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Critical exponents of nonequilibrium. Ising-like phase wransitions in two-dimensional lattices of locally
coupled chaotic maps are estimated numerically using equilibrium finite-size scaling theory. Numerical data
suppors the existence of 2 new universality class. which groups together phase transitions of syachronously
updated models with Ising symmerry, irrespective of the specific microscopic evolution rule. and of the
presence of stochastic noise. However, nonequilibrium. Ising-like phase transitions of asvnchronously updated

- muodels belong 1o the Ising universality ¢lass. The new universality class differs from the equilibrium ising
universality class by the value of the correlation length exponent. r={1L89= (.02, while exponem ratios S8/r
and y/ v as well as Binder's cumulant &/* assume their usual value. [S1063-631X(97)15703-8]

PACS numberis): 05.45.+b. 05.70Jk. 64.60.Cn. 47.27.Cn

I. INTRODUCTION

The emergence of long-range order. or collective behav-
ior. in extended dynamical systems with short-range interac-
tion and local chaotic dynamics has attracted considerable
attention recently [1-8]. in panicular. diffusivelike interac-
tion of identical. chaotic. dissipative dynamical units often
gives way to spatiotemporally disordered regimes where
chaos becomes exrensive. that is where guantifiers of chaotic
activity—say the Lvapunov dimension or the Kolmogorov-
Sinai entropv—scale with system size {9.t0.4]. Imensive
quantities, such as entropy densities. are then expected to
remain well behaved in the *“thermodynamic™ limit of infi-
nite system size. where simpler effective descriptions of
high-dimensional spatiotemporal chaos may become pos-
sible. Short of a guiding principle from which invariant mea-
sures. order parameters. and other relevant statistical quanti-
fiers can be derived rigorously. the current understanding of
the long-wavelength. low-frequency properties of exten-
sively chaotic phases relies heavily on notions borrowed
from the better established field of equilibrium statistical me-
chanics. and adapted to the phenomenology of spatiotempo-
ral chaos [10-14].

Transinons between distinct extensively chaotic regimes
are liable to occur when some control parameter is varied.
and have been observed in both laboratory and numericai
experiments. An interesting example is the transition be-
tween two disordered regimes observed in large aspect-ratio
Rayleigh-Bénard cells. between a phase dominated by the
chaotic interaction of straight convection rolls. and a phase
where spiral defects control the large-scale properties of the
flow [7]. A naturai order parameter is the average curvature
of rolls, which may be used to charactetize the transition at
an aspect ratio fixed by the experimental setup. Another ex-
ample is given by electrohydrodynamic convection in nem-
atic liquid crystais. known to possess at least two distinct
spatiotemporally chaotic regimes. For large enough aspect
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ratios, an isotropic and an anisotropic phase are separated by
a continuous transition [8). An important. and much studied
model of spatiotemporal chaos is the complex Ginzburg-
Landau equation. a nonlinear partial differential equation de-
scribing the slow modulations of an oscillatory mode close to
a supercritical Hopf bifurcation [15]. Large-scale numerical
simulations support the existence of two turbulent regimes.
defined respectively by the absence and presence of zeros of
the amplitude of the complex field. and usually referred to as
phase and amplitude turbulence. Due to numerical Iimita-
tions. the status of this trunsition—smooth or sharp—as well
as the very question of its persistence in the infinite-size limit
remain controversial [6].

For lack of adequate theoretical insight. transitions be-
tween extensively chaotic phases must be treated in a phe-
nomenoclogical manner. often drawing on inwition based on
equilibrium statistical mechanics. While extensively chaotic
regimes occur in a wide range of extended dynamical sys-
tems. from nonlinear partial differential equations [9] 1o
coupled nonlinear osciltators [16]. we concentrate here on
coupled map lattices (CML. s}, or lattices of coupled. iterated
maps {17]. CML's provide a convenient testbed for simulat-
ing extended systems with local chaos. since their micro-
scopic dynamics can be adjusted at will. An additional mo-
tivation is numerical convenience: due to current numerical
constraints, CML's are one of the few extensively chaotic
systems for which finite-size effects close to transitions can
be evaluated accurately enough to yield controlled. reliable
extrapolations to the thermodynamic limit.

Lattices of diffusively coupled logistic maps are known 0
display intriguing, dynamically nontriviai collective behav-
ior, such as periodic and quasiperiodic time evolution of col-
lective variables [1]. Their rich phase diagram includes many
collective bifurcations. whose propetties are similar to those
of phase transitions [18]. Even though time-dependent coi-
lective behavior is often seen as a generic property of
CML'’s, the scope of this study will be limited to spontane-
ously broken parity-reversal invariance, and exclude cases of
broken time-translation invariance similar to those reported
in [1,18]. Following the recent work of Miller and Huse [3],
we choose as a reference the equilibrium two-dimensional
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[sing model. and consider only CML's whose time-
asymptotic statistical properties remain stationary. In this
perspective. we present data obtained from numerical simu-
lations of several closely related. CML-like models which
exhibit continuous phase transitions akin to the Ising ferro-
magnetic critical point. We successively address the related,
vet separate questions of scaling and universality, with an
emphasis on accurate measures of the static critical expo-
nents f3. y. and v, obtained from equilibrium finite-size scal-
ing laws, Our main result is that [sing-like transitions of
CML's respect equilibrivm scaling laws, but form a new
universality class. associated with a new ‘‘relevant’’ param-
eter [5): synchronous update, a defining feature of extended
dynamical systems. Provided that all lattice sites are updated
synchronously. estimates of the correlation-length exponent
v consistently and significantly differ from the Ising expo-
nent Pring= 1. We find ¥ ynonmnous=0.89=0.02. while the
exponeni ratios 8/ v and y/ v assume their traditional values
of § and 3, respectively.

This paper is organized as tollows: in Sec, [I. the continu-
ous ransition of 4 CML originally introduced in [3] is ex-
amined in detail. Following a summary of previous theoreti-
cal and numerical work (Sec. [I A}, we first review the
scaling properties of this transition for large system sizes
{Sec. [I B). before assessing the relevance of equilibrium
tinite-size scaling laws (Sec, II C). We next demonstrate that
the presence of strong corections to finite-size scaling for-
bids an estimate of critical exponents accurate enough to
decide whether or not this transition belongs to the equilib-
rium [sing universality class (Sec. I D). The question of uni-
versality in continuous transitions of CML's is addressed in
Sec. Il The [sing-like transition of a CML with short-range.
locally amsotropic coupling rule is introduced in Sec. 11T AL
Thanks to weuk corrections to finite-size scaling, we can
demonstrate that this transition does not belong to the {sing
universality class. Since CML"s with different chaotic local
maps exhibit the same scaling properties, we conjecture that
estimates of critical expenents presented in Sec. 11D for
Miller and Huse's model are in fact equal to their asvmp-
totic. infinite-size values. and conclude that these transitions
torm a new universality class. Next, we present evidence
according to which syachronous update is the associated
“relevant’” parameter. While the presence of stochastic noise
for svnchronous update rules (Sec. III B) leads to critical
properties identical 1o those observed in the models of Secs.
Il and 1T A, asynchronowsly updated models wrn out to be-
long to the Ising universaiity cluss (Sec. III C). The implica-
tions of these results are Hnally discussed in terms of the
notion ot weak universality, which may be relevant to far-
from-equilibrium models lacking a well-defined temperature
{Sec. V).

[I. CONTINUOUS TRANSITION OF A CML: SCALING
PROPERTIES

A. General considerations

At equilibrium. phase transitions are usually detined as
points in parameter space where a system’s partition function
becomes nonanalytic in the infinite-size. thermodynamic
limit. Transitions are cailed tirst or second order according to
the singularity order of thermnodynamic functions. In particu-
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lar. second-order transitions are characterized by singular
second-order, but smooth first-order derivatives of the free
energy: the susceptibilitv. specific heat, and correlation
length all diverge at the transition. On the other hand. the
order parameter vanishes in the disordered phase, varies con-
tinuously in the vicinity of the transition, and acquires non-
zero values indicative of a spontaneously broken symmetry
in the ordered phase.

The notion of phase transition tends to be used in a some-
what looser manner in far-from-equilibrium, deterministic.
many-body systems, for lack of a theoretical framework
equivalent to equilibrium statistical mechanics. Apart from a
few particular cases [19], determining the invariant measure
of coupled dynamical systems remains an impossible task.
The partition function and other thermodynamic functions,
such as the specific heat, are usually not known. Appropriate
order parameters are thus defined on a case-by-case, mostly
empirical manner. Low-dimensional dynamical systems
without external noise may exhibit symmetry and ergodicity
breaking [20]: one may thus question whether symmetry
breaking in the thermodynamic limit adequately signals the
occurrence of phase transitions in extended dynamical sys-
tems {211,

Spatial and temporal correlation functions of local vari-
ables can be systematically defined tor extended dynamical
systems. In fact. they may even form the basis of approxi-
mation methods aimed at predicting the emergence of long-
range order [22]. The combination of local chaos and diffu-
sive coupling makes most extensively chaotic systems
spatially mixing. As a result. equal-time. two-point spatial
correlation functions tail otf exponentially at generic points
in parameter space. allowing for the unambiguous definition
of 1 correfation length. Of course. finite-size systems neces-
sarily possess a finite correlation length. For these reasons,
we choose to define the continuous transition of an exten-
sively chaotic. extended dynamical system as a point in pa-
rameter space where the correlation length associated with
local vartables diverges in the thermodynamic limit. Further
use of the expression "‘second-order transition’ will be re-
stricted to equilibrium transitions with nonanalytic thermo-
dynamic tunctions. Thanks to tinite-size scaling methods. we
shall later give ample evidence that continuous transitions. as
defined above. do occur in CML's.

At equilibrium, the divergence of coherence time and
length scales observed at the transition point is responsible
for one of the most spectacular properties of second-order
phase transitions; universality. The occurrence of fluctua-
tions on ail length scales translates quantitatively into scaling
laws, which govern the behavior of macroscopic quantities
close to the wansition, Second-order transitions can then be
classified according to the values of the corresponding expo-
nents. Thanks to a diverging correlation length, the numeri-
cal value of these critical exponents is insensitive to many
details of the underlying physics, as expressed by a micro-
scopic Hamiltonian function. Universality classes. or sets of
transitions possessing the same critical exponents. gather
physical phenomena of seemingly different nature, provided
that a small number of macroscopic constraints are re-
spected. Static exponents of second-order transitions in equi-
librium. locally interacting systems without disorder depend
only on the type of symmetry broken by the ordered phase
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and on the space dimension 4 [23].

How microscopic details become irrelevant close to the
transition point is best understood within the framework of
the renormalization group [23]). A coarse-grained Ginzburg-
Landau functional is usually postulated to describe the large-
scale behavior close to criticality. This functional depends
only on the space dimensionality and on symmetries of the
system. Thanks to the associated Gibbs measure, contribu-
tions arising from small length scales can be integrated out
iteratively. Critical exponents are obtained as eigenvalues of
the linearized iteration operator close to a (stable) fixed point
of the renormalization flow. In many cases, their numerical
values can only be calculated perturbatively close to the up-
per critical dimension d,.. above which fluctuations become
irrelevant. A remarkable level of agreement between theory.
experiments. and numerical simulations validates the many
assumptions involved in this procedure. ranging from the
validity of ad hoc coarse-grained descriptions to the conver-
gence properties of perturbative expansions.

Some degree of universality is naturally expected to hold
for nonequilibrium transitions with a diverging correlation
jength [24]. A coarse-grained description is then provided by
a Langevin equation. ie.. a stochastic partial differential
equation for the slow modes ¢, of the system. of the follow-
ing form:

a,qtuk{.f.n—‘-f[cbk.qu]-rm.\'-.r). ()

where fast. microscopic degrees of freedom are modeled by a

Gaussian. d-correlated white noise m.f.:). and the func-
tional ¥ describes the (nonlinear} interaction between the n
modes & k=1..... n}. taking into account ali operators
compatible with the underlying symmetries. Provided that an
equation such as (1} accurately describes the slow modes of
the system. the standard prescriptions of the dynamic renor-
malization group [23-25] lead to sufficient conditions under
which a nonequilibrium transition is expected to belong to
the universality ciass of the Ising model. for both static and
dynamic critical exponents [26.27). Irreversible. nonequilib-
fium contributions become irrelevant close to the fixed point
of the renormalization flow provided that the transition is
well described by a single. nonconserved. scalar order pa-
rameter. and that the underlying mode! involves only short-
range interactions. For conciseness. such transitions will be
referred to as Ising-like transitions in the following. Note
that a microscopic. up-down symmetry is in principle nor
required [27].

In fact, much evidence has been gathered. according to
which Langevin equations similar to Eq. (1) faithfully de-
scribe the large-scale properties of extensively-chaotic
phases of extended dynamical systems. Mesoscopic Lange-
vin equations have been successfully applied to systems as
diverse as CML's with conserved quantities [11], cellular
automata with quasiperiodic time evolution of collective
variables [28], or the Kuramoto-Sivashinsky equation, whose
large-scale properties are well described by the Kardar-
Parisi-Zhang stochastic growth equation [29].

Far less is known about the validity of Langevin descrip-
tions and renormalization group approximations in the vicin-
ity of continuous transitions of extended dynamical systems.
A recent study addressing these questions is due to Miller
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and Huse [3]. who introduced a coupled map lattice specifi-
cally designed to exhibit an lsing-like continuous transition
between two extensively chaotic phases. Their results are
twofold: first. the large-scale properties of the (ferromagneti-
cally) ordered phase are well described by the same Lange-
vin equations as used at equilibrium to characterize the slow
evolution of antiphase droplets of the Ising model. Second.
the static and dynamic critical exponents they measure at the
transition are **consistent with™* the Ising universality class.
The first point provides additional evidence that slow modes
of extensively chaotic phases usually decouple from their
microscopic. chaotic background. which may then be cor-
rectly approximated by stochastic noise. In fact, the diffusive
relaxation of antiphase droplets they observe can probably be
wraced back to the diffusive nature of interactions built in the
microscopic evolution rule of this CML. On the other hand.
we believe that their second conclusion should be taken only
literally. without hastily proceeding to infer that this critical
point does belong to the lsing universality class. As we shall
show below. answering this question on the basis of data
obtained from numerical simulations of this sole model
would require prohibitively large computing power. due 10
the occurence of unusually strong corrections to finite-size
scaling laws.

B. Continuous phase transition

Coupled map lattices were introduced as generic. numeri-
cally economical models of spatio-temporally  chaotic
reaction-diffusion systems [17]. A CML is well-defined once
three ingredients are given: a lattice geometry. a microscopic
evolution rule. expressing interaction between neighboring
sites; and a local map which governs the reaction part of the
time evolution of local variables. In order to produce a fer-
romagnetic critical point [3]. Miller and Huse considered a
two-dimensional CML with nearest-neighbor. diffusive cou-
pling on a square lattice and with an odd. chaotic locat map.
In this section. we introduce their model. and discuss its
statistical properties. as observed for large lattices.

The choice of a two-dimensional geometry is motivated
by the absence of compelling arguments and of convincing
experimental evidence supporting the existence of genuine
phase transitions between chaotic phases in one-dimensional
extended dynamical systems. To our knowledge. time-
dependent collective behavior has never been reporied in
one-dimensional CML’s [1]. Our simulations of the “*phase
transition’” of a one-dimensional model reported in [30] does
not show any evidence either of critical properties, or of a
diverging correlation length. For the complex Ginzburg-
Landau equation, the exact staws of the transition from de-
fect turbulence to phase turbulence in the infinite-size limit
(smooth crossover or true phase transition?) remains unre-
solved [6]. For all practical purposes, the Mermin-Wagner
theorem, stating the impossibility of long-range order in one-
dimensional equilibrium systems with short-range interac-
tions, seems to hold true for extensively-chaotic dynamical
systems.

Fotlowing Miller and Huse, here we consider the simple
case of a square, two-dimensional lattice. Nearest-neighbor
coupling is chosen in conformity with the equilibrium Ising
model. Continuous local variables x; ; are assigned to nodes
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FIG. 1. A graph of the piecewise linear local map of Miiler and
Huse's model.

of a lattice of linear size L, where indices i and j denote
discrete Cartesian coordinates, and / indices discrete time. At
each time step 1. all sites are updated synchronously accord-
ing to the following ¢volution rule:

xﬁj'=(l-43)1'(-tf_,)+g(f'(-f$-1.,-)+f(-r§_,-_.)+f(x§+l,,-)
+f(x;.j-[))v (2)

where the coupling constant g. a real parameter. takes its
vialues in the real interval [O.i] 50 as to insure the invariance
of the CML's phase space under rule (2).

When the local phase space is a parity-invariant interval.
spin variables ¢} ; can be naturaily defined as

o) =sgnix; ) e{— L1} 3

Combining this remark with the additional requirement of
local chaos. Miller and Huse were led 1o the choice of the
odd. piecewise linear. everywhere expanding map defined on
the bounded intervai = 1.1] by (Fig. 1)

[ |
~3y-2 if ~lsxs-z
v 1 X 3

1 1

flay=< 3x it ———S,\:SS- {4

1
-3¢+ if rsx=l
\ 3

This map is chaotic. its positive Lyapunov exponent is equal
10 In3. and its invariant measure is uniform on [ - L.1].

For numerical convenience, the evolution rule (2) is
supplemented with periodic boundary conditions. Starting
from random initial conditions uniformly distributed in
[-1,1], a unique attracting steady state is reached after a
generally short relaxation time. Depending on the coupling
strength g, two qualitatively distinct regimes are observed
(Fig. 2): for values smaller than a critical coupling strength
denoted g, the CML is *‘paramagnetic,”” since positive (up)
and negative (down) spins are equiprobable. Above g, an

FIG. 2. Typical snapshots of Miller and Huse's model. in time-
asvmptotic regimes observed far from the transition point
g.~0.205 for a linear size L=-00. Up- and down-spins are repre-
sented by biack and white pixels, respectively. (a) Disordered.
“‘paramagnetic”’ phase. g=0.18. (b) Ordered, '‘ferromagnetic’
phase. g=0.23.

increased rigidity leads to the (dynamical) selection of a pre-
ferred sign: the CML exhibits ferromagnetic long-range or-
der. Both phases are extensively chaotic, as can be checked,
for instance. from numerical estimates of the Kolmogorov-
Sinai entropy obtained for different lattice sizes. They are
examples of “fully developed spatiotemporal chaos,”” the
strong-coupling regime of many diffusively coupied CML's,
as was first observed by Kaneko in coupled logistic maps
(31].

Ergodicity being assumed, the ensembie average {A) of
any observable A of the CML is equated with its temporal
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FIG. 3. A typical snapshot of Miller and Huse's model close to
its transition point. obwained in the time-asymptotic regime for
L=400 and g=0.205=g (L=400). Up- and down-spins are rep-
resented by black and white pixels. respectively.

average. and in practice computed along a trajectory as

=ity

> an (5)

f,""‘l =ty

(A)=

where ¢, and 1,,. respectively. denote the duration of dis-
carded transients. and the {sufficiently long) integration time.
Note that relaxation times toward the attractor may become
long. in the ferromagnetic phase. due to the diffusivelike
decay of large antiphase droplets which may arise from ex-
ceptional initial conditions. In the following. care has been
taken to insure that the observed statistical properties do in-
deed correspond to the time-asymptotic. stationary regime.
Spatial patterns are homogeneous and isotropic on length
scales large compared to the lattice step. Macroscopic quan-
tities such as the averaged activity (x) may thus be obtained
either from the time average of a local variabie x{ ; . for
any fixed lattice site of coordinates (i,,j,). or from that of
the space average of x; ; computed over the lattice. For all

(normed) vector v of the plane. a one-dimensional, equal-
time, two-point spatial correlation function C;(r) can be de-

fined along direction v. The spatial extension of clusters of
aligned spins in the disordered phase is of the order of a few
lattice steps far from the transition point g. [see Fig. 2(a)}.
The exponential decay of correlation functions C;(r) leads
to the natural definition of correlation lengths denoted &;. In
fact, neither the functional form of C;(r) nor the numerical

value of £; depend on the choice of the direction v: this
isotropic system is well described by a unique correlation
length £.

Snapshots taken close to the transition show the formation
of clusters of spins on all length scales comprised between
the CML's natural cut-off scales, i.e.. between 1 and L lat-
tice steps (cf. Fig. 3). The accompanying algebraic decay of
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the correlation function (not shown) suggests that the corre-
lation length may diverge at that point in the thermodynamic
limit. signaling the occurrence of a continuous phase transi-
tion. We now proceed to the definition of the corresponding
order parameter.

For a finite-size lattice. the instantaneous magnetization is
defined as the spatial average of spin values:

1
mi=f:§ o (6)

Note that the local spins ¢;; are intermediate variabies
which do not take a direct part in the dynamics. Because of
finite-size effects. sign reversals of m; occur in the ordered
phase. on a lime scale long compared to that of its fluctua-
tions. It is therefore customary to define the finite-size order
parameter M, as [32]

1 1=~y

> i (N

fm+ 1 =1

M =(m])=

whereby the ordered phase exhibits non-zero values of the
finite-size magnetization M, . Note that the average interval
of time between two sign reversals of the instantaneous mag-
netization diverges with system size [21]. an indication that
ergodicity breaking and symmetry breaking occur only in the
thermodynamic limit.

The susceptibility of equilibrium Ising systems is tradi-
tionaily defined as the response of the order parameter to an
external perturbation. For lack of a standard. unambiguous
way to couple the CML to an external field [11]. we choose
1o define the finite-size susceptibility y; as follows:

xe=L{(Imh] M%), (8)

where the average ()} is computed as in Eq. {5).

Close to the transition, we checked that both magnetiza-
tion and susceptibility depend algebraically on the distance
to criticality (see Fig. 4 for our raw data). In the infinite-size
limit. the following power laws are expected 1o apply:

M~(g—g )P for g=g..
X~]g—gc|-7’
E~lg—gd™" (9)

where 8. ¥. and v are the usual static critical exponents [23].
As a first step. we estimate the effective exponents g4 and
Y1024~ defined for a finite size L=1024 as

M g~ (g~ g (1024))Pro2s  for-g=g (1024),
X1024™ |8 — 8.(1024)| ~ Tezs, (10)

where g.(1024)} is the effective transition point. In order to
avoid notoriously inaccurate nonlinear fits for several un-
known variables, our measurement protocol is as follows.
For a fixed value of g.(1024), we fit the log-log plot of, say,
magnetization vs distance to criticality by a straight line, and
thus obtain a first. g-dependent estimate of B,q34. Our final
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FIG. 4. Macroscopic quantifiers of Miller and Huse’s madel.
Plots of (a} the magnetization {moe) and 1b) the susceptibility
Yiuzs re presented as u function of the coupling constant g for i
large size L= 1024, Time averages are performed over a sumpling
time 1,,~O( 10", In this case. the magnetization can be compuied
without an absolute value. since f,, is much smaller thun the sign-
reversal time-scale.

stimate of g {1024) and B g2, corresponds to the optimal fit
within a reasonable interval of vaiues of g 1024). detined as
the locus on the ¢ axis of a local maximum of the quality
coefficient of tits. The same procedure is applied to both
magnetization and susceptibility data, and vields mutually
consistent values of the critical point. Our estimates are

gdL= 1024)=0.20515.
Bio2s=0.09,

‘)’10243 1.48. ( 1 1)

These values are obviously not consistent with Ising expo-
nents,

In this section, no attempt is made to provide error bars on
values (il), which may arise from a combination of finite
size effects. finite equilibration time effects and systematic
deviations due to the choice of the measurement procedure.

In [3], Miller and Huse only claimed “*consistency’” with
[sing values, yet did not attempt to measure the values of
critical exponents directly, nor to investigate the strength and
influence of finite-size effects. Since their results were ob-
tained for significantly smaller lattices, our estimates [Eq.
{11)] suggest that finite-size effects are indeed strong in this
system. and can by no means be neglected. This essential
point will be tackled in the following section. whose main
purpose is to check the validity of values (11), thanks to a
finite-size scaling analysis of statistical properties close to
the critical point. This in turn gives way to controlled ex-
trapolations of finite-size quantities in the infinite-size limit,
and to reliable error bars on estimates of g., 8. v, and ».

C. Finite-size scaling

Even though finite-size systems at equilibrium do not un-
dergo true phase transitions. their behavior close to the
(infinite-size) transition point provides useful quantitative in-
formation on properties valid in the thermodynamic limit. At
equilibrium. the bulk free ecnergy F of an isotropic.
d-dimensional magnetic system o finite size L. subject to an
external field B at temperature T, can be written close to the
transition point under the following scaling form. up to cor-
rection terms which we choose to ignore for the moment:

FIT.B.L =L 4E(T—=T3LV " BLE Y™ (12)

where F is the rescaled free-energy tunction and T> is the
intinite-size critical temperature (see [32] for recent reviews
on finite-size scaling and [33] for seminal papers). One can
easily show that Eq. t12) leads, at the critical temperature
T and under zero external field. to finite-size scaling laws
for the magnetization and susceptibility:

M TH~LPY,
Xt TO~LY", (13)

The exponents used in Eqgs. (12) and (13} are identical to the
standard. infinite-size quantities 8. v. and v. These relations
thus provide a convenient way to estimate their numericai
values trom finite-size simulations.

From an experimental viewpoint. a finite-size system cor-
rectly approximates the infinite-size limit when its size is
much larger than its correlation-length: L> &, . Of course,
this cannot remain true infinitely close to T, . where the
corretation length diverges. Finite-size scaling is thus ex-
pected to apply as soon as L=, . Le. sufficiently close to
the transition point. Even though we are unable to define
explicitly an effective, coarse-grained free energy for Miller
and Huse's CML in the spirit of Eq. (12), we expect the
same quantitative behavior to apply to its nonequilibrium
continuous transition for the following reasons.

(i} The phase transition of this model appears to be well
defined in the thermodynamic limit only, as shown by our
investigations (see Sec. II B), as well as by numerical mea-
sures of the average sign-reversal time in the ordered phase
{211

(ii) Only one length scale diverges at the transition: the
cotrelation length £, . The CML is isotropic at large enough
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FIG. 5. Size dependence of the macroscopic quantifiers of
Miller and Huse's model. Plots of (a) the magnetization M L and (b)
the susceptibility x; are presented as a function of the coupling
constant g. for four different system sizes 201 <64. A time av-
erage is perfermed over 1,,~Q(107). a time scale much larger than
the average time between two sign reversals of the instantaneous
magnetization. The transition is rounded and shifted due to finite-
size effecs.

length scales. Length scales related to dynamic quantifiers,
such as the Lyapunov dimension. vary smoothly close to the
transition [4]. Even though a proper finite-size study of this
result remains to be conducted. this suggests that the onset of
long-range order is decoupled from the CML’s TRiCTOSCOpiC
dynamics.

We now provide qualitative and quantitative evidence
supporting the relevance of Eq. (12) to Miller and Huse’s
CML. In Fig. 5, we show plots of the CML’s order param-
eter and susceptibility vs coupling constant for system sizes
ranging from L=20 10 64. Experimental conditions are un-
changed, with integration times 1,,~0(10). As expected,
the divergence of the susceptibility is rounded and shifted
over some parameter region, while the magnetization de-
creases smoothly to a small constant value in the disordered
phase (see Fig. 4 for comparison).
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Let g; denote the infinite-size transition coupling con-
stant. Scaling laws similar to Egs. (13) are expected to hold
in a neighborhood of this point, e.g.,

M(g)~L™%)  geVg®), (14)
where f( &) is a smooth function of g. Therefore. reliable
values for the exponent ratios B/vand ¥/v can only be ob-
tained once g7 is known with sufficient accuracy. From Fig,
5(b). we see that an effective critical coupling constant
8.(L} can be defined for a given finite size L as the abscissa

of the global maximum of y, . Qur data is consistent with
the following scaling law [33}:

gL —gr=p =M (15)

which can be fitted simultaneously for ¢* and ». However,
we prefer to evaluate g independently of the exponent r. A
useful quantity is Binder's cumulant U, (g) [34), defined as

Ulg)==3=M (g MP (). (16)

where M{"' denotes the kth-order moment of the magnetiza-
tion M¥'=((m})*), According to the same anaiogy with
equilibrium second-order transitions [Eq. (12)]. we are led to
write the scaled form of Binder's cumulant as

Ungr=0@g—-gHL'). an

Remarkably. size-dependent prefactors cancel on the right-
hand side of Eq. (17) {34]. As a result. U;(g) becomes in-
dependent of L at criticality,

Uigl)=U*VL. (18)

At equilibrium, the quantity U* is a universal ratio of am-
plitudes. Its numerical value is estimated to be
— U™~ 1.830-1.835 for the Ising universality class (see [35]
for further references).

In practice, our estimate g” is determined by plotting
graphs of U,(g) vs g for system sizes ranging from L=32 to
128 (Fig. 6). The simulation times—typically 10* times the
coherence time—are long enough in order to achieve satis-
factory statistical accuracy. Error bars then correspond to the
extension of the intersection region. Our estimates are

27 =0.205 34(2),
—U*(g¥)=1.832(4), (19)

where numbers between brackets correspond to the uncer-
tainty on the last digit(s) of the measured quantity:
g =0.20534+0.000 02, - U*(g7)=1.832%0.004. Even
for the largest sizes considered [(L,,L,)=(64,128)], a slow
drift toward larger values of g is observed when comparing
the successive locations of the intersection points of curves
U, (g) and U, (g). Accordingly, a systematic uncertainty
on the position of the infinite-size critical point cannot be
excluded. Note, however, that the value of U/* given in Eq.
(19} is in remarkable agreement with that expected for the
Ising universality class.

| ————
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FIG. 6. Iustration of the relevance of Binder's method when
estimating the critical coupling constant of the continuous transition
of Miller and Huse's model. Plots of Binder's cumulant with re-
spect 1o g are presented for system sizes 20<L=<I28. Symbols
correspond to raw data. plain lines to polynomial fits. Estimates for
27 and U* reflect the size of the intersection region of curves
obtained for sizes 32<L=128.

We now proceed to measure exponent ratios B/v. ¥/v
and 1/v. Figure 7 shows that the expected scaling laws:

Mg~ L78",
xplgH~Lye (20

are indeed respected when ¢ is equal to its measured value
{19}, Linear fits in the log-log scale for 20=<L <64 lead 10
the estimates

Blv=0.125(4).
ylv=1.761(10). an

in good agreement with the Ising values (B/u),s-mg=i and
{ ¥ V) 1gne= 7. The main source of erTor stems from the un-
certainty on ¢ .

In order to measure v. we choose to use the scaling faws

AU (g~L"
A M (g~ L1
dlnM (g ~L"". (2

easily derived from Eg. (12) {32]. Even though only the first
and second moments of the magnetization will be considered
here for computational reasons, logarithmic derivatives of all
higher-order moments aiso scale with L with a dominant
exponent equal to 1/v. At equilibrium. numerical differentia-
tion of noisy data can be avoided: derivatives on the left-
hand side of Eq. (22) can be expressed as combinations of
moments by using the properties of the Boltzmann weight.
This is. however, not possible in this case. An alternative
method consists in approximating the derivative [e.g.
3,Utg2)] by a finite difference taken between two neigh-
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FIG. 7. Measure of the critical ratios 8/ v and /v for Miller and
Huse's model. Log-log plots of (a) the magnetization M, (g} and
{b) the susceptibility y,(g.) vs system size are presented at criti-
cality [g. =g~ =0.205 34(2)1]. The solid lines correspond to Ising
exponents, it good agreement with numerical data. Note the wenk-
ness of corrections to dominant scaling.

boring poiats ¢ and g . g, <g, <g. . This method tumns
out to be difficult to control. and is overly sensitive to statis-
tical errors on the values of the original data, in this case
Ug(gl) and Uglg.). We choose instead to first fit the ex-
perimental curve U, (g), by a polynomial function P{g). and
then approximate the derivative by the polynomial’s deriva-
tive at the critical point: #,U,(g7)==P’(g7). When a suffi-
cient number of data points spread over a large enough in-
terval of g values are considered. the numerical value
P'(g®) tums out to be independent of the degree of the
polynomial P. Figure 8 shows plots, drawn on a log-log
scale, of the quantities J,U.(g)). d InMy(g7) and
3,InMP(g7) thus obtained. Corrections to scaling are clearly
present for the smallest sizes. Linear fits on the four right-
most points of each data set in Fig. 8 (32=L=64) lead to
the following estimate:

r=0.874(17). {23)
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FIG. 8. Direct measure of the correlation-length exponent » for
Miller and Huse's mode!l. Log-log plots of the derivatives of
Uplg,). InM (g and InM{P'(g,) vs system size are presented at the
criticat point. g, =g =0.205 34(2). for system sizes in the range
16=L=<64. Straight lines of slope 1/vy,,,=1 and LAL8RT are
drawn. Strong corrections to dominant scaling are present. The
value of v,=0.887, our reference. is obtained from the same data
by taking into account a single corrective exponent {cf. Sec. II D).
Visually. this slope hardly differs from 1/0.874, as obtained from
Sec. I C's estimate »=0.874. which overlooks possible corrections
to scaling.

As before, the main source of uncertainty derives from the
error bars affecting the value of g° . Note that our measure-
ment protocol leads to mutually consistent behavior for the
three quantities in Eq. {22). even though one would in prin-
ciple expect the stability and accuracy of measures to be
ordered as

UL (gTySa M P (gl)SdInM g]).  (24)

since statistical accuracy decreases with the order of mo-
ments of m} involved.

In this section, we have first of all confirmed—albeit
indirectly—the validity of Eq. (12) for the nonequilibrium
continuous transition of Miller and Huse’s CML. However,
our quantitative estimates of critical exponents are in partial
disagreement with the conclusions of [3]: while the ratios
Blv and y/v agree with Ising values, our—so far naive—
estimate of v is not compatible with the Ising correlation-
length exponent vy, = 1. In Sec. II D, we attempt to answer
the following question: does this discrepancy reveal actual
asymptotic bebavior, or is it only due to the presence, for
small systems, of corrections to dominant scaling which
might obscure the true, infinite-size behavior?

D. Corrections to finite-size scaling

The relevance of corrections to dominant scaling laws is
perhaps best shown by graphs of the quantities
BRUL(g:)fL”V, 3glnML(g:)lL””. and 3glnM(L2)(g:‘)ILIIV vs
system size L. When the numerical value »=0.887 is used
[cf. Eq. (30)], such graphs show clear evidence of conver-
gence towards well-defined limit [Fig. 9(a)]. The same com-
ment is valid for v=0.874 [Eq. (23)]. Nonetheless, plots ob-
tained for v= vy, =1 [Fig. 9(b)] have not reached

PHILIPPE MARCQ, HUGUES CHATE. AND PAUL MANNEVILLE 55

15 T
e L ey bt F= -
E =
P
| - I
30 - - vA=U, 4
sA=InM, :
cAsinm” i
-;i\' ' H
X 15 <
~
S
-
A
20 - - -
——————— e ok, S B e e o Sl e S S S -
_t'!c'l' ==
Ly
0 30
L
th}
6.0
x
E S
==
-
50 - - -
- T A= Ut
- *AsinM,
- cA=inM"
- —-—
= 40 - .
-
2
b -
= . v -
bl E -
30 - _'._:_.\_—:w =
2:..,_
20
/] 50
L

FIG. 9. A convenient display of corrections to dominant scaling
affecting the measure of » for Miller and Huse's model. Lin-lin
plots of the quantities &, U,(g /L', o aM (g ¥L", and
0g1an’(g‘.)lL“" are presented at criticality [g.=g;
=().205 34(2)] vs system size L. [n graph (a). rapid convergence 10
a plateav which may faithfully represent infinite-size behavior is
reached for our estimate »=0.887. Using v= v, = 1.0 instead
[graph (b)) leads to possible. but extremely late convergence (see
text).

saturation for L=<64. However, a very slow convergence
cannot be ruled out for very large system sizes.

In order to assess quantitatively the validity of this obser-
vation, we wrn once more to results known to hold at equi-
librium. According to renormalization group theory, conver-
gence toward asymptotic behavior is generically controlled
by irrelevant operators, i.e.. operators whose eigenvalues
close to the relevant fixed point are negative. For finite-size
systems, the scaling form of the free energy becomes, in the
simplest case,

F(T.B,L)y=L4E(T—TO)L" BLE* MY S L™*"),
(25)

where only one irrelevant scaling field S, is included, and
w is the associated (positive) corrective exponent. In prac-

———————————
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tice, deviations from asymptotic scaling laws under zero ex-
ternal field derive both from the presence of irrelevant op-
erators and from the experimental uncertainty on the location
on the infinite-size critical point. The large size behavior of
thermodynamic quantities is then controlled by a double ex-
pansion in powers of L™* and of the reduced temperature
( T-— T:C)L h’v'

Assuming that an equation analogous to Eq. (25) is valid
for Miller and Huse's CML., we obtain the following expres-
sions:

M(g)=L" ¥ (ag+a L™+ - +b(g~g L+ ..),
xu(g)=LY(co+o L7+ - +d(g—g L+ .. ),
QUY=L (eg+e L™+ - +filg—g LY+ .. ),
M (g)=L"(gy+q\ L™+ -~ +r (g—gHL"+...),

ﬂxlan’(g).—:L”"(s”-g-_,-l[_““+. g g I+ ),
(26)

where a,.b,. ..., n=0.1.... are nonuniversal. real pa-
rameters. A simpler ansatz is, however. necessary, since each
of these squations already involves a larger number of un-
known variables than can be expected 1o be determined reli-
ably from the available data peints. Inspection of both graphs
of Fig. 9 reveals qualitative consistency with the presence of
one comrective exponent. as in Eq. (26). In addition. the
growth of error bars with system size can be interpreted. for
data of similar statistical sccuracy. as deriving from the pres-
ence of a correction term such as (g—2¢ )L, Since our
main goal is to improve the reliability of estimates ot the
critical exponent v. we choose to take into account one ef
Jective exponent wg). as in the expression

M (g =LV sy ) + s (gL T8, (2T)

where v(g). w(g). so(g). and 5,(g) are smooth functions of
the coupling constant ¢. Error bars on, e.g.. v, then corre-
spond to the range covered by values of »ig) when g varies
within the contidence interval obtained for the critical cou-
pling g .

We now describe our measurement protocol in the par-
ticular case of J.‘.In:\rl",f‘(g:). Generalization to other “ther-
modynamic’ quantities on the left-hund side of Eqg, (26) is
straightforward. Let g, assume a fixed value in the confi-
dence interval previously obtained for g [cf. Eq. (19)]. For
fixed, reasonable values of (r.w), we plot
LY "65,!an’(3(.) with respect to L™ . A linear fit leads to a
first estimate of sy(g,.v.@) and 5,(g..v.w), as well as of
the corresponding (g, .v.w) measuring the quality of the
tit—not to be confused with the critical susceptiblity x(g_).
The critical coupling g, being fixed. we determine the expo-
nents {¥{g.).w{g,)) trom the best fit. defined as the locus of
a Jocal minimum y*(g.) =miny’(g,.».w). In practice. a clear
minimum of the function x*(g.,v,®) is observed, and cor-
reponds to fits of good quality [cf. Fig. 10: a projection on
the plane w=w(g,) is used for clarity in Fig. 10{a})]. The
final error bars on v and w correspond to the extremal values
obtained when applying the same protocol while varying

2615
fa)
0.05
L
0.04 — 4, =020532 -
. - g = 0.20534
- - - - g 2020536
003 - -
T
=
E :
002 - .
| " . .
)/
0er - P /-‘,';-" -
‘ \\ . Pt j
TR e =TT !
0.00 - -
0.8 0.9 10 L
v
(b
40
!
I Sg =0.20532. w= 132 v =087 :
| 28, 020534, 0 = 1.24. v = 0.395
35 - g, =0.30836, W= 1.17.v = 0.905 B
f
i
;
Z i .
o |
ES
-l
25 -
20— :
0.00 0.02 o4 .08 008

L

FIG. 10. Ap estimate of the effective, corrective exponent w,
tfor Miller and Huse's CML. Plots of y° vs v. obtained for an
already optimized value of w,, are shown in graph (a) for three
fixed values of the critical coupling constant spanning the confi-
dence interval g =g~ <{0.205 32.0.205 36]. Linear fits corre-
sponding to the minima of the three curves are presented in graph
{bi. where symbols denote our dat. obtained in each case for the
optimal triplet (g2, .w.p).

g. over the relevant imterval. The three quantities
FUUGIWLYY . A Mg LY and 3 InMig2UL"" are
analyzed along the same lines. yielding mutually consistent
results. Our global estimate is
v=0887(18), w,=15%0.. (28)
This value of w is compatible with a rapid relaxation to an
asymptotic behavior reached as soon as L =32, in agreement
with Fig. 9(b}).
Applying the same method to exponent ratios 8/v and
¥/ v yields the following estimates:

Blv=0.125(4), wy=9(4),

yv=1748(10), w,=57(5). (29)
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TABLE 1. Critical exponents of Ising-like phase transitions of
CML's. For each model. we give numerical estimates of the critical
point g~ . Binder's cumulant —U*. and the three static critical
exponents 8. 7. and ». The ratio (28+ y)/v~2.0 is everywhere in
agreement with an hyperscaling relationship. The abbreviations
MH4. C4. and MH3 correspond respectively 1o Miller and Huse’s
model. o the CML with cubic map discussed in Sec. IIl A 1, and 10
the locally anisotropic. three-neighbor coupling CML of Sec.
IIf A 2. The three transitions belong to the same (non-Ising} univer-
sality class.

MH4 MH3 C4
g, 0.205 34(2) 0.251 184 0178 6414)
-u= 1.832(4) 1.823%H 1831
Blv 0.12514) 0 1356) 0.1257)
viv 1.748010) L7430 1.75(4}
(28+wiv 2.0002) 2.01¢-h) 2.00t5)
B 0.1liS 0.117(7) 01141
Y 1.55t4) L35(5) 1.60c11)
v 0.887(18) 0.895(12) 0.91¢4}

Taking into account one corrective exponent leads here to
improved agreement with Ising values, The large values of
wyy and w, are consistent with a fast relaxation to asymp-
totic behavior. as observed in Fig. 7. The discrepancies ob-
served in the measured values of w,. wy . und w, appur-
ently conradict Eq. (26). where a single exponent « is
present. This is easily accounted for by remembering that
w as measured here is an effective corrective ¢xponent. in-
tegrating all possible sources of cormections to scaling. An
accurate determination of the (unique} exponent w would
require data of much better statistical quality. Combining
Eqgs. (28) and (29), we obtain the following final estimates of
critical exponents:

B=0.111(5).
y=1.55(4),
r=0.887(18), {300

as reported in Table I. where Miller and Huse's CML is
referred to as MH4.

Assuming that the exponent v holds its Ising value, we
implement the same protocol. this time varying only g and
w. Within this constraint, the *‘best fit'" can no longer cor-
respond to a global minimum of y*(g, .v.w) [cf. Fig. 10(a)]
The value thus obtained for wy,in, is smaller than 1:

v= V'[sing= 1= w,._lsing= 0.6= 0.2. (3 1 )

indicative of an extremely siow rate of convergence toward
asymptotic behavior. Using the corresponding values of
eo(8.). golgc), and so(g,) as reference points, we find that
convergence to asymptotic behavior. defined as a relative
deviation of less than 1% from asymptotic values, would
then be reached for L=0(10%), or well beyond the reach of
current COmputing power.
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FIG. 11. Data collapses close to the continuous transition of
Miller and Huse's model. The data are the same as in Fig. 5. Log-
log plots of the reduced magnetization L#'"M, [graph (a)] and sus-
ceptibility L™ "y, [gruph (b)] are presented vs the reduced control
parameter L'"*|g—g |/g. for numerical values g, =g =0.205 34.
Blv= (Blv)g=0.125.  y/v= (¥ ¥)14,1.75. »=0.887. and
20= L =64. Note the good agreement of asymptotic behavior with
the non-Ising exponent v=0.887.

In addition. indirect support of the validity of estimates
(30) is provided by collapses of magnetization and suscepti-
bility data obtained for different system sizes. Neglecting
corrections to scaling in Eq. (25). the following homoge-
neous forms are expected to apply:

LP"M(g)=M((g—gDL"™).

L™y (g)=x{(g— gL' (32)

The data sets previously presented in Fig. 5 (L=64) yield
excellent collapses for »=0.887 [Eq. (28)], and the Ising
values B/v=0.125 and y/v=1.75 (Fig. 11). Interestingly.
the large-size behavior of M, and x, , as observed in log-log
scale in the limit |g— g |L¥*—, is consistent with straight
lines of respective slopes 8=0.111, —y/2=-0.775, and
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—~ y=—1.55, in agreement with Eq. (30). The same esti-
mates [Eq. (30)] are also consistent with relation (15), and
deviate only slightly from values obtained directly from
simulations of large-size systems [ L= 1024, Eq. (11)]. Note,
however, that the quality of collapses obtained from Eq. (17)
is similar for both ¥=0.887 and v= v, =1.

Numerical data presented in this section strongly suggest
that the continuous transition of Miller and Huse's CML
does not betong to the Ising universality class. Provided that
the behavior observed for L <64 meaningfully approximates
the infinite-size limit behavior, our estimate of the
correlation-length exponent, »=0.887(18), is significantly
lower than the expected vi,,= 1. Yet a slow crossover to
Ising behavior cannot be ruled out for very large system
sizes. On the sole basis of data presented so far, our claim
does not constitute a definite proof. Unfortunately, our analy-
sis of corrections to scaling also shows that the sizes needed
in order to provide a decisive numerical answer to this point
lie far beyond present computing capabilities [L=0(10%)].
The true critical exponents of the transition, be they Ising or
not. are naturally expected to be in some sense universal.
The coming section is aimed at assessing the “‘degree’ of
universality of the non-[sing estimates (30).

{II. RELEVANT PARAMETERS
FOR NONEQUILIBRIUM UNIVERSALITY

The continuous phase transition first reported in [3] is by
no means A unique phenomenon: Ising-like transitions are
easily observed in coupled map lattices and relared models
[4]. once a small number of conditions is fulfilled. The mod-
els investigated in this section share the following properties:
the evolution rule is homogeneous. the local map is odd and
chaotic. The lattice is two dimensional. and coupling be-
tween sites is short ranged. At the macroscopic level. an
up-down symmetry is spontaneously broken in the ordered
phase. These resirictions are inspired by the conditions
which are known to detine universality classes at equilibrium
[23]. Our main goal here is to test whether or not the same
conditions hold for far-from-equilibrium transitions of
CML's (Sec. I{I A). Furthermore, the phase transition of a
CML belonging to the same universality class as Miller and
Huse's model may tum out to be free from (nonuniversal}
corrections to dominant scaling, thus allowing a reliable es-
timate of the correlation-length exponent ». We would also
like to determine which features specific to CMLs may affect
critical properties. In particular. the role played by bounded.
deterministic local fluctuations and by synchronous update
will be assessed (Secs. [1I B and [II C. respectively).

All models discussed in Sec. III are simulated and ana-
lyzed according to the experimental protocol exposed in de-
il in Sec. I1. Initial conditions are drawn at random over the
CML's phase-space, boundary conditions are periodic. All
regimes considered correspond to the unique (numerical) at-
tractor of the system’s dynamics. The largest system size is
Loax= 128. The achieved statistical accuracy is of the same
order for all models. Overall consistency in the measurement
process allows meaningful comparison of exponent values,
everywhere estimated by taking into account one effective
corrective exponent (cf. Sec. I D). Note that macroscopic
quantities exhibit the same scaling behavior, for the same

_ I - — ‘
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critical exponents, when averaged over continuous local
variables, as in

!
Mionet =TT %1 (33)

instead of local spins [cf. Eq. (6)]. Simulations reported in
this article required about seven years of the CPU time of a
DEC/Alpha processor running at 110 MHz. For brevity’s
sake, only figures related to the exponent ¥ are included. in
practice figures similar to Figs. 8 and 9 of Sec. IL The inter-
ested reader is referred to [36] for additional details, and in
particular for graphs leading to estimates of the critical
points and of exponent ratios /v and y/v.

A. Testing universality within CML’s

Static critical exponents of equilibrium second-order
phase transitions of systems with short-range interaction only
depend on the type of broken symmetry and on the space
dimensionality. In this section, we consider extensively cha-
otic. purely deterministic. synchronously updated, two-
dimensional CML's with an Ising-type ordering transition.
The changes made on Miller and Huse's CML are known to
be irrelevant at equilibrium: we first modify the local map
(Sec. [T A 1), then the coupling scheme (Sec. T A 2}. The
corresponding transitions are thus expected to belong to the
same universality class.

1. Smooth local map

CML's which combine evolution rule (2) with an odd
local map admitting three unstable fixed points do not nec-
essarily exhibit an Ising-like phase transition [36]. In some
cases. the CML remains paramagnetic for ail parameter val-
ues. In others, a period-doubling transition is observed. Since
the relationship linking microscopic dynamics and macro-
scopic ordering is unclear at present, our approach remains
mostly empirical.

The first model we investigate is obtained by replacing
the piecewise linear map of Miller and Huse's model [Eq.
()] by a smooth, cubic map of the interval [ — 1,1] (ef. Fig.
12),

Fflxy=3x—4x, (34)

while other features of the model are lett unchanged. Since
its map possesses both expanding and contracting parts. the
corresponding coupled system; referred to as C4, may be
thought of as more generic than Miller and Huse’s model.
Whereas the {(one-dimensional} cubic map is conjugate to the
piecewise linear map [Eq. (4)], and is therefore charactenized
by the same Lyapunov exponent, this property does not hold
for the coupled system. Lattices of coupled cubic maps turn
out to be less chaotic, as can be quantitatively shown, e.g..
by numerical calculations of the Lyapunov spectra. Longer
coherence times then translate into longer simulation times,
for a given levet of statistical accuracy.

An Tsing-like transition, phenomenologically similar to
that of Miller and Huse's CML, is observed at intermediate
coupling strength g. The spatial extension of the intersection
region of curves of Binder's cumulant U (g) leads to an
estimate of the critical coupling constant:
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FIG. 12. A graph of the smooth. cubic local map used in model
C4.

g, =0.1" 64(4),
=g, 1.83(1). (35)
This value of U* is again compatible with the Ising estimate,

The critical behavior is everywhere similar to that of Miller
and Huse’s model. Estimates of critical ratios and exponents,

obtained from Eq. (35). are consistent with vaiues (28} and

(29):
BlIv=0.125(7).
ylv=1.75(4).
v=0.91(4). (36)

Values obtained from Egq. (36) for the exponents B and y are
given in Table L. in good agreement with Eq. (30). Conver-
gence to Ising asymptotic behavior is rapid for both magne-
tization and susceptibility. as confirmed bv large values of
the corresponding corrective exponents wy~w,~5. As be-
fore. strong corrections to scaling render the measurement of
v inconclusive (Fig. 13): the possibility of a slow relaxation
toward Ising behavior. governed by a corrective exponent
smaller than 1. cannot be ruled out.

Local maps defined on the whole real axis. such as Eg.
(40). were also investigated. In all cases considered, pretimi-
nary results indicate that strong corrections to dominant scal-
ing impair the evaluation of v. while relaxation toward
Biv= (Blv)ng and viv= (y/ V)iing is fast, This suggests
that critical exponents are indeed insensitive to the choice of
a local map, and that the presence of strong corrections to
scaling for v may in fact be related to the particular evolution
rule used so far, ie. to nearest-neighbor coupling on a
square lattice.

2. Transition with weak corrections to scaling

The role played by the {short-range) evolution rule is in-
vestigated in this section. We focus on a CML defined by the
combination of Miller and Huse's map [Eq. (4)] and a locally
anisotropic evolution rule
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FIG. 13. Measure of the comelation-length exponent » for the
continuous transition of model ¢4 (cubic local map. four-nearest-
neighbor coupling). A direct measure is obtained from graph {a).
where quantities 4, U, (g,). 4, InMy(g,). and 4 InMt>g,) are plotied
vs L on a log-log scale at the critical point g=g =0.17864(4).
Our best estimate (»=0.91) is tested in graph (b). presenting
A U8 MLY 8 InM (g VL"". and oM VLY vs L on a lin-
lin scale.

x'z?,] ={1- 3g)f(xf.‘.i.j’+g(f(xa,'-. 1J)+f(-\'!_w+ I.j)

+f("'5f.j+ D)

Xyra == 3gHxy,. 1) T8y )+ fxyea))

+ o)) 37

referred to as MH3. Rule (37) is defined on a two-
dimensional square lattice of Cartesian indices {i.j), and ap-
plied synchronously to all lattice sites. Each site is coupled to
three of its nearest neighbors: sites belonging to even (odd)
columns of the lattice are coupled vertically to their northern
(southern) neighbor only. The coupling constant g thus be-
longs to the interval [0.3). An Ising-like phase transition
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FIG. 14. Typical snapshots of model MH3 tlocally anisotropic
evolution rule) tken in the time-asymptotic regime tar from criti-
cality [g7=0.25118H]. Up- and Jown-spins are represented by
black and white pixels. respectively. () Disordered phase.
g£=0.18. (b} Ordered phase. g =0.28. The system size is L =400.

occurs for a critical coupling g, ~0.25. The local anisotropy
of rule (37) is erased at large scales, where patterns are iso-
tropic (Fig. 14},

Since a unique correlation length £ can be defined, and
shown to diverge at criticality, we expect the finite-size scal-
ing laws discussed in Sec. II to apply. Accordingly, Binder’s
method leads to an estimate of the critical coupling constant

g2=0.251 18(4),

-U*(g)=1.823(3). (38)
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FIG. 15. Measure of the correlation-length exponent v for the
continuous transition of model MH3 (piecewise-linear local map,
three nearest-neighbor. locally anisotropic coupling). The quantities
plotted are the same as described in Fig. 13, for the refevant nu-
merical values g =g~ =0.251 18(4). »=0.895. Notice the absence
of corrections to scaling in graph (b).

where the estimated cumulant is slightiy lower than its Ising
value. We find values of critical quantities:

Blv=0.13116),
yiv=17303),
»=0.895(12) (39)

for corrective exponents wy~®,~ 5. A crucial observation
is that corrections to dominant scaling are suppressed for the
quantities 3,U.(g7), 3,nMP(g7) and 3 InM (g]) (cf. Fig.
15). Convergence to asymptoti¢ behavior is already achieved
for the smatlest size considered. L= 12. This feature justifies
the somewhat unusnal choice of rule (37). The numerical
value »=0.895(12) given in Eq. (39) is obtained from
straightforward linear fits of the data presented in Fig. 15,
aover the whole range of available sizes (12=L=<128). We
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can thus safely conclude that this transition does not belong
to the Ising vniversality class, since its correlation exponent
v is nor consistent with .= 1.

Table I sums up the numerical values of critical exponents
of models MH4, C4, and MH3. Since excellent mutual
agreement is achieved, and since critical exponents are in
principle insensitive to microscopic details of the CML, such
as the choice of the local map or local coupling, our data
strongly suggest that the three transitions belong to a unique
universality class, characterized by a correlation-length ex-
ponent significantly lower than the Ising value. In other
words. we now feel confident that the estimates of » derived
in Secs. 1 D and II1 A 1 from the scaling behavior of sys-
tems of small sizes are in fact equal to values pentaining to
the infinite-size limit. Note that we have no specific under-
standing as to why implementing evolution rule (37} happens
1o suppress corrections to scaling. In particular. strong cor-
rections to scaling are again observed in the nearby case of
nearest-neighbor coupling on a honevcomb lattice. The cou-
pling scheme (37) may thus constitute a fortunate. yet iso-
lated case.

B. Noise-driven phase transitions

Phase transitions of two-dimensional. extensively-chaotic
CML's, which were expected Lo beiong to the Ising univer-
sality class on rather general grounds. tum out to exhibit
universal. vet distinctly non-lsing critical behavior. For one-
dimensional CML's. it was recently argued that the nonuni-
versal behavior of phase transitions akin to directed percola-
tion may be related. below threshold. to the inherent
complexity. and thus to the ““imperfect™ character of deter-
ministic fluctuations produced by chaotic dvnamical systems
{13). In the context of noneguilibrium growth phenomena.
roughening exponents of nonlinear, stochastic partial differ-
ential equations subjected to colored noise are known to vary
continuously with the value of the exponent governing the
tail of the noise distribution [37]. It is thus natural to wonder
whether the unexpected critical properties reported above
may be connected to the particular nature of the determinis-
tic. bounded fluctuations generated by chaotic maps.

This question is now addressed, by investigating the criti-
cal properties of noise-driven phase transitions of stochastic
CML's. When subject to an external, unbounded. white
noise. the local phase space of each individual map must
nonetheless remain invariant under the CML’s evolution
rule. For that reason. we opt for an odd. chaotic map defined
on the whole real axis as {cf. Fig. 16)

flx)=Nx—xHexp(—x*) (40)

and characterized by three unstable fixed points for large
enough values of its real parameter A. The exponential in Eq.
(40) ensures that the CML’s attracting set remains bounded.

L Four-neighbor coupling

Map (40) is first implemented on a square lattice with
nearest-neighbor coupling. The evolution rule of the result-
ing synchronously-updated, stochastic CML reads
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FIG. 16. A graph of the smooth. local map used in stochastic
models N4 and N3.

oy "= —dgft x el e -"f.j—l’+.fl-vi— L)
+flx o )+ 144

where 7; ; denotes Gaussian. white noise with the following
correlation tunctions:

(7L, y=2D = k8—Détu—1"). 142

Sequences of uncorrelated pseudorandom numbers are pro-
duced by a generator of Fibonacci type. with a period much
longer than the O¢ 10'") numbers needed for the largest sizes
considered. Their distribution is made Gaussian by a stan-
dard Box-Miiller-type aigorithm. We checked that our resuits
are not altered by a different choice of random-number gen-
erator.

Three control parameters are in principle available: the
coupling strength g. the map's parameter A. and the noise
intensity D. The value of A is first set so that the correspond-
ing pure CML {evolution rule (2)] undergoes a coupling-
driven Ising-like transition for an intermediate value of g.
The coupling constant is next chosen in a range compatibie
with the existence of a ferromagnetic phase. For the same
fixed set of parameter values (\,g). a noise-driven Ising-like
transition occurs under evolution rule {41) for 2 critical noise
intensity D, . Strong enough external noise, somewhat simi-
lar to the temperature of equilibrium systems, destroys long-
range order and leads to a paramagnetic phase (D=D,).

For the fixed set of parameter values (A,g)=(5.0.0.22).
the locus of an Ising-like phase transition can be circum-
scribed to the region defined by

D7 =0.018 05(15),
~U*{(D7)=1.834(13) (43)

by applying Binder's method on numerical data obtained for
sizes 12 L <64 only. due to the additional numerical cost of
drawing random numbers. Good agreement with the Ising
value of U* is again observed. The status of critical quanti-
ties is similar to that obtained for models previouly defined
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TABLE II. Critical exponemts of synchronously updated. sto-
chastic CML's, Abbreviations MH4. N4, and N3 correspond re-
spectively to Miller and Huse's model and to the noisy CML's
discussed in Secs. I B 1 and III B 2, defined by nearest-neighbor
and locally anisotropic three-neighbor coupling schemes. The three
transitions belong to the same {non-Ising) universality class.

MH4 N4 N3
. gDz 020534 2) 0.018 05(15) 0.023 66(6)
. ”
P & -U* 1.832(4H) 1.834013) 1.830(6)
tor = .~ ——~ Slape I/0.88
L Stope | | Blv 0.125(4) 0.122(6) 0.126(7)
| ¥iv 1.748(10) 1.70(4) 1.752(1D)
: ; (IB+niv 2.00(2) 1.95(6) 2.00(3)
0'5110 I%; 250
’ Iog' L ) B 0.H1(S) 0.108(13) 0.113(9)
¥ 1554 1.50( 14) 1.56(5)
- v 0.887(18) 0.88(6) (0.89(2)
i A=Y,
:: ::: :L _ eters (A.g). as well as on coupling-driven phase transitions
_____ R, SO o observed when varying g for fixed parameter values
wEs = - - (X.D), suggest that the intensity of corrections to scaling is
07 - = . iy . . ;
= rather insensitive to the particular choice of model. provided
o that the evolution rule invoives nearest-neighbor coupling on
x - a square lattice.
-
LS
=, o 2. Three-neighbor coupling
TTTTTIEY R "f‘ff‘.?“'f—_f“‘i ““““ We now consider a variation on evolution rule (37), modi-
"'"';"" o ETTE T T fied s0 as to include additive white noise. The resulting noisy
- CML. denoted hereatter as V3. is defined on a square lattice
as tollows:
0.3
9 B 0 0 50 ro . - .
L -"1:.} ={1=3g)ftx5; ) +£~,’U(-"':.'—ll.j)‘*'f(-"r:1- L)

FIG. 17. Measure uf the correlation-tength exponent v for the
noise-driven continuous transition of stochastic CML M4 (local
map detined over the whole real axis. nearest-neighbor coupling).
The quantities plotted are analogous to yuantities described in Fig.
13. tor the relevant numerical values D=D07 =0.01805(13).
v=0.88. Graph (b) shows the presence of strong corrections to
Jdominant scaling.

on a square lattice with nearest-neighbor coupling. as de-
scribed in Secs. Il and IT A 1. Our estimates are

Blv=0.122(6).
yiv=1.70(4).
»=0.88(6) (44)

for effective corrective exponents equal 10 wy=6(1),
w,=2.6(1), and w,=5.5(1.0). While good agreement with
Ising values is easily obtained for exponent ratios 3/v and
y/ v, strong corrections to dominant scaling (cf. Fig. 17) as
well as larger than usual error bars hinder a straightforward
evaluation of v. Values of the critical exponents 3, v, and
» are listed in Table 11, under the heading N4. Preliminary
results on other noise-driven transitions of stochastic CML's
obeying evolution rule (41), for different choices of param-

+ Uy DT I
=0 =3 fla, )T UGS D fad )

+ L (45)
where nj_j denotes J-correlated Gaussian noise [cf. Eq.
{42)]. and the function f is the map (40). Since the corre-
sponding deterministic CML remains paramagnetic for all
values of the coupling strength when A =3, we choose 10 set
the two control parameters to the  values:
(A.g)=(4.5.0.25). The deterministic limit D=0 corre-
sponds to an ordered. ferromagnetic phase. A noise-driven
Ising-like phase transition is observed for a noise intensity
D=D, strong enough to destabilize this regime. Since no
trace of the microscopic anisotropy present in rule (45} is left
at large enough length scales. we safely tm to the same
finite-size scaling laws in order to estimate the critical quan-
tities of this transition.

Numerical data obtained from simulations of finite-size
systems (8<L=64) lead to the following estimate of the
critical noise intensity:

D=0.023 66(6).

- U*(D7)=1.830(6), (46}
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FIG. 18. Measure of the correlation-length exponent v for the
noise-driven continuous transition of stochastic CML N3 {local
map detined over the whole real axis. three nearest-neighbor. lo-
cally anisotropic coupling). The guantities plotted are analogous o
quantities described in Fig. 13. for the relevant numerical values
D=D*=0.02366(6), v=0.89. As before. corrections to scaling are
suppressed by the implementation of three-neigibor. locally aniso-
tropic coupling.

where the value of Binder's cumulant at criticality is in good
agreement with the Ising result. The corresponding exponent
ratios are

Blv=0.126(7),

Y r=1752(11).
r=0.89(2) (47
obtained for corrective exponents equal to wy,=2.5(7) and
w,=2.2(1). However. rule (45) suppresses corrections to
dominant finite-size scaling of the quantities pUL(DD),

apinM (DY) and dplnM (D). relaxation to asymptotic be-
havior is clearly achieved as soon as L=16 (Fig. 18).

Exponents 3. y. and v, listed in Tabie [I under the head-
ing N3, are not compatible with the Ising universality class.
Since models N4 (Sec. I B 1) and N3 (this section) are
expected to belong to the same universality class. we believe
that the previous estimates (44) do indeed correspond to
infinite-size. asvmptotic behavior. Moreover. good agree-
ment is achieved between the present values {47) and those
already obtained for Miller and Huse's CML with four- and
three-neighbor coupling [Eqs. (30) and (39)]. We conclude
that the nature of the microscopic fluctuations generated by
CML's is nor a relevant parameter for critical exponents of
Ising-like phase tramsitions of CML's. This is in a sense
mildly surprising: we already showed in Secs. Il and 111 A
that transitions of deterministic CML's using different maps
[Egs. (4). {34}, and (40}]. and thus characterized by different
invariant measures. do belong to the same universality class,
This section generalizes this first. and until now implicit.
result to the (generic) case of unbounded Jocal fluctuations.

C. Deterministic. asynchronously updated models

Equilibrium stochastic systems, such as the Ising model.
can be simulated numericaily thanks to the Monte Carlo al-
gorithm, which ensures that the system’s phase space 1%
sampled according 1o its invariant measure. Spins are usuaily
updated asynchronously, in practice one at a time. the precise
order of update being irrelevant. Even though intermediate
situations. e.g.. simultanecus update of appropriately defined
clusters of spins [38]. were considered in order to speed up
simulations, it is generally believed that equilibrium spin
svstems such as the Ising model cannot be simulated by syn-
chronous algorithms [39]. at least for ceflular automata with
discrete phase space. Furthermore. simulations of Langevin
equations. such as Eq. (1), also respect asynchronous nu-
merical schemes. Since such equations form the backbone of
theoretical arguments ruling out non-Ising critical behavior
in Ising-like transitions of CML's [26.27], it is natural to ask
whether a so far largely unnoticed. vet fundamental distinc-
tion between synchronously and asynchronously updated
systems may not lie of the origin of the non-lsing behavior
reported here.

In this section. we atiernpt to determine whether synchro-
nous update is the relevant parameter responsible for the re-
ported deviation from Ising universality. We consider varia-
tions of Miller and Huse’s model obtained by updating
lattice sites one by one. An asynchronous update can of
course be implemented in a number of different ways. For
simplicity's sake, we focus here on a fixed. sequential up-
date. In practice, we choose to update the {square) lattice’s
rows one after another. and sites within the same row fol-
lowing their column’s index. A pictorial representation is
given by the following graph: -

= (L= 2.1 = (3.) = —=(L1)—

—=(1.2)=(2.2)—(3.2)—= . - —=(L2)—

—(LL)={(2.L)=(3.L) = - —{LL)—---. {48)
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where arrows indicate the order of update between sites of
indices (i.j), helical boundary conditions being used when
linking two consecutive rows. Other asynchronous schemes
may involve, for instance. the random choice of each up-
dated site over the lattice, where disorder may be either an-
nealed or frozen. Such choices are left for tuture study. We
believe that results presented in this section are of a general
nature. and do not depend on the type of asynchronous up-
date implemented in practice,

1. Four-neighbor coupling

We first choose to impiement Miiler and Huse's CML
with nearest-neighbor coupling on a square lattice according
to the fixed. sequential. site by site update rule described
above. For periodic boundary conditions. rule (2) now as-
sumes the form

W = (1= dg)flad )+ g UL T N+ AL )+ flxiny)
+flx]jp))- (49)

The local map is feft unchanged [cf. Eq. (4)], the unique

control parameter is the coupling constant g & [0.3].
An Ising-like transition occurs at

gr=0.112 55(5).

~ UM gH1 = 183514, (50

as estimated according to Binder's method for systems sizes
smadler than L = 64, a limit imposed by the larger than usual
coherence times present in this system. An asynchronous up-

“date turns out to stabilize the ferromagnetic phase: the criti-
cal coupling (30) is much lower than that estimated in the
synchronous case. Eq. (193, We find that convergence to
Ising critical behavior is achieved as soon as L~20 (ef. Fig.
19). The estimated critical exponents are

Blv=0.117¢12).
yiv=1.76(5),
p= 1027 (51)

for [large) corrective exponents @y =6(2). @, =3.0(1), and
w,=+4.3(1.5). Estimates of exponents S. y and v are given
in Table U1, under the heading MH4 Async.. and fully agree
with Ising exponents. This suggests that synchronous update
is indeed relevant in the renormalization group sense.

2. Three-neighbor coupling

In order to check the robustness of this first result, we
naturally tum to an asynchronously-updated version of lo-
cally anisotropic rute (37). Once adapted to site by site, se-
quential update. its evolution rule reads

= (1= 3g) el ) + UL )+ )
+flxh je )

X = =39 (x5 ) +é’(f(-ff~.” )+ fxh40)
+f(,t’f;j l-f—i))' (52
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FIG. 19. Measure of the comrelation-length exponent » for the
coupling-driven continuous transition of asynchronously-updated
modet MH4 Async. (piecewise-linear local map, nearest-neighbor
coupling). The quantities ploted are analogous o guantities de-
scribed in Fig. 13, for the refevant numerical values
g=g =0.11255(5). v= vy, = |. Convergence to Ising behavior
is achieved as soon as L=10

where periodic boundary conditions are used. and the cou-
pling constant g belongs to the interval [0. il.

According 10 numerical data obtained for system sizes
smaller than L, = 128, a transition is observed at

g2=0.158 47(2).
- U*(g7)=1832(12) (53)

for a critical coupling constant much lower than measured in
the synchronous case [Eq. (38)]. Critical exponents are again
in good agreement with [sing values,

Biv=0.124(13),
viv=17121),

r=0.99(4), (54)
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TABLE 1II. Critical exponents of asynchronousiy-updated mod-
els. Abbreviations MH4, MH4 Async.. and MH3 Async. corre-
spond respectively to Miller and Huse's model and 10 the asynchro-
nously updated models discussed in Secs. HIC1 and IIC2.
defined by nearest-neighbor and locally anisotropic three-neighbor
coupling schemes. Ising-like transitions of asynchronously updated
models belong 1o the Ising universaiity class.

MH4

MH4 Asyne. MH3 Async.

g 0,205 34(2)
-u* 1.832(4)

0.112 55(5)
1.835(14)

0.15847(2)
1.832(12)

Bl v 0.125(4)
yiv 1.748(10)
(28+p)ir 2.00(2)

0117412
1.76(5)
2.0H8)

0.124(13)
L7201
1.96(3)

B 0.111(5)
y © 15504
v 0.887(18)

0.126(27)
179017
1.02(7})

0.123(18)
L7119
0.99(4)

except for exponent ratio ¥/ v. slightly lower than expected.
The corresponcding comrective exponemq are wy=2.2(4) and

=2(1). The quantities 4,0, (g/). & oM (g). and
A, lnM‘ (¢-) reach an asymptotic scaling regime consistent
wuh the Ising universality class for L~ 32 {cf. Fig. 20). Nu-
merical estimates of exponents B. y. and v are listed in
Table IIL. under the heading MH3 Async. Note that the com-
bination of error bars on v/ and v leads o a value of y
consistent with ¥, = 3

Consistency between exponents (31) and (54) confirms
once more that critical properties do not depend on the par-
ticular choice of a microscopic evolution rule. Furthermore.
analysis of numerical simulations of models MH4 Async.
and MH3 Async. suggest that Ising-like transitions of asyn-
chronously updated lattices of locally coupled chaotic maps
belong 1o the Ising universality class. In other words. a syn-
chronous update appears to be the relevant parameter respon-
sible for the deviation from Ising universality observed in
lattices of coupled chaotic maps.

Asynchronously updated models with adequate micro-
scopic symmetry provide interesting ways to simulate the
Ising model without having recourse to a pseudo-random-
number generator. The achieved numerical efficiency is
however rather poor, since local variables are continuous.
Recent work by Sakaguchi {2] showed that the Ising modei
can also be implemented exactly thanks to a semisynchro-
nous update scheme, where two checkerboard sublattices of
a two-dimensional. square lattice of locally coupled Ber-
noulli maps are updated one after the other. Since this model
respects a detailed balance. and is characterized by a Gibbs
invariant measure, its critical exponents are exactly known to
be equal to their Ising values. a point that we checked by
numerical simulations analyzed as before. This further sug-
gests that synchronous update of all lattice sites may well be
an isolated case within the spectrum of possible update
schemes: an asynchronous update decomposed on two sub-
lattices suffices in order to restore Ising universality.

IV. DISCUSSION

Ising-like, chaos-to-chaos phase transitions of coupled
map lattices are well described by scaling and finite-size

I

{ar

CA= U /F
sA=lnM, e
“A= lnM -~ F
30 - wm === Slupe !

iug,, 3‘.4(3. )
\

1."a A
]
]

0 s T 00 Ciso

FIG. 20. Measure of the correlation-length exponent r for the
coupling-driven continuous transition of asynchronousiy-updated
model MH3 Async. (piecewise-linear local map. three-nearest-
neighbor, locally anisotropic coupling). The quantities plotted are
analogous to quantities described in Fig. 13, for the relevant nu-
merical values g =g =0.158 47(2). ¥= w o, = 1. Convergence 1o
Ising behavior is achieved for L~32.

scaling laws valid at equilibrium. This confirms indirectly
that symmetry and ergodicity breaking, as signaled by the
divergence of the system’s (unique) correlation length. occur
in the infinite-size limit. As for equilibrium systems. the nu-
merical value of critical exponents which govern scaling
Jaws is insensitive to microscopic details of the model, such
as the choice of a local map or evelution rule. Our main
result is that the nature of update is a relevant parameter:
continuous transitions of two-dimensional, synchronously-
updated CML’s with an Ising-like. discrete broken symmetry
form a new universality class. On the other hand. transitions
of asynchronously updated models belong to the equilibrium
Ising universality class. Interestingly, the nature of local
fiuctuations—deterministic or stochastic—tums out to be ir-
relevant.

Deriving accurate numerical estimates of critical expo-
nents of deterministic systems is a notoriously difficult task
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[6.12.13]. We believe that the methodology followed here is
reliable for two main reasons: corrections to dominant scal-
ing are taken into account and quantified; estimates of criti-
cal exponents are always derived from at least two transi-
tions belonging a priori to the same universality class. The
latter point suggests that systematic errors of an unknown
nature do not bias our estimates. According to our simuia-
tions, the universality class of synchronously-updated mod-
els is characterized by the exponents

B=0.115(9),
y=1.55(5),
»=0.89(2) (55)

obtained when combining error bars of estimates pertaining
to the three models MH4, MH3, and N3, chosen for the
(highest) quality of their data. Narrower error bars, which
still lie within confidence intervals (55). can be obtained for
exponents B and y when giving credit to exact Ising values
for exponent ratios 8/v and v/ v, while retaining the numeri-
cal estimate »=10.89(2). Note that synchronous update does
not affect the value of Binder's cumulant, nor the validity of
the hyperscaling relation (cf. Tables L. IL. and IID)

2B+ y=vd (56)

known to hold at equilibrium in the case of fluctuation-
dominated transitions [23). Preliminary resuits suggest that
Eq. (36} may also hold in the case of transitions of three-
dimensional hypercubic lattices, an observation compatible
with a value of the upper critical dimension equal to d.=4
for [sing-like transitions of CML's {26.27].

The notion of weak universaline. as iniroduced by Suzuki
in the context of equilibrium critical phenomena [40], may
provide a useful basis in order to account for exponent vai-
ues (55). A number of exactly soived equilibrium models.
such as Baxter's eight-vertex model [41], are known to ex-
hibit anomalous. nonuniversal critical behavior. character-
ized by a continuous variation of critical exponents with pa-
rameters of the model which are in principle irrelevant.
However, the ratios B/v. y/v und d=(2-a)lv respect
Ising behavior. Suzuki noticed that, close to the transition
point. the magnetization and susceptibility depend on the
correlation length £ according to the scaiing laws

M~ f_ﬂ’ u'
x~ £, (57)
while the singular part of the free energy behaves as
f,_‘_g"l:—duv. (58)

Only quantities defined with respect to £ remain universal in
the case of Baxter's model, while usual exponents, defined
with respect to the temperature difference from criticality
(T-T,), depend on details of the model. For this reason,
the—intrinsically defined-—correlation length seems better
apt at quantifying departure from criticality, and thus critical
phenomena, than does an external control parameter such as
the temperature. Weak universality denotes the independence

of correlation-length-related exponents, such as B/v, y/v.

and ¢, on microscopic details of the model [40]. In this
sense, Baxter’s model belongs to the weak universality class
of the Ising model.

Even though Baxter's eight-vertex model admittedly rep-
resents a nongeneric, exceptional case [42], we would like to
assess the relevance of Suzuki's weak universality to non-
equilibrium. Ising-like transitions of CML's. In fact, weak
universality is systematically tested by finite-size scaling
methods. For systems whose finite-size correlation length
£; scales with L at criticality.

EL~ gL {59)
the scaling laws for finite-size quantities,
M, ~L"F?,
xe~LY", (60)

closely parallel Egs. (57). Finite-size scaling estimates of
critical exponents 8 and y depend on an independent mea-

sure of v [32]. Furthermore. the ratio @ can be expressed at
equilibrium as

d=(28+y)v (61}

by taking advantage of the scaling relation a+28+ y=2.
Even though a proper definition of expenent a still lacks in
far-from-equilibrium CML’s. it is tempting to link the valid-
ity of the hvperscaling relation {56) to an hypothetical rela-
tion {58). which may relate the behavior of some coarse-
grained free energy to the correlation length at criticality.

More importantly. the control parameters we consider.
coupling strength g and noise intensity D, are defined at the
microscopic level of evolution rules. They were chosen on
an ad hoc basis. without particuiar theoretical grounding:
attempts to define a meaningful, macroscopic *“temperature”’
for extensively chuaotic dynamical systems remain in their
infancy [10.11]. We explicitly chose to define the continuous
transition of a CML as a point in parameter space where the
(well-defined. macroscopic) correlation length &, diverges in
the thermodynamic limit. These remarks justity the choice of
the inverse correlation length £~' as a more natural quanti-
fier of departure from criticality than. say. the reduced cou-
piing constant (g —g.)/g,.. In a renormalization-group con-
text. we tentatively introduced in [5] a distinction between
scaling exponents yy and yr [cf. Eq. (12)], where
yg={B+ y) v is *‘superuniversal,”” while yr= /v depends
on the type of update. This statement can now be rephrased
in somewhat more appropriate terms as follows: while syn-
chronous update defines a new (*‘strong’”) universality class.
all [sing-fike transitions of CML’s belong to the weak uni-
versality class of the two-dimensional Ising model, for both
synchronous and asynchronous updates.

Quantities independent of the choice of a control param-
eter remain universal within a given weak universality class
[40]. Indeed, our analysis shows that Binder's cumulant
U/*, a quantity measured ar criticality, is update independent.
We conjecture that the critical exponent 7, which governs
the algebraic decay of the spatial correlation function at the
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transition point, retains its Ising value for transitions of syn-
chronously updated models: 7= % 15n, = 3~ The same remark
also applies to a so far hypothetical exponent &= 8= 15,
once appropriately defined from the response of the CML's
order parameter to an external field. Estimating 7 and 6 from
numerical simulations may provide a direct test of our weak
universality hypothesis. This is left for future study.

To conclude. we would like to briefly discuss a number of
open questions raised by the present work. First of all. the
existence of a nontrivial universality class of transitions of
synchronously updated models represents a challenging
theoretical puzzle, since it questions the applicability of two
well-established tools—nonlinear Langevin equations and
dynamic renormalization-group methods—to a new and
largely unexplored context. One possible interpretation of
this discrepancy is that asynchronously updated stochastic
equations may not adequately describe the large-scale prop-
erties of extensively chaotic dynamical systems close to criti-
cal points. i.e.. nongeneric points where the synchronous na-
wure of update is felt up to macroscopic length scales. as
shown by the anomaious value of exponent v. Generalizing
spin-block renormalization methods to extended dynamical
systems may help building an appropriate. synchronously
updated. coarse-grained description of CML’s close to criti-
cality.

While the scope of our investigations was deliberately
limited to static exponents. one would of course like to con-
front the theoretical predictions of [26.27] and preliminary
resuits of [3] concerning the dynamical critical exponent 2
with extensive numerical simulations. Deviation from lsing
universality for transitions of synchronously updated systems
may here be expected on the basis of equilibrium results.
where the exponent - is known to depend sharply on the type
of update [38]. One would also like to learn more about the
critical properties. both static and dynamic. of phase transi-
tions of other extensively chaotic dynamical systems. Gener-
alization to Ising-like transitions of higher-dimensional lat-
tices is straightforward. and may lead to a numerical estimate
of their upper critical dimension. Arguably. phase transitions
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of extended dynamical systems genericalty involve a broken
temporal symmetry. Of particular interest is the case of
period-doubling continuous phase transitions. whereby the
macroscopic activity of lattices of. e.g.. coupled logistic
maps undergoes a sequence of subharmonic bifurcations [1].
Preliminary results indicate that such transitions also belong,
for static critical exponents. to the universality class of Ising-
like transitions of synchronously updated models [18]. The
critical behavior of collective. forward Hopf bifurcations
[1.43] may also yield non-mean-field critical exponents for
smali enough space dimensions.

Finally. we would like to make contact with real experi-
‘ments. where the methods exposed here may be applied fruit-
fully. in spite of the somewhat remote nature of the models
considered. Many large. homogeneous. far-from-equilibrium
systems exhibil transitions between distinct spatiotemporally
chaotic regimes [7.8.4<4]. or between a (dynamically) ordered
state and a spatiotemporally chaotic regime [45-47]). where
order parameters can be defined. and critical exponents mea-
sured. Provided that spaiial coherence scales diverge at
threshold. such transitions may qualifv as *“continuous phase
transitions.”” as defined in Sec. I1 A. In this case. finite-size
scaling forms are expected to apply to order parameters. pro-
vided that the size L is redefined as an aspect ratio
R=Li/l, counted in units of the svstem’s naturai length scale
l,. as obtained from the relevant instability mechanism.
When the effective system size R depends directly on one of
the availabie control parameters. finite-size scaling may pro-
vide a feasible aliernative to the (direct) measurement meth-
ods used up to now. and lead to reliuble. quantitative esti-
mates of critical exponems.
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