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Abstract 

Extensively-chaotic dynamical systems often exhibit non-trivial collective behavior: spatially- 
averaged quantities evolve in time, even in the infinite-size, infinite-time limit, in spite of local 
chaos in space and time. After a brief introduction, we give our  current thoughts about the 
important problems related to this phenomenon. In particular, we discuss the nature of non- 
trivial collective behavior and the properties of the dynamical phase transitions observed at global 
bifurcation points between two types of collective motion. 

1. Introduct ion 

Chaos in spatially-extended dynamical systems with local interactions is often ex-  

t e n s i v e :  the total amount of chaos in the system, as measured, e.g., by the number of 
positive Lyapunov exponents, is proportional to the system size [ 1 ]. In this case, spa- 
tiotemporal chaos takes on a rather better-defined character than usual. In particular, one 
can safely deal with the infinite-size, infinite-time limit, where some statistical analysis 
might be possible. Such a statistical approach is desirable indeed, as the traditional 
tools developed for chaos in "small" systems, e.g. the reconstruction of attractors from 
time-series, cannot be used or do not provide useful information. 

The extent to which the methods and ideas of statistical mechanics are relevant to 
spatiotemporal chaos is a question currently attracting a lot of attention [2], partly 
because the physics involved is ideally suited, being more complex than chaos but 
considerably simpler than, say, fully-developed turbulence. In particular, the relevant 
physical situations present "basic units" upon which the dynamics is built (for example, 
convection rolls in a Rayleigh-B6nard experiment) [3], which justifies the study of 
"toy models" with discrete space/time/local variables. A priori simpler than partial 
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differential equations, they are also closer to the systems studied in statistical mechanics 
and thus better candidates for statistical approaches. 

"Equilibrium-minded" intuition leads to the belief that, in extensively-chaotic sys- 
tems, as in their stochastic counterparts, spatially-averaged quantities do not evolve in 

time, apart from statistical fluctuations which vanish in the thermodynamic limit. This 
belief has been contradicted recently by the discovery of non-trivial collective behavior 

(NTCB) [4-6] ,  where macroscopic quantities show a well-defined, usually regular, 

temporal evolution in spite of the presence of local disorder in space and time. In this 
paper we give an account of current knowledge about this phenomenon and, in partic- 

ular, discuss various links that can be drawn with (hopefully better known) statistical 

mechanics problems in order to understand and describe this type of extensively chaotic 
regimes. 

2. Numerical facts 

Since NTCB was first reported [4], many studies were devoted to the subject, mostly 

involving numerical experiments [5-8] .  In [5], a detailed account of extensive simula- 
tions of large classes of  cellular automata and coupled map lattices (CML) was given 
and the basic features of NTCB were outlined. Here we focus on a typical example and 

take this opportunity to recall the general properties of NTCB. 
Our example is a d-dimensional hypercubic lattice of logistic maps ( f ( X )  = 1 - 

/ ,X 2, X C [ - 1, 1 ] ) coupled "democratically" to their nearest-neighbors, 

y{+l_ _ _ 1  ~--~ /z ~--~X52 
- '  2 d + l  f(XS.) = 1 2 d + l  ' (1) 

J ~ t  J ~ t  

where subscripts denote the position of lattice sites, superscripts the discrete time, and 
the sum includes site i. In a typical numerical experiment, the simplest macroscopic 
quantity, i.e. the spatial average c t = ( ~ = l  X ~ ) / N ,  where N is the number of sites 

in the lattice, is monitored along time. Figs. la-c  show that c t evolves regularly in 
time: this is a co l l ec t i ve  effect. For /x > / , ~  ~ 1.41, the sites of the lattice are not 
synchronized with each other, the system is chaotic, and the instantaneous distributions 
of site values are broad (Fig. ld).  Each site follows a chaotic evolution which has no 
apparent relation to the global one: this is a non- t r i v ia l  collective effect. The global 
variables do show fluctuations (around the collective motion), but these fluctuations 
decrease like 1/v/N, leading to a well-defined thermodynamic limit. Local disorder is 
also evidenced in the absence of large-scale structures in space (Fig. 2). 
More generally, numerical experiments have shown that: 
- When observed, the same NTCB is reached from almost all initial conditions: NTCB 

are attracting regimes, with large, finite-measure basins of  attraction. 
- The collective motion is robust to small modifications of the local rules, and to the 

addition of some small amount of noise. 



H. Chat~ et al./Physica A 224 (1996) 447--457 449 

- Synchronous updating (intrinsic to dynamical systems) is essential for the emergence 

of NTCB. 
- NTCB are all the more frequent and temporally complex as the space dimension d is 

large. 
- The collective motion is sensitive to the precise geometry of the lattice and the 

coupling. 
These numerical facts raise three important questions: 

(i) How can the collective motion be predicted from the local rule? 
(ii) What insures the existence of NTCB in the infinite-size, infinite-time limit? 

(iii) What is the nature of the bifurcations observed at the global level (Fig. la)? 
The answers are only partially known today, as we will show in the following. 

3 .  M e a n - f i e l d  a n d  d u s t e r  a p p r o x i m a t i o n s  

Numerical evidence for various types of NTCB has triggered a number of works 
discussing their nature, their existence, or even non-existence in the thermodynamic 

limit [7]. The controversy was fueled by the counterintuitive character of NTCB in 
an equilibrium statistical mechanics context, and by the inability of simple mean-field 
approximations to account for them (in particular, they produce an effective map for the 
evolution c t which cannot have quasiperiodic states as in Fig. lb).  Progress was made 
recently when it was shown that cluster expansions incorporating an exact treatment of 
correlations up to a certain cut-off distance can reproduce the collective dynamics, albeit 
in an approximate way [9]. We now sketch how this is done on the CML introduced 
above. 

Taking spatial averages, evolution rule ( 1 ) yields an infinite hierarchy of equations, 

2 t 
( x ; / ' + '  -- 1 - 

= - (x xk) , '+ '  1 2 2 ,  

j,k~Vi 

2 2 t+l  
( X i X j )  . . . .  . ( 2 )  

This hierarchy can be reduced when taking symmetry properties into account. Moments 
{ X ~ ' . . . X ~ " }  t can be classified according to their geometrical support and their set of 
weights oti. A two-step truncation and closure is necessary to transform (2) into a 
self-consistent, finite-dimensional map: a geometrical truncation is performed on the 
cumulants, based on the fast decay of correlations in space. At the same time, the 
maximum total order of moments/cumulants is limited, which completes the closure 
scheme. This "analytical" truncation is founded on the observed decay of cumulants with 
their total order. Other problems, which are detailed in [9], arise along the way but we do 
not mention them here for the sake of simplicity. Similarly, we do not describe here the 
numerical implementation of the scheme, which involves rather complex programming. 
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Results on the simple case of the d = 2 lattice of logistic maps are in excellent agreement 
with the numerics (Fig. la).  It is not clear at this point whether this scheme will be 

equally successful for more complex cases. At any rate, it possesses several advantages: 
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Fig. 1. Non-trivial collective behavior in lattices of democratically-coupled logistic maps. (a) Bifurcation 
diagram of the global variable c t for d = 2, obtained from simulations of a N = 10242 site lattice with periodic 
boundary conditions (filled squares). Superimposed (open circles) is the result of the cluster expansion 
described in Section 3 for a maximum order 2 and a cut-off distance of 3 sites. Agreement is very good 
except near the transition points where the expansion is not expected to hold due to long-range correlations. 
The dashed line is drawn at # =/zoo. (b) Return plot for c t in a d = 5 lattice of N = 355 sites for/z = 1.71. 
The collective motion consists of a period-4 main cycle composed with a quasiperiodic cycle. The numbers 
near the 4 tori indicate the order of the main periodic cycle. The insert is a close-up of one of these tori, (c) 
Time-series of c t shown every 20 timesteps for the same system as in (b). (d) Instantaneous distributions of 
site values for the d = 2 lattice in a period-four collective cycle (/z = 1.48). 
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it is systematic, has no adjustable parameters, and depends only on the choice of  the 
decorrelation distance and the total order retained. It can be applied easily to the case 
of  cellular automata, where it was actually first tested [ 10]. 

It is thus possible to predict the collective motion from the local rules, at least in the 
simple cases treated so far. This, in turn, sheds light on the nature of  NTCB. 

4. Nature of  non-trivial collective behavior 

Apart from predicting the collective dynamics from the rules, the cluster expansion 
sketched above proves that the collective motion exists already at a mesoscopic scale 
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(a) (b) 

Fig. 2. Snapshots of a d = 2 lattice of 2562 democratically-coupled logistic maps in a period-2 collective cycle 
(/.z = 1.7).  Grey  scale for X between -1 (black) and 1 (white). Two consecutive timesteps are shown. 

(of  the order of the cut-off distance), but in a noisy fashion. Consequently, the problem 
of the existence of NTCB in the thermodynamic limit can be seen as the problem of 
the "dynamical synchronization" of these noisy sub-units. Obviously, these sub-units are 

coupled together. The dominant mode of coupling is probably diffusive (the democratic 
coupling in ( 1 ) is a limit case of diffusive coupling). We have thus three main ingredi- 

ents in this new picture of systems exhibiting NTCB: individual mesoscopic units with 

approximately the same dynamics as the collective motion are coupled diffusively to 

each other and subjected to some "noise". 
In this perspective of Langevin-like equations, the problem of the thermodynamic 

limit is akin to that of the existence of long-range order in stochastic systems. One 
key specificity of the dynamical systems studied here, though, is that the "noise" is not 
external; it is intrinsic and arises from a large-scale, "renormalized" view of the local 
deterministic chaos. Two remarks have to be made at this point: first, it is not clear 
how well the emergent mesoscopic dynamics can be separated from this effective noise. 

Furthermore, it is by no means obvious that this effective noise should be delta-correlated 
white noise, since the underlying determinism could generate long-range correlations. 
In fact, this turns out to be a crucial question, as most of our knowledge on stochastic 
systems is confined to the case of Gaussian noise. 

In spite of these difficulties, this approach has already borne fruit and established more 
firmly the existence of NTCB in the thermodynamic limit in the case where the collective 
motion can be described via a continuous phase variable (as in Fig. lc,d) [ 10]. The 
mesoscopic units can also be described via a local phase variable ~b(x, t). The problem 
of the thermodynamic limit is then equivalent to the existence of long-range rotating 
order in a noisy medium. If  the phase variables now evolve on the real axis and not on 
the unit circle, this oscillating medium becomes a stochastic interface advancing in time 
with a velocity equal to the phase velocity. Long-range rotating order in the oscillating 
medium is realized when the interface is smooth, i.e. when its mean width does not 
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diverge with system size. 

Recently, it has been shown [ 10] that a d = 3 cellular automaton exhibiting quasiperi- 
odic collective behavior is well described, at large scales, by the Kardar-Parisi-Zhang 
(KPZ) [ 11 ] model of stochastic interfaces in its smooth phase, insuring the existence 
of long-range rotating order, and thus of the NTCB in the thermodynamic limit. 

This approach, if valid for all NTCB with a continuous phase variable, has general 
implications: the KPZ equation has no smooth phase for d < 2, and thus no such NTCB 
should be observed for d = 1 and d = 2. Similarly, knowledge of the KPZ equation 
provides predictions about the correlations on the original extensively-chaotic dynamical 
systems. Finally, the validity of this KPZ "Ansatz" is intimately related to the Gaussian 
character of the "effective noise" mentioned above. 

Somewhat surprisingly, the status of periodic collective behavior is less satisfactory: 
no definitive argument or theory has as yet been given to establish their existence in the 
thermodynamic limit. As discussed by Pomeau [8], the problem probably lies in the 
subtle differences between the "effective noise" and externally-imposed Gaussian noise. 
A better understanding and direct measurements of the effective noise are needed in 
order to clarify this point. 

5. Global bifurcations and phase transitions 

When a control parameter can be continuously varied, transitions from one type of 
NTCB to another can be observed. Whereas, at the level of global, collective variables, 
these transitions are akin to bifurcations in small dynamical systems (see for example 
Fig. la and [5] ), they can be looked at as phase  transitions, in spite of an a priori 
broken detailed balance, of the absence of a free energy, etc. In fact, the transitions 
observed can be very complex, with no analog in equilibrium situations, but in the 
d = 2 CML of Fig. la and many other cases, all the features of traditional second-order 
phase transitions are present. Fig. 3a illustrates one of the simplest cases, the transition 
from a stationary state to a period-2 collective behavior. In the transition region, the 
system is not homogeneous in space and shows domains on all scales. The question of 
possible universality classes naturally arises. In particular, one can wonder whether these 
non-equilibrium dynamical phase transitions, occurring in extensively chaotic dynamical 
systems, belong to any of the well-known equil ibrium universality classes. In this respect, 
the period-doubling transitions in Fig. la are natural candidates for the Ising universality 
class. Indeed a magnetization MT:2T = ()-~i ( X~ +T - X~ ) ) / N  and a susceptibility gr:2r = 
( ~  ( X t+r , z._,i t - -  X i - M r : 2 r ) 2 ) / N  can be defined, and the machinery of finite-size scaling 
used to estimate critical exponents (Fig. 3). In such a nonequilibrium situation, one 
has - as of today - no other solution than to perform numerical simulations. Results 
obtained so far, if they confirm that the finite-size scaling hypothesis is indeed justified, 
indicate on the other hand that the critical exponents cannot be in the Ising universality 
class, nor do they have the mean-field values (Table 1) [12]. 

Ongoing work alms at determining whether some kind of universality can be detected 
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Table 1 
Critical exponents for the period-doubling transitions of the d = 2 CML described in Fig. la 

Transition /3 y v 

lsing 0.125 1.75 1.0 
PI:P2 [0.096,0.128] [1.36,1.69] [0.81,0.94] 
P2:P4 [0.109,0.161] [1.31,1.65] [0.76,0.89] 
P4:P8 [0.139,0.1851 [1.33,1.49] [0.82,0.88] 
Mean-field 0.5 1.0 0.5 

The brackets indicate the limit values allowed by our numerical data. 

in various transitions of a similar type. It is too early to conclude on this point, but 
it should already be stressed that, coming back to the discussion above on the nature 
of NTCB, these "unexpected" critical properties also point out the role of chaotic 
fluctuations in building an "effective noise" which is probably at the origin of the 
departure from equilibrium universality classes. 

More generally, the respective roles of synchronous updating, broken detailed balance, 
and non-Gaussian effective noise have to be carefully asserted before a satisfactory 
understanding can be reached. 

6. Conclusion 

If a coherent and hopefully convincing picture of NTCB has started to emerge, much 
remains to be done to complete it: 
- The cluster expansion described in Section 3 has to be tested further in various 

CML and CA models. It could also provide a better understanding of the important 
correlations at the origin of the collective motion, a knowledge which could lead to 

(a) (b) 

Fig. 3. Two-dimensional lattice of coupled logistic maps at the transition point between period-1 and period-2 
collective cycle. (a) , (b)  Two consecutive snapshots showing the clustering typical of the critical region. 
(c) , (d)  Finite-size effects on the "magnetization" M and the "'susceptibility" X. 
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simple "phenomenological theories" of NTCB. 
- A direct appreciation of the "effective noise" in a large-scale description of NTCB is 

a crucial step to further justify its existence in the thermodynamic limit. This should 
help reach a better understanding of periodic collective behavior, as well as provide 
clues to the problem of universality of the continuous phase transitions described in 

Section 5. 
We would like now to briefly comment on the mathematical setting in which, we 

believe, NTCB is best approached. Losson and Mackey [ 13] have recently investigated 
the properties of the Perron-Frobenius operator (PFO) for coupled map lattices and, in 
particular, the notion of asymptotic periodicity, already introduced to describe ensemble 
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properties of single maps. The PFO governs the evolution of probability densities in 
phase space. At this level of ensemble dynamics, NTCB reflects the spectral properties 
of the PFO. For example, periodic NTCB probably implies that the PFO is asymptotically 

periodic with a period at least equal to that observed numerically. To account for all 
the known types of NTCB, the notion of asymptotic periodicity has to be both extended 
and made more precise [ 14]. Unfortunately, the spectral properties of the PFO are very 
difficult, if not impossible, to determine exactly, even in the simplest cases such as 
lattices of piecewise-linear maps. It is likely that one has to turn to approximations to 
be able to deal with realistic cases. As a matter of fact, the cluster expansion described 
above provides, to some extent, a finite-dimensional functional approximation of the 
PFO, since it governs a finite set of moments of the probability densities which normally 
evolve under the action of the PFO [9]. The global bifurcations between two types of 
NTCB described in section 5 are probably related to a change in the spectral properties 
of the PFO [ 14]. This remains to be investigated in detail, in particular the question of 
the extent to which spectral transitions in the PFO imply phase transitions in the original 
dynamical system. 

Finally, the case of globally-coupled systems should be studied in the light of the ideas 
developed for locally-coupled systems. Although reported under various other denomi- 
nations ("breakdown of the law of large numbers", "hidden coherence", etc.) [ 15-18 ], 
NTCB do also appear in these systems, and they display an even richer spectrum of 
possibilities. In particular, it was noted by Nakagawa and Kuramoto [ 19] and by Rappel 
and Hakim [20] for oscillators and by Kaneko [21] for maps, that chaotic collective 
behavior is possible in globally-coupled systems, contrary to the locally-coupled case 
(where such behavior has not yet been reported). In this fascinating behavior, chaotic 
degrees of freedom produce a collective motion consisting of an altogether different type 
of chaos. The questions raised for NTCB in locally coupled systems hold in this case 
as well, perhaps even more acutely since no direct analogies with traditional problems 
of statistical mechanics are available. These questions... 
- How can the collective motion be predicted? 
- Can chaotic NTCB exist in the thermodynamic limit? 
- What is a "phase transition" to collective chaos? 
...are left for future work. 
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