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We numerically investigate the critical properties of nonequilibrium continuous phase transitions in
two-dimensional. synchronously updated lattices of coupled chaotic maps. A finite-size scaling analysis
provides evidence for the existence of a new universality class. characterized by a correlation-length
exponent v = 0.8% = 0.03 < vy = 1.0, while the exponent ratios 8/v. y/v. and the amplitude
ratio I/" are consistent with the 2D Ising universality class. The standard value of » is recovered for

asyvachronous updating rules.

PACS numbers: 05.45.+b, 05.70.Jk, 47.27.Cn, 64.60.Cn

Nonequilibrium phase transitions in driven diffusive
systemns have attracted substantial interest recently [1]. It
is natural to ask which notions and results derived from
equilibrium statistical mechanics remain relevant when
detailed balance is broken. For stochastic systems at
least, the interplay of numerical experiments and field-
theoretic techniques has led to rapid progress, indicating
that nonequilibrium transitions generally display more
variety than their equilibrium counterparts.

Phase transitions in deterministic, chaotic, spatially ex-
tended dynamical systems [2] remain at present far less
well understood. partly because experimental [3] and nu-
merical [4] studies of systems large enough to meaning-
fullv approximate the infinite-size. “thermodynamic™ limit
have only recently become possible. That averaged quan-
tities are well defined in this hmit is ensured by an appar-
ently generic feature of homogeneous. extended dynamical
systems: Through its quantifiers, such as Lyapunov spec-
tra and entropies. deterministic chaos becomes extensive
above a given (and small) system size [5]. This property
validates statistical analyses. since such extended systems
can be viewed as ensembles of smaller. coupled. identicul
subsvstems. Examples include elements of all classes of
extended dvnamical systems. trom lattice models such as
cellular automata and coupled map lattices (CMLs) to par-
tial ditferential equations { PDEs).

CMLs. ie.. latices of interacting dynamical systems
with continuous phase space and discrete time, were
specitically designed to overcome numerical limitations
associated with simulations of PDEs (see [6] for recent
reviews). In their usual form. they are the simplest ex-
amples of a wider class of extensively chaotic reaction-
diffusion svstems, Numerical simulations have shown
that a variety of transitions between chaotic phases occur
in generic CMLs when a continuous control parameter is
varied [7]. These transitions are characterized by qualita-
tive changes of statistical quantifiers. ¢.g.. invariant den-
sities and space-averaged activities.  Although analytical
results remain scarce and. so far, limited to behavior far
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from transition points [8], these transitions are generally
believed to persist in the thermodynamic limit [7].

At a theoretical level, attempts to understand phase tran-
sitions in extended dynamical sysiems have been made
within the framework of field-theoretic techniques origi-
nally developed for stochastic systems. For a noncon-
served. scalar order parameter. it was argued in [9} that
phase transitions in generic nonequilibrium systems made
up of locally interacting subunits should fall into the equi-
librium [sing universality class. provided that an Ising-
type symmetry be respected microscopically. This result.
later generalized to encompass cases where no microscopic
symmetry is present [ 10], depends on two assumptions. 50
far unchecked for extended dvnamical systems: (i) The
system can be accurately described by a stochastic dit-
ferential equation arbitrarily close to the transition (and
thus for large space-time scales): and (ii) an expansion
in powers of € = . — d is valid. where the upper criti-
cal dimension d, is assumed to be equal to 4. Recently
the relevance of these ideas to deterministic svstems has
been tested numerically [11). A two-dimensional CML
with a built-in microscopic up-down symmetry was intro-
duced and shown to exhibit an Ising-like continuous or-
dering transition. [ts eritical behavior was found to be
“consistent” with the Ising universality class. However,
the system sizes considered (up to 167 for a finite-size
scaling analysis) were o small to allow a direct. reltable
meuasurement of critical exponents [12]. In this Letter, we
report extensive numerical simulations of the CML intro-
duced in [11]. as well as of ather two-dimensional CMLs
with the same symmetry. The system sizes we consider
and the statistical accuracy we reach permit a direct mea-
surement of critical indices along the lines of equilthrium
finite-size scaling theory [13,13]. The fact that finite-size
scaling theory applies in this context provides additional
evidence that the transitions persist in the infinite-size limit
[15]. Our results temper the conclusions of {11]. in that
the CML introduced there is found nor to belony to the 2D
Ising universality class. While the exponent ratios 8/»
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and y/v agree (within error) with their respective Ising
values of 1/8 and 7/4, the value of the correlation-length
exponent v is significantly lower than Vising = 1. Mutu-
ally consistent results are obtained for all the nonequilib-
rium continuous phase transitions we study, provided that
Ising-like up-down symmetry is respected. Our global es-
timate for v is 0.89 = 0.03 [16].

Microscopic details such as lattice geometry or the
choice of a local chaotic map are thus imrelevant. Further-
more, this result is resistant to the addition of a small level
of Gaussian noise in the evolution rule, indicating that
non-Ising critical properties are not related to the bound-
edness of the (nonthermal) microscopic noise produced by
chaotic maps. We find that this new universality class de-
rives from the particular nature of updating in extended
dynamical systems. Indeed. CMLs. as well as numen-
cal implementations of PDEs. are updated synchronously,
as opposed to the site-by-site updating scheme associated
with, say, standard Monte Carlo simulations of equilib-
rium systems. In all the cases considered. the Ising expo-
nents predicted in [9] are recovered as soon as the CML’s
updating rule is made asynchronous. In analogy with far-
from-equilibrium phase transitions of stochastic systems
[1]. nontrivial static critical behavior is determined by a
dvnamical property.

Our results are illustrated by the following example
{a more extensive discussion is deferred 10 an upcoming
article [16]). The choice of model is motivated by
the undesirable presence of strong corrections to scaling
in the CML imtroduced in [11]. where crossover to
asymptotic scaling occurs for a size as large as 327
[16}. Replacing the original nearest neighbor coupling
by a locally anisotropic, three-neighbor rule allows most
corrections to scaling to be eliminated. A possible
explanation for this observation is the absence, in this
case. of the small. antiferromagnetically ordered domains
observed in [11]. which may obscure the dominant
ferromagnetic order for small sizes. We retain the original
local map:

-3y -2 for -IS_\‘S_-—_:[‘,
fley =4 3x for —y<y<3
—-3x + 2 for:l—s.rSI,

This piecewise linear. odd function of {—1.1] onto itself
is evervwhere expanding, and thus chaotic. with an
invariant density uniform on [—1.1]. We consider two-
dimensional, square lattices of L~ sites. The CML's
evolution rule reads
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where superscripts and subscripts. respectively. denote
temporal and Cartesian spatial coordinates. and g is the
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coupling strength. Although different rules are used for
sites with odd and even 7 index, we checked that the CML
does not decouple into two independent sublattices. The
analogy with equilibrium Ising models is built upon the
definition of an order parameter M, = ( |my| ). where
my is the fluctuating “magnetization”

;
I g
mg =73 ngn(.\,-_j).
i

Dynamical invariance under “spin” reversal results from
the combination of an odd local map f with a linear
coupling rule. For both synchronous and asynchronous
updating. numerical experiments performed on lattices of
sizes up to L° = 1024° indicate the existence of two
distinct nonequilibrium steady states: a “paramagnetic”
phase at low g. with vanishing magnetization M. and
a “ferromagnetic” phase ar larger g. characterized by a
nonzero magnetization and long-range spatial order.

We now focus on the case of synchronous update: All
sites are updated simultaneously according to Eq. (1). We
demonstrate that both phases are extensively chaotic [5]
by studving Lyapunov spectra of the lattice dynamical
system for different sizes. The spectra superpose for
L* = 8% when plotted as a function of [/L> where
! indexes exponents of decreasing magnitude. Chaotic
activity persists for nonzero values of g, and is distributed
over the whole lattice. A coupling-driven phase transition
occurs at g = g. ~ 0.251, bearing all the hallmarks
of equilibrium continuous transitions. No hysteresis is
observed, The magnetization My goes smoothly to zero
at g.. The “susceptibility™ y.. defined as

l ]
YL = <Z-5 Z[sgn(.tf_j) - ML]'>-
1.}

and the correlation length ¢ exhibit sharp maxima close
to g., where ¢ characterizes the exponential decay of
equal-time. two-point correlation functions of the field x;.
Simulations of large systems (up to 1024°) suggest the
presence of well-defined. equitibriumlike power laws in
the infinite-size limit:

Mg — gl.!'ﬁ'. forg = g.. (2)
X *lg — gl (3)
£xle — el (4)

In this context. equilibritun finite-size scaling theory is
the only available framewark in which critical exponents
can be measured reliably (see. e.g.. [14] for a review),
For isotropic svstems. its underfving assumption is the
existence of a unique relevant length scale clase to the
transition: the correlation length £. This assumption has
recently been substantiated by a numerical study: Other
“natural” length scales derived from dvnamical properties
of CMLs. such as the dimension correlation length, are
indeed insensitive 1o the anset of long-range spatial order



[17]. Dimensional analysis then implies that £ = L at
criticality. Combined with Eqgs. (2) and (4), this leads to
the following scaling form of the probability distribution
function P of the fluctuating magnetization m:

P(L.m,g) = LB/v B(mLB/*, (g — g )L™y, (%)

Our analysis of finite-size effects is performed on lat-
tices of size up to 128° with periodic boundary condi-
tions. Random initial conditions are uniformly distributed
on [~1.1]. The typical duration of discarded transients is
O(10°) time steps. For all sizes considered, satisfactory
statistical_ accuracy is reached when total sampling times
are @ (107) time steps, accumulated over several indepen-
dent realizations when necessary. In the least favorable
case, this amounts to @(10°) coherence times. Follow-
ing a standard procedure, the infinite-size transition point
g. is first determined independently of other quantities,
using Binder's method [13] based on the cumulant ratio
Ur(g) =3 = ((mpy Y/ (m)? 2. When Eg. (5) holds,
U, adopts the scaling form

U(g) = U((g ~ gX)L").

Curves of UL{g) vs g for different L are expected to
intersect at a unique, L-independent point of coordinates
(gX. U = U(0)} in the scaling regime. For L < 48. the
abscissas of intersection points of two such curves for
consecutive L are found to drift systematically when L
increases.  Our estimate for g is based on the spatial
extension of the (stabilized) intersection region for sizes
between 487 and 128 (see inset in Fig. ). Wefind ¢g* =
0.25118(4) and U" = —1.823(3), an amplitude ratio U~
in rough agreement with the 2D Ising universality class.
Once g is known. ratios of exponents are derived from
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FIG. 1. Direct measure of ». Error bars are smaller than

symbols.  The solid lines are tited to our data, with slopes
L/p = 1110, 1.116. and 1.119 (from bottom to top). The slope
of the dashed line is setto 1. Inset: measure of g~

the scaling laws [4]

Mg = L7B17, (6)
L* yplge = LY, 7
BgULlgr = LYY, (8)
dgInMy|gx = L'V, )
3¢ In((m} )l ge = LYY (10)

The values of B8/v. y/v. and » listed in Table I are
obtained from linear fits of plots of the relevant observ-
ables vs L in log-log scale. The sizes considered are
large enough for corrections to scaling to be negligible:
L > 12 for {/v, L > 24 for other exponent ratios. The

* values of 8/v and y/v are compatible with the 2D [sing

universality class. However, Egs. (8) to (10) consistently
yield a value of v incompatible with pigng = 1.0 (see
Fig. 1). For all observables A defined on the left hand
side of Eqs. (6} to (10}, our data are qualitatively consis-

tent with the corrections to scaling expected at equilibrium
[14]:

A=L*[ag + ailL™ +-..+ b(g - gz_‘)L‘/” + -],
(1)

where ¢ is the appropriate critical exponent. In renormal-
ization group theory. the subdominant exponent @ and the
fast term in Eq. (11) express corrections caused. respec-
tively. by an irrelevant scaling field and by nonlinearities
of the relevant scaling fields. Analyzing Egs. (8)—(10)
in light of Eq. (11) shows that our data are incompatible
with a crossover to v = Pling at larger sizes [16]. In the
case of Eq. (6). fitting our data according to Eq. (11} al-
lows data from smaller lattices to be incorporated. down
to 12°. This fit suggests that @ = 6(2). Finally, the rel-
evance of Eq. (5) is illustrated in Fig. 2 by a collapse of
magnetizations measured at numerous sizes and coupling
strengths close to criticality.

A continuous phase transition oceurs at a somewhat
lower critical coupling when the update is asynchronous.
i.e.. when Eq. (1) is applied site by site. for instance. in
fixed. sequential order. A finite-size scaling analysis per-
tormed close to ¢ = 0.13847(2). with the same level of
accuracy as betore. vields critical indices Fully consistent

TABLE I Comparison of 2D [sing exponents with results
for CMLs with synchronous 151 and asvachronous (A) update.
Numbers in brackets correspond o one standard deviation. The
main contribution W error bars stems from the uncertainty on

E3
g, .
N

Model 1 E g "V_"lr ﬁ v
2D Ising 1.0 0.125 1.75 0125 1.73
S G393¢12y 04316y 1LTHD 0NTUTY L3NS
A LO43) 0238y L7202 002420 1.7%1 ]
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FIG. 2. Collapse of the magnetization M, {synchronous up-

date). for 0.24 = g = 0.26 and 24 = L = |28. The parame-
ters are g. = g> = 0.25118, » = 0.895, 8/v = (8/vhing =
0.125.

with 2D Ising values (see Table 1), This result holds for
other choices of the lattice geometry and/or the local map.
even though accurate measurements may be made more
difficult by critical coherence times much larger than for
synchronous update [16]. Note, moreover. that the con-
tinuous lIsing-like transition of a CML respecting detailed
balance. but updated asvnchronously on two sublattices,
does belong to the 2D Ising universality class [18].

A few comments are in order. First, measured criti-
cal exponents are consistent with the hyperscaling relation
28 + y = dv typical of fluctuation-dominated transi-
tions [19]. where & = 2 is the space dimensionality [15].
Second. the quantities /™. 8/r. and y/v may be con-
sidered as “superuniversal.” i.e.. independent of the type
of update. In the framework of the renormalization-group
analysis of the &* model. this remark translates into a dis-
tinction between the two relevant renormalization expo-
nents v, and v, [19]: v, = (B8 + ¥)/v is superuniversal,
while x, = 1 /1 depends on the updating rule. We would
like to emphasize once more that analogies with equilib-
rium results must be treated with great care, in particular
since (i) the explicit derivation of an effective. coarse-
grained description starting from the local evolution rule
remains unfeasible: and (ii} the control parameter g is de-
fined at microscopic scales only. and cannot be easily re-
fated to a macroscopic “temperature”™ which has still to be
properly defined in such a context [20]. Finally. an inter-
esting open question is whether this new universality ex-
tends to dviamic critical properties. which are notoriously
dependent on the type of update when detailed balance is
respected [21].
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