L. S. & Barkley, D. (2011) Patterns and dynamics in transitional plane Couette flow. Phys. Fluids,
23, 041301 [9p].

Waleffe, F. (2003) Homotopy of exact coherent structures in plane shear flows. Phys. Fluids, 15, 1517–1534.

 by guest on June 8, 2012
http://im

am
at.oxfordjournals.org/

D
ow

nloaded from
 

http://www.channelflow.org/
http://www.channelflow.org/
http://imamat.oxfordjournals.org/

	Context
	Some results
	Band decay or growth
	Solitary bands

	Discussion

