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Elongated streamwise structures are considered as a key element of the transition to turbulence in
various wall flows. In pure plane Couette flow (pCf), longitudinal streaks otiginating from pairs of
streamwise counter-rotating vortices are clearly identified surrounding growing turbulent spots or at
late stages of spot relaxation. The same structures bifurcate subceritically from a slightly modified
Couette flow where a thin spanwise wire has been introduced in the zero-velocity plane. The basic
flow profile, as measured by laser Doppler velocimetry, is shown to approach continuously the
original linear velocity profile as the radius of the wire is decreased. On the other hand, the vortices
remain almost unchanged and the bifurcation threshold remains bounded from above by the global
stability threshold below which turbulent spots relax spontanecusly. This supports the conjecture
that a related nontrivial nonlinear solution exists in the pure pCf limit. These observations are
compared to numerical stability calculations of the modified flow and to finite amplitude solutions
to pCf problems with a different tunable modification, © 1998 American Institute of Physics,
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I. INTRODUCTION

Our understanding of the transition to turbulence in
fiows of hydrodynamic interest has made important progress
during the recent period. This is especially true for systems
undergoing supercritical primary bifurcations. Supercritical-
ity is characterized by the fact that the bifurcated state exists
only above the linear stability threshold—the critical value
of the control parameter, i.e., the Reynolds number R in the
present context, beyond which the system is unstable to in-
finitesimal perturbations—and remains close to the basic
state, yielding a continnous transition. This situation can be
dealt with using tools of linear and weakly nonlinear stability
theory. Rayleigh—Bénard convection is the prototype of su-
percritical systems. By contrast, regimes emerging from sub-
critical instabilities are usuaily much less accessible owing to
stronger nonlinear effects. The transition is then discontinu-
ous towards a bifurcated state at a finite distance from the
basic state and coexisting with it below threshold. Plane Poi-
seunille flow is a good example of such systems. It is known
to be lincarly stable up to Reynolds number R,=5772"?
whereas the branch of two-dimensional nonlinear states
emerging from the linearly most unstable modes exists down
to Ry=2935.% However, “‘turbulent spots,” i.c., fluctuating
domains of turbulent flow scattered amidst laminar flow,
have been observed down to about R .~ 1000.* Moreover the
nature of the perturbations inside the spots bears little con-
nection with the two-dimensional nonlinear states, Plane
Couette flow (pCf) is even more extreme since this flow is
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known to be linearly stable for all values of the Reynolds
number,? which does not preclude a direct transition to tur-
bulence at finite R.

For systems experiencing subcritical bifurcations, one
must further distinguish the ‘‘natural transition,’’ the thresh-
old of which depends on the noise level, from the ‘‘triggered
transition’ in response to some special perturbation. For
natural transition in pCf, early experiments gave a threshold
of order Rc~300,7 a more recent one yielding R =370
*10.8 In order to reduce the uncertainty related to the nature
of the random fluctuations driving the transition and to in-
vestigate the transition more quantitatively, experimentalists
have turned to studying the response of the flow to reproduc-
ible, well-defined, finite amplitude perturbations. Destabili-
zation of pCf by isolated, instantancous, localized pulses was
then reported for R,.~360 in Ref. 9 while other observations
in a slightty different experimental configuration gave a
somewhat larger value R.~370.'° In both cases destabiliza-
tion led to turbulent spots similar to (but also different from)
those previously observed in other shear flows {Poiseuille,’
boundary layer'!). On the other hand, direct numerical simu-
lations also exhibited sustained turbulent spots for R >375.12
The origin of the discrepancies between these threshold val-
ues was hinted at in Ref, 13 where a critical amplitude of
perturbation A (R) was shown to exist. This critical ampli-
tude was seen to diverge, or at least to increase sharply,
when R was decreased down to R =325, the obtained value
being consistent with the numerical observation that turbu-
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lent pCf cannot be maintained below R~330," This issue
was further discussed by two of us.”® In a recent series of
experiments'®!? the value Ry==325 was confirmed as a
lower stability limit for the turbulent flow by quenching it
down from sufficiently large Reynolds numbers.

Supercritical and subcritical transitions are concepts in-
troduced in classical bifurcation analysis, which appeals for a
phase-space approach to the problem in the framework of
dynamical systems theory. In this context, understanding a
given situation (given control parameters) comes to deter-
mining the phase portrait of the system, i.e,, the partition of
the phase space into basins of attractions associated with the
different experimentally observable regimes. Theoretically, it
would be desirable to determine directly the different solu-
tions and their stability properties but, except in the simplest
cases,'S this is not possible and one must turn to a more
empirical approach by letting the system evolve from a large
set of initial conditions. In this sense, detecting the transition
by triggering spots can be understood as an initial value
problem. The result of this study would be a global stability
threshold R, =inf Ry, i.c., the value of the control param-
eter below which all possible perturbations decay and the
flow returns to its basic state asymptotically in time.'® An-
other critical value can be analytically determined from the
energy method: the threshold for monotonic relaxation R,
below which the kinetic energy contained in any perturbation
decays initially. For pCf one has R,,=20.7,'® which explaing
that triggered spots can grow for a while but eventually de-
cay for R, <R<R,.

Experiments mentioned above suggest R =325 for pCf,
which is therefore a prototype of globally subcritical hydro-
dynamical systems. The notion of global subcriticality
(R,<R,) was introduced in Ref. 15 in order to clearly dis-
tinguish between local weakly nonlinear properties close to
the basic state, as given typicaily by the sign of the first
Landau coefficient in an amplitude expansion, and properties
for which a global knowledge of the phase space is required,
i.e., coexistence of (possibly complicated) attractors each
with its own nontrivial basin of attraction. In the latter per-
spective, the fully nonlinear problem requires a determina-
tion of nontrivial solutions, i.e., different from the basic
state. The direct search being somewhat uncertain, an indi-
rect approach has been followed by considering a modified
system with known solutions and deforming it progressively
to recover the original problem. Several numerical studies
have tried to capture equilibrium states in pCf by following
this continuous deformation approach. In this vein, a first
possibility was explored by Nagata who considered the cir-
cular Couette system between narrow-gap corotating cylin-
ders in the limit of zero average rotation rate, isolating steady
solutions in the form of modulated rolls oriented along the
flow.'? Similarly, Clever and Busse investigated a combina-
tion of Rayleigh—Bénard convection and simple shear and
revealed the existence of subcritical three-dimensional states
below the convection threshold, that persisted down to the
limit of the pure pCf.2?! Both solutions were shown to exist
down to R~ 125, a value much lower than the experimental
estimate of R, obtained by the triggering method. This sug-
gests the following alternative: either they have a rather
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small attraction basin that is difficult to reach from the initial
conditions achieved in the experiment, or else (and more
probably) they are in fact saddles that are found in the nu-
merics by some limiting process that tracks them along their
stable manifold. A different class of solutions was obtained
by Cherhabili and Ehrenstein who considered the plane
Couette—Poiseuille flow obtained by adding a longitudinal
pressure gradient to the basic pCf configuration. Starting
from the saturated two-dimensional wraveling waves of the
classical Poiscuille flow,? at the pure pCf limit they obtained
nonlinear states in the form of spatially localized two-
dimensional stationary states,”? These solutions were later
shown to be unstable against transverse perturbations satu-
rating in three-dimensional localized solutions with smaller
structure and at much higher Reynolds numbers R~ 1000,%
hence possibly less relevant to the structure of the phase
space at transitional values of the Reynolds number {~300).

Longitudinal roll patterns obtained by the continuous de-
formation method are good candidates as ingredients of the
cyclic process that has been observed in numerical simula-
tions of tarbulent pCf: formatton of streamwise vortices tum-
ing into streaks, breakdown of the streaks into turbulence,
and subsequent regeneration of the vortices after damping of
the small scale moticns.'**%* While this scenario has been
illustrated by Waleffe using a model in terms of low-
dimensional dynamical systems®*?’ and the mechanism de-
stabilizing the streaks is now better understood,?® there is
still little direct evidence of such unstable equilibrium states.
Their trace can be found in several experiments. As a matter
of fact, streaky structures have been observed surrounding
wurbulent spots,’® and further characterized by velocity
measurements,”’ Streamwise turbulent structures periodi-
cally organized in the spanwise direction have been shown to
exist both in laboratory experiments™® and in numerical
simulations at R =750.% Finally, in the spirit of the continu-
ous deformation approach, Dauchot and Daviaud showed
that the introduction of a thin wire in the central plane,
slightly modifying the basic velocity profile, could stabilize
sireamwise counterrotating vortices localized on both sides
of the wire.

The present study first shows how the initial value prob-
lem can give some insight into the nature of the nontrivial
solutions playing a role in the transition process. It then fo-
cuses more on the continuous deformation approach which,
while furnishing supplementary proof of their existence, al-
lows a fully quantitative access to them. The experimental
setup is described in Sec. I Section III first illustrates the
occurrence of streaks during the decay of a fully turbulent
state, and then those appearing upon destabilization of the
flow by localized pulses, on the border of sustained spots.
Section IV concentrates on the continuous deformation ap-
proach and studies the vortices stabilized by the presence of
the thin spanwise wire.’? A quantitative study of the modi-
fied basic flow, tentatively compared to available analyticat
results,’® shows that the deformation vanishes as the ratio of
the wire's diameter to the channel’s gap decreases to zero,
while the flow nevertheless bifurcates towards the
streamwise-streak state. Section V is devoted to a discussion
of our results. Comparison is made with recent stability
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FIG. 1. {a} General view of the plane Couette flow setup. {b) Definition of
the shear parameters. When a wire is placed at the origin of coordinates, the
four quadrants can be named *‘upstream'" and **downstream’ depending on
whether the fluid visits the corresponding region before or afier having
reached the abscissa of the wire. {c) Transverse jet creating the impulse
perturbation. (d) Couette flow modified by the wire.

results® and with equilibrium states obtained numeri-
cally,’2 ending with some conclusions about the role of
streamwise vortices in transitional pCf.

It. EXPERIMENTAL. FACILITIES

The pCf apparatus is sketched in Fig. 1(a):'® an endless
transparent plastic band, the belt, is driven by two large ro-
tating cylinders and guided by two pairs of rotlers. The entire
apparatus is placed in a tank filled with water, our working
fluid. A gap of width 4 is thus achieved between two
“‘walls’* moving in opposite directions and creating a shear
flow without mean advection in the fluid, Fig. 1(b). The
streamwise direction, the normal to the walls, and the span-
wise direction are called x, y, and z, respectively. The test
section has a length L,=1 m, Two different belts with width
L,=127 and 254 mm can be used and the guiding rollers can
be adjusted to achieve two gaps, d=7 and 3.5 mm. Table I
recapitulates the values of the aspect ratios I',/d and T, /d
that have been used.

The Reynolds number is defined as usual by R=Uh/v
where U is the speed of either wall, A=d/2 is the half gap,
and v is the kinematic viscosity of the fluid. I/ is measured
permanently using a nonperturbative optical device with a
relative accuracy of ~0.5%. The gap is determined within
0.1 mm with the help of a laser beam focusing device, which
makes a relative accuracy of 1.5% or 3% depending on the

TABLE I. Experimental aspect ratios [,=L,/d and T", =1, /d.

d=2k {mm} L, (am} r, T,
7 127 142 18.1
7 254 142 36.3
3.5 127 286 36.3
35 254 286 726
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case. Finally the temperature is controlled within 0.2 K,
which induces viscosity variations of less than 5% 107 %
Stokes, i.e., of order less than 0.5%. The accuracy on R is
thus at best 2.5% and at worst 4%.

Flow visualization and measurements take advantage of
the transparency of the belts. A laser sheet produced by a 10
W argon ion laser is used to illuminate the flow, with a CCD
camera facing it. The laser sheet can have any orientation, its
position being determined within 1 mm. Laminar and turbu-
lent regions can be revealed by seeding the flow with a dilute
solution of Merck Iriodin 100 Silver Pearl, This suspension
of thin and flat micron-size reflective mica platelets is par-
ticularly effective in enhancing the light fluctuations pro-
duced by the flow irregularities.!® This suspension is used for
all (x,z) visualizations. A yellow dye can also be introduced
at the entrance of the channel, close to the belt, and further
advected by the flow down to the center of the experimental
domain. This dye is used when observing the vortices in
{y.2) planes. Images captured by the camera are recorded on
a laser video recorder (LVR) after analog-digital conver-
sion, which allows an image-by-image processing of the
movie.

A backscattering laser Doppler velocimetry (LDV) sys-
tem is used to measure the streamwise velocity I/, . The size
of the measurement region is of order 0.075 mm in the x and
y direction, so that I, is averaged over 1% to 2% of the gap.
The electronic device controlling the displacement of the
probe region has a spatial resolution of order 0.1 mm. The
velocity profile U,(y)} and the root-mean-square velocity
fluctuation UT™ are given by a DANTEC burst spectrum
analyzer processing the measurement time series. Laminar
profiles are determined within an accuracy UT™/U, of order
3%.

The two complementary approaches mentioned in Sec. 1,
the initial value problem and the continucus deformation
method, have been implemented experimentally. In the first
approach, triggering of turbulent spots was obtained by
means of a brief jet transverse to the pCf, Fig. 1(c). The
injection was controlled by an electro-valve and the intensity
of the initial perturbation defined as A=v/U, where v is the
mean velocity of the jet. In the continuous deformation ap-
proach, the modified Couette flow was achieved by introduc-
ing a thin circular wire of diameter 2p parallel to the span-
wise direction in the middle of the cell, i.c., x=z=0, Fig.
1{d). Our observations were checked to be independent of
the length and the tension of the wire (no detectable effect of
the wire’s vibrations). The amplitude of the perturbation was
set by the ratio of the wire’s diameter to the gap d=2h.
Table II gives the values of p/h used in the experiment.

lll. THE INITIAL VALUE PROBLEM

In this section we consider the evolution of the flow
from different initial conditions. In a first experiment, the
flow is prepared in a sustained turbulent state at large R,
typically R>500, and allowed to further evolve as the driv-
ing is suddenly decreased to a value less than R,= 325, so
that turbulence must decay. Figure 2 displays successive
steps separated by 5 s of the flow’s relaxation down to R
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TABLE II. Yalues of p/h used in the modified Couette flow experiment.

p(mm) 00125 00125 0032 0.05 0.032 005 0.15
h (mm} 3.50 L.75 3.50 3.50 175 1.75 350
plh 0.0036 0.0071 00091 00143 00182 00286 0.0429

p (mm) 020 0.25 .15 .30 0.20 0.25 0.30
A (mm) 3.50 3.50 1.75 3.50 175 1.75 175
0.1143

pih 0.0571  0.0714 0.0857 0.0857 0.1428 0.1714

FIG. 2. (x-z) snapshots of the decay of turbulent plane Couette flow after a
sudden slowing down of the imposed shear. (&) From R> 500 to R=0. (b)
From R>500 to R=250,

Bottin &t al.

FIG. 3. {y-z) images of sections of the streamwise counter-rotating vortices
at the border of a turbulemt spot in successive (x=const) planes for R
=340.

=0 (a) and 250 (b). A strong difference between the two
cases is clearly visible. In case (a} the relaxation process is
essentially isotropic in space, which can be understood by
noting that all perturbations relax monotonously for R=0
<R,,, small scales decaying faster than large ones, as ex-
pected for processes controlled by viscous dissipation. By
contrast, in case (b) the flow goes through anisotropic stages
where streamwise streaky structures prevail before the basic
laminar pCf is recovered. This can be interpreted by recalling
that the final nonlinear decay of solutions occurs along slow
manifolds that are the precursors of stable manifolds of states
to be observed above R, .5 These clongated streamwisc
streaky structures would therefore be the precursors of actual
solutions important for understanding the transition to turbu-
lence under slightly different conditions (higher Reynolds
number or/and deformed basic flow).

Let us now tumn to another occurrence of similar struc-
tures, observed when disturbing pCf by a finite-amplitude
local impulse perturbation. Here a short-duration transverse
jet flow is used to generate turbulent spots that persist only
when the pertarbation amplitude A is larger than some criti-
cal threshold A, depending on the Reynolds number. Below
R,=325, the flow asymptotically retumns to the basic linear
velocity profile whatever the intensity of the jet.'> In pCf, a
spot is essentially a quasisymmetrical elliptic patch of turbu-
ient flow, but closer observation reveals a streaky structure in
the streamwise direction. Figure 3 displays several sections
of the flow at the border of a spot in a (y-z) plane taken at
various distances from its center. The full gap is shown but
not the whole spanwise extension L, (zooming on the rel-
evant part of the picture). Note that the pictures are not taken
at the same instant since some time is required for translating
the laser plane. The origin of the streaks can be traced back
to pairs of streamwise counter-rotating vortices. This is par-
ticularly apparent in the first cross view, the most distant
from the spot’s center. Closer to the center, one can easily
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FIG. 4. Streamwise velocity profiles at x/p=1.33 for pfh=0.043 and R
=150=%5. (a) Whole gap y/hef—1,1]. (b) Zooming on the central region
yihe[—0.15,0.15). (The anomalously large error bars are due to the me-
chanical device used to hold the wire.)

distinguish three regularly spaced vortex pairs and two other
pairs ready to form. Even closer to the center, they break
down so that it is no longer possible to identify any well-
formed structures. Meanwhile mixing is manifestly much
stronger.

As already reported in Ref. 13, growing and decaying
spots also reveal such streaky structures. When the spot is
growing, they develop at its border, regularly spaced, and
they propagate in the spanwise direction. When the spot is
relaxing, they appear transiently, in much the same way as
during the decay of a fully developed turbulent flow (Fig. 2).
These transient structures were observed for Reynolds num-
ber down to R = 50, which is much smaller than R e but larger
than R, . Stronger perturbations are likely to generate the
same transient structures for even lower Reynolds number,
down to R,,, below which the perturbation energy decays
monotonically.

IV, THE CONTINUOUS DEFORMATION APPROACH

The flow is now slightly modified by the introduction of
the wire in the zero-velocity plane. Several flow regimes can
be distinguished upon increasing R. The featureless basic
flow becomes unstable to streamwise vortices that stabilize
at a first threshold R=R,. Above another threshold R
=R,, the flow is fully turbulent in a band around the wire.
In between the detailed transition scenaric depends on the
value of p. We first describe the modified flow, the stream-
wise vortices, and their breakdown at a given wire radius.

Bottin sf al. 2801

0,2 e

W

0,15 F a
A #»o

440

0,05 ]

ad

y/h ot

0,05 F o

Lo oo ol 0 gy

0,1 F °

T
°

-0,15

_02:llalllnllll||||||l|||||a||||||l||| PR
02 015 -01 006 0 005 01 015 02

Ux/U

FIG. 5. Velocity profiles at five streamwise locations for p=0.15 mm, A
=35mm (p/h=0043), and R=150x5 O: x/p=-133, +: x/p
=—4.00, A: x/p=—6.66, O: x/p=-9.33, X:x/p=—1333.

Then we study the dependence of our observations on the
radius of the wire, focusing on the pure pCf limit p/h—0,

A. The modified profile and its destabilization

In this section we mainly consider an experiment with
h=35mm and a wire of radius p=0.15 mm (p/h
=0.043).

For R<Ry=190, sufficiently close to the wire the flow
is different from the classical linear velocity profile, though
it remains laminar, stationary, and two dimensional, i.e.,
transfationally invariant in the spanwise direction. Farther
from the wire, the lingar profile is recovered. The flow can be
divided in two domains, an outer one close to the belt, where
the flow lines are very slightly disturbed, and an inner one in
the center, where the particles turn back.*? In order to better
describe the flow around the wire, the strcamwise velocity
profile has been measured by LDV at various distances from
the wire. As shown in Fig. 4(a), even in the vicinity of the
wire (x=0.2 mm=1.33p) and except very close to the cen-
tral plane, the strcamwise velocity profile U/, (y) is only
slightly modified. This could be anticipated from the fact that
the Reynolds number R,=U,p/v=(p/h)*R, based on the
radius p of the wire and the unmodified pCf velocity
U,=Up/h at y=p, remains very small (R, <1} in the R
range of interest (R<400). Figure 4(b) displays the same
profile at a better resolution for y=0, confirming that the
wire induces a significant but very lecal deformation of the
flow. Compared to the classical linear pCf profile, the
streamwise velocity profile now presents an inflection point
comresponding to a slowing down close to the central plane.

An estimate of the size of the deformed region can be
obtained from Fig. 5 which displays velocity profiles at vari-
ous streamwise locations (x<0). The profiles are no longer
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FIG. 6. (a) (x-z) view of the streaks induced by the streamwise vortices for
p/h=0.043 and R=250. (b) A/h as a function of R for p/h=0.0857 and
r,=363.

symmetric with respect to y. Close to the wire, up to |x|
~1 mm, the deformation is stronger downstream from the
wire (y>0) than upstream (y<<0) [see Fig. 1(b)]. By con-
trast, farther from the wire, the linear pCf profile is recovered
in the downstream region whereas this is not yet the case
upstream. We shall return to this observation later (Sec. V).

At R=R,, a transition occurs and coherent structures set
in, Regularly spaced along the span, they break the corre-
sponding translational invariance, Fig. 6(a). These coherent
structures are easily identified as high velocity streams, usu-
ally called streaks. These streaks occupy a band of finite
width A atong the wire. Qutside this domain, the strength of
the vortices is not strong enough to drive the particles and/or
the dye from the belt to the central plane, which makes them
visually undetectable, Figure 6(b) displays A as a function of
R. We do not observe qualitative differences when the wire,
while remaining in the central plane, is no longer parallel to
the spanwise direction but makes an angle & with the z axis:
the vortices remain aligned with the flow and occupy a band
parallel to the wire. When measured along the streamwise
direction, the width of this band remains the same as in the
case #=0. However, as shown in Fig. 7, R, increases rapidly
with @ to the point that a wire aligned with the flow (6=m/2)
has no apparent destabilizing effect. We consider only 8=0
in the following.

According to previous observations,”” the origin of the
streaks can be atiributed to pairs of streamwise counter-
rotating vortices. Refined visualizations allow a more com-
plete description of the flow for R>R,. Figure 8 shows
sections of the flow in the (v-z) plane close to the wire. Four
snapshots separated by 5 s are displayed. As in Fig. 3, a dye
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FIG. 7. Dependence of R, on the wire tilting angle 8. (p/A=0.0857, T,
=70,)

is introduced in the flow at x/h=<—250, and the photograph
taken at x/h==5. The typical mushroom shape displayed in
the insert is produced by the two counter-rotating vortices (a)
and (b) which advect the fluid between them to form the
streak(s) according to the well-known lift-up mechanism.
The vortices appear to be centered in the gap and to have an
clliptical section with a long axis 4; about twice the short
one d,. The ellipses are slightly tilted with respect to the z
axis, with opposite tilts for the two vortices in the same patr,

Figure 9 sketches some path-lines that can be inferred
from a careful observation of particles floating in the fluid.

FIG. 8. (y-z} view of the streamwise counter-rotating vortices, Four snap-
shots at a regular interval of § s are displayed. Each image shows the whole
gap. The ingert displays one given structure made of two vortices (a) and (b)
inducing the stresk (s} between them by the lift-up mechanism, (p/h
=0.0571, R=190.)
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FIG. 9. Schematic view of the strearnwise counter-rotating vortices and the
trajectories they induced in the shear flow. Ses text for details.

For the sake of clarity only one pair of vortices is represented
on each side of the wire, and only the simplest trajectories
coming from one side of the wire are presented, but much
more complicated ones also exist. For example, the trajecto-
ries represented by a solid line, labeled (1), originate midway
between the axes of the two vortices in a given pair. They
remain close to the belt until they reach the abscissa of the
wire. The direction of rotation of the vortices is then reversed
and the trajectories are forced towards the central plane due
to the lift-up from which the streaks originate. Trajectories in
dashed and dot-dashed lines [labeled (2) and (3)] both origi-
nate outside the vortex pair. Two cases can then be distin-
guished according to whether or not the particles cross the
central plane before reaching the abscissa of the wire: if so,
the trajectory {dashed) coils around the vortex ahead of the
wire after the particle has turned back; if not, the trajectory
{dot-dashed) coils around the vortex behind the wire,

The mushroom stuctures are more or less regularly
spaced along the wire. An average periodicity A=L_/{N)
can be measured by counting the mean number of streaks
{N). To determine it a video sequence of 1200 frames was
divided in 30 individual sequences of 40 frames. Each short
sequence was played in loop in order (¢ locate the streaks.
{N) was further obtained by averaging over the 30 individual

Botlin &t al. 2603

sequences, yielding A/h=5%10%. No influence of I", and
T', could be detected.

In addition to this statistical characterization, we have
also examined the local instantaneous structure of the flow.
Figure 10(a) displays a typical (y-z) section of the streak
pattern. From the position of the streaks indicated by thin
vertical bars, it appears that the local spacing h between two
streaks fluctuates somewhat. This observation has been made
more precise in Fig. 10(b) where the light intensity profile
recorded along the white line in Fig. 10{a) is displayed. From
this profile we can distinguish regions in the flow dominated
by the vortices (white) from regions of relative inactivity
(grey). Whereas the former have a roughly constant width,
the size of the latter shows large variations that explain the
fluctuations of A.

Next, upon increasing R the following sequence is ob-
served. The fluctuations of A become larger and, for R large
enough, regions of relative inactivity (grey) may become suf-
ficiently wide to allow the creation of additional vortex pairs.
This regime precedes the onset of a second transition at R
=R,=310 (for p/h=0.043), where the streamwisc vortices
are destabilized by localized intermittent turbulent bursts that
nucleate at some point along the wire, fluctuate for a while,
and decay to reappear somewhere else. The entire process is
strongly reminiscent of spatiotemporal intermittency (STI)
observed in some quasi-one-dimensional hydrodynamics
experiments® and interpreted within the framework of criti-
cal phenomena in statistical physics.%’“ The duration and
spatial extent of these bursts increases with R, ending at R,
22325 in a fully wrbulent band along the wire, the stream-
wise extension of which then grows linearly with the Rey-
nolds number.*2 Now, decreasing R from above R, the band
of turbulence remains sustained down to R;=<R,. This sce-
nario holds for p/h=0.043 and more generally for p/h large
enough, A slightly different picture is obtained when p/h
gets smaller, which suggests studying the limit where the
pure pCf is recovered. ™

B. The modified pCf in the limit p/h—0

We now study the dependence of our observations on
the diameter of the wire, summarized in the bifurcation dia-
gram of Fig. 11. Consider first the behavior of Ry. It is
readily seen that when p/h-+( the threshold of the bifurca-
tion toward the streak state seemingly extrapolates to some
finite value of the order of R, as determined from the initial
value problem for jet perturbations,

When p/h is decreased, the basic state from which the
flow bifurcates is less and less deformed and the linear ve-
locity profile is recovered closer and closer to the wire as

FIG. 10. (a) (v-z) view of the streamwise counter-rolating vortices with location of the streaks. (b) Intensity prolile taken in (a) along the line. {¢)
Interpretation: {(white}—regions of vortex-dominated dynamics; (grey) —regions of relative inactivity. (p/h=0.0571, R=190.)
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FIG. 11. Bifurcation diagram giving the different thresholds as functions of
ptk for I';=70. Ry: transition from the basic state to the streaks; Ry:
spatiotemporally intermittent destabilization of the streaks for pfh
>(1.0186; R; transition to the fully turbulent band; R, : decay of turbulence
into streaks for p/h<<0.0186 when decreasing R. Lines are just given as
guides for the eye.

illustrated in Fig. 12 which displays the basic velocity pro-
files near the central plane at given x/p=1.33 for two wires
of different diameters and R<<R,. This does not preclude the
streaks from being relatively insensitive to the value of p/h.
As shown in Fig. 13(a), A decreases very slightly and
roughly linearly with p/A, so that assuming a regular behav-
ior at the pure pCf limit yields A—44. The typical size d,
of the vortices follows a similar behavior and by extrapola-
tion we get d; —0.6h, Fig. 13(b).

These statistical characterizations do not give a qualita-
tive picture of the bifurcated flow at small p/h. Figure 14
displays a (y-z) section of the streamwise counter-rotating
vortices for p/h=0.014, to be compared to that for
p/h=0.043 in Fig. 8. One notices immediately that, though
regions of vortex-dominated dynamics and regions of rela-
tive inactivity can still be defined, the vortex pairs are not as
regularly spaced as they are for the wire with a larger diam-
eter. Purthermore, the description of the flow in terms of a
more or less regular cellular pattern is now replaced by an
image in terms of domains of different kinds (‘‘active”
streak state and ‘‘inactive’’ basic state} separated by fronts.
We shall return to this point later,

To conclude this section, let us complete the description
of the bifurcation diagram in Fig. 11 and consider the sce-
nario that develops for wires with diameters smaller than
pfh==0.0182, Instead of the regime of spatiotemporal inter-
mittency described above, the flow now experiences a direct
transition from the streak state to turbulence when R is in-
creased (Ry=~R,), while the turbulent state can be main-
tained down to R3=325 when R is decreased. A striking
feature of this bifurcation diagram is that sustained turbu-
ence can be observed throughout the p/h range above R
=R3=~325 which is precisely the minimal value beyond
which turbulent spots can be generated in pure pCf.
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FIG. 12. Streamwise velocity profile at x/p=1.33. ¢: p/h=0.0143, O:
plh=0.043. (R=150%5.)

V. DISCUSSION

We now address the issues raised by the results pre-
sented in previous sections. Since we are mostly interested in
the transition to turbulence in pCf, we organize the discus-
sion by first considering the bifurcations of the configuration
at large p/h for increasing values of R, and next the effect of
decreasing the perturbation.

Below the threshold R, for steady streamwise vortices,
the measured profile exhibits two essential characteristics:
(1} a sharp localization of the modification close to the wire,
not only in the streamwise direction x but also in the cross-
stream direction y, and (2) a clear lack of y-reflection sym-
metry at any given streamwise location. Theoretical results
about the basic flow are scarce. To our knowledge, the only
possibly relevant analytical solution, due to Chwang and
Wn,** concerns the Stokes problem for a wire in an un-
bounded shear. The corresponding result shows neither the
locatization (smooth monotonic 1/r-decay of the velocity
comections to the linear profile) nor the observed lack of
symmetry since at given x, it satisfies U,{x,—y)
==Ulx,y} and Uy(x,~y)=U,(x,y). The latter discrep-
ancy is clearly due to the limitations of the Stokes approxi-
mation since it is easily checked that this symmetry is not
compatible with the nonlinear advection term of the full
Navier-Stokes (NS} equations; for example U,d.U,
+ U, 8,U, does not change sign in the transformation x+—x,
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y=>»—y. An attempt to go beyond this limitation within the
Oseen approximation, still in the unbounded case, is in
progrcss.” Recently, motivated by our results, Barkley and
Tuckerman™ studied a configuration similar to ours numeri-
cally, In their problem, the wire was replaced by a ribbon of
cross-channel width 2p for easier numerical implementation,
but it was placed at the center of the flow, perpendicularly to
the flow direction so that the obstacle had the same apparent
section. Secking steady two-dimensional solutions of the full
NS equations they found a solution slightly lacking y-
reflection symmetry, though remaining centrosymmetric, i.e.,
such that Uy(—x,—y)=-U.x,y) and Uf-x,—y)
=—U,(x,y), as expected from the nonlinear terms in the
equations. In fact the symmetry breaking cbtained in the case
of the ribbon scems smaller than that observed around the
wire, which is as yet unexplained but probably related to the
specific shape of the obstacle. More importantly, the numeri-
cal solution shows two distinct regions, one close to the rib-
bon where the correction to the linear velocity profile corre-
sponds to a circulation opposing the flow (contracirculation),
the other farther from the wire where the correction is much
weaker and in the same sense {cocirculation). The stagnation
point separating the two regions is located at about x/h
=2.5 and does not depend much on the ratio p/h (two values
p/h=0.086 and 0.043 have been considered). These findings
are in agreement with the observed fact that the flow seems
to return quite abruptly to the linear profile at some distance
from the wire (Fig. 5). A fully quantitative comparison is not
possible owing to both the difficulty in obtaining experimen-
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FIG. 14. Four (y-z) succassive snapshots of the streamwise counter-rotating
vortices. p/h=0.0143, R=250. Bach image shows the whole gap. Fronts
between areas of vortex-dominated dynamics and areas of relative inactivity
are marked by a line,

tal velocity profiles and the difference in the obstacle’s
shape,

For Ry=R=R;, a wide band of streamwise streaks
along the wire is experimentally observed. The streamwise
extension A of these streaks is much larger than the region
where the profile is significantly modified by the the pres-
ence of the wire. This immediately leads one to think that the
flow has switched to a new state that has little to do with the
modified basic state. Accordingly, this new state can be seen
as resulting not from the saturation of a linear instability
mode but rather as a fully nonlinear state. This idea is further
supported by the light intensity profile displayed in Fig. 10.
Indeed, the alternation of regions of low and high intensity,
separated by sharp edges, implies the presence of a large
amount of high harmonics typical of a strongly nonlincar
solution, not what one would expect from the weakly non-
linear saturation of the amplitude of a linear mode. In con-
trast this fits more with what would result from a subecritical
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instability where the bifurcated state stays at a finite distance
from the basic state so that the solution may be composed of
domains of either state separated by fronts. The observation
that, during the very first steps of the transition process,
some streaks first develop in limited domains and next con-
taminate the whole span further supports this idea.

While direct experimental evidence of subcriticality via
the determination of hysteresis has not yet been obtained,
subcriticality was unambiguously detected in the numerical
approach of Barkley and Tuckerman® who determined the
linear instability threshold of the modified basic flow and
further studied the development of the three-dimensional pri-
mary mode they obtained. A thorough comparison of experi-
mental and numerical findings is not possible for the moment
since, as explained above, the experiment gives us at best an
estimate of the nonlinear threshold while, up to now, the
numerics only predicts the linear threshold but has not yet
been extended to vicld the nonlinear threshold. However, our
results are clearly compatible: First the values obtained nu-
merically fall in the same range (R; =230 and 550 for p/h
=(.086 and 0.043, respectively) and are somewhat larger
than the corresponding experimental values of R, (Fig. 11).
Second, the critical wavelength is numerically seen to de-
pend little on p/k. Values found for p/h=0.086 and 0.043
are A,~4.87h and 4.48h, in good agreement with the experi-
mental values shown in Fig. 13. Finally, the structure of the
nonlinear satarated state is also somewhat different from that
of the critical linear eigenmode, especially regarding the
streamwise shape of the perturbation, which suggests that a
width A can be defined for the region occupied by the
streamwise vortices. Furthermote this width is much larger
than the width of the region where the amplitude of the criti-
cal mode is significant, which is also in agreement with the
experiments showing that A is much larger than the zone
where the basic flow is deformed.

The rapid increase of R, as p/k is divided by two is
consistent with a divergence as p/h tends to zero. By con-
trast, as seen in Fig. 11 in the experiments, Ry seems to
extrapolate to a finite value of the order of 325. This fact
requires some explanation since at the limit p—0 one expects
to recover the linearly stable pCf. From this, one should infer
that Ry increases without bound as p decreases only if one
was sure to detect a linear instability threshold comparable to
that obtained in Ref. 34. However, it is more likely that the
instability converts from supercritical at latge p/h to more
and more subcritical as p/} tends to zero. In this perspective,
Ry would correspond rather to an effective nonlinear insta-
bility threshold detected from the development of a structure
excited by residual turbulence, and thus already out of the
attraction basin of the unmodified Couette flow. Limitations
of the present setup forbid us to say more but, in this context,
transition observed experimentally for p/h=0.014 is particu-
larly interesting: the observed flow pattern seems to be com-
posed of coexisting domains of strong vorticity and relative
inactivity that are reminiscent of the picture given by
Pomeau® for a subcritical system where two states are in
competition. Active regions where the streamwise vortices
are conspicuons should be portions of nonlinear solutions
belonging to a branch disconnected from the basic unmodi-
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fied pCf solution that would be relevant to inactive regions.
The streamwise localization is easily understood from the
fact that, at sufficient distance from the wire, the flow has, at
any rate, returned to a linear velocity profile that is the only
possible steady solution for R<<325. In turn, this also ex-
plains the hysteretic behavior observed around the thinnest
wires: by starting an experiment with 325<<R,<R, which
triggers the streamwise vortices, and then decreasing R the
turbulent solution is retained down to R;=325,

These considerations suggest that we can overlook the
specific origin of the streamwise vortices and relate them to
the numerical solutions obtained by Busse and Clever,?
Nagata,'® and Cherhabili and Ehrenstein,?? These solutions
were found by various continuation methods similar to our
continuous deformation approach, They were obtained as es-
sentially unstable three-dimensional steady states of the full
NS equations. All of these solutions display strong qualita-
tive differences with our streamwise vortices. Solutions re-
ported in Refs. 21 and 19, though at Reynolds numbers in the
correct range, are periodic in the streamwise direction and
remain unlocatized. Solutions obtained in Ref. 23 are indeed
localized along x but the spanwise periodicity and the order
of magnitude of the Reynolds numbers strongly disagree. By
contrast, one can conjecture that the slowly varying back-
ground provided by the localized modification to the basic
flow, as achieved in the present experiment as well as the
numerical simulations of Barkley and Tuckerman,® is able
to stabilize pre-existent nonlinear solutions that could not be
observed otherwise. The occurrence of streamwise vortices
observed in Fig. 3 at the edge of a sustained turbulent spot
might also be another consequence of this process since tur-
bulence within the spot is expected to modify the mean flow.

To conclude, we have taken advantage of the subcritical
character of the plane Couette flow to stabilize localized
streamwise vortices. We have related these vortices to the
existence of nonlinear solutions that are only unstable and
transient in a natural environment. The results of this study,
which concentrates on one of the steps of the cyclic process
of regeneration and breakdown at work in turbulent shear
flows, thus seem of more general interest in the context of
transitional wall-bounded flows.
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