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Abstract 

Turbulence arising from the phase instability of planewaves in the complex Ginzburg-Landau equation is studied by means 
of numerical simulations of two-dimensiofial domains of linear size L ranging from 80 to 5120. It is shown that, although 
phase turbulence can be considered as sustained and statistically stationary in a finite region of parameter space for systems 
of finite size studied over a limited time period, it is likely to break down towards amplitude turbulence at the infinite-size 
infinite-time "thermodynamic limit." As long as it persists, however, the statistical properties of phase turbulence are well 
described within the framework of fluctuating interfaces. Parameters of an effective Kardar-Parisi-Zhang equation governing 
the large-scale phase fluctuations are evaluated. The logarithmic behavior predicted for the linear regime in two dimensions 
is observed. The crossover to the nontrivial scaling regime is estimated to take place at L several orders of magnitude larger 
than the largest size considered here. 

1. Introduction 

The study of  chaos in spatially-extended systems 
close to an instability point rests mostly on univer- 
sal approaches cast in terms of  modulations of  ideal 
pattems. Generically, these modulations are governed 

by envelope equations, the structure of  which is de- 
termined by the symmetries of  the problem [1 ]. The 

prototype of such envelope equations is the complex 

Ginzburg-Landau (CGL) equation [3]: 

OtA = A q- (1 + icl)V2A - (1 - i c 3 ) l A l 2 A ,  (1) 

where A = R exp i~b is a complex field and Cl, c3 
the two remaining real parameters left after suitable 
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rescaling. Accounting for the spatial unfolding of 

a Hopf  bifurcation in a continuous medium, this 

equation is more specifically relevant to uniform 
oscillatory instabilities [5], but other cases, such as 
stationary cellular patterns or waves, can be similarly 

described [1,6]. 
The solutions of  the CGL equation display a 

very rich spectrum of dynamical behavior when 
its parameters are varied, reflecting the interplay 

of dissipation, dispersion, and nonlinearity. In par- 
ticular, complex disordered regimes have been ob- 
served. Numerical studies of  the dynamical regimes 
of the CGL equation have produced "phase di- 
agrams", in space dimensions d = 1 [7-9] and 
d = 2 [10-12]. Several types of  spatio-temporally 
chaotic regimes, distinguished essentially by the 
presence/absence of "defects" (i.e., zeros of  the 
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Fig. 1. Domain of observability of phase turbulence in the parameter plane for d = 1,2 and 3. Results obtained by numerical 
simulations of systems of linear size L of the order 103 for d = 1 and 2. Results for the three-dimensional case, obtained on a 
system of size L = 48, are preliminary. The experimental protocol used consisted in approaching breakdown by varying slowly c3, 
and, at each value considered, running the system during a fixed time of the order of T = 5000. 

complex field A) have been observed. Whereas 

the disordered regimes with defects are called 

"defect-mediated turbulence" [13], "defect turbu- 

lence", or "amplitude turbulence" [7], phase tur- 

bulence is the term usually employed to describe 

those spatio-temporally chaotic regimes without de- 

fects. In fact, phase turbulence was one of  the main 

subjects of  the important early work of  Kuramoto 

[14]. 

Fig. 1 shows the domain of  the (c[, c3) plane where 

phase turbulence arising from a spatially uniform so- 

lution ("zero winding number") has been observed, 

as determined by numerical experiments following a 

well-defined systematic methodology. As will be re- 

called in Section 2, phase turbulence can be seen as 

the result of  the phase instability of  a family of regular 

planewave solutions which takes place for 1 - c] c3 < 
0 (Benjamin-Feir line "RF", see below). As the space 

dimension increases, the domain of  observability of  
phase turbulence shrinks. 

For d -- 1, it is limited by two lines, initially called 

"Ll"  and "L3" [7]. Line L 1 is a continuous transition 

to amplitude turbulence which was later interpreted to 

correspond to a smooth crossover from a regime with 

a vanishingly small density of  defects towards one 

characterized by a finite density of  defects [ 15]. In this 

region, phase turbulence is the only "attractor". Line 

L3, on the other hand, is the locus of  a discontinuous 

transition: when a strong-enough local perturbation 

is nucleated, the amplitude turbulence regime invades 

phase turbulence quasi-deterministically [8,9]. Near 

L3, phase turbulence is metastable and coexists with 

amplitude turbulence. 

For d = 2, phase turbulence is observed between 

the BF line and a line called "L" in [12] beyond which, 

similarly to line L3 in one space dimension, the nucle- 

ation of  defects leads to the quasi-deterministic inva- 

sion by amplitude turbulence. In the two-dimensional 

case, phase turbulence is always metastable, and co- 
exists with either or both amplitude turbulence and 
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frozen, spatially-disordered cellular structures with de- 

fects [12]. 

In Section 2, we recall the issues surrounding the 

problem of phase dynamics before turning to the core 

of this paper: the statistical study of phase turbulence 

in the CGL equation itself. This study is divided in 
two parts. In Section 3, we treat the problem, left un- 

resolved by the numerical works mentioned above, 
of the existence of phase turbulence in the infinite- 

size, infinite-time limit. In Section 4, we discuss the 

extent to which the long wavelength fluctuations can 
be described within a Langevin-like framework where 

chaos at small scales plays the role of a "microscopic" 
noise. This leads us to a better-known field of statisti- 

cal physics from where we can infer the actual large- 

scale properties of phase turbulence. Our results are 

summarized and commented on in Section 5. 

2. Phase dynamics for the CGL equation 

Looking further for universal features, low- 

frequency, long-wavelength properties of envelope 

equations such as those mentioned in the introduction 

are of primary interest. These properties are tightly 

connected to those of the neutral modes associated 
with the continuous invariances of the medium under- 

going the instability. For general reasons, translation 
invariance is linked to a phase mode [16], here a 

mode involving the phase cp of the complex amplitude 
A = R exp(i~b). More precisely, the relevant slow 

variable is the phase gradient V~b. Fast variables, e.g., 
fluctuations of the magnitude R, can be "adiabati- 

cally" eliminated, yielding at lowest order in V4~ an 

effective phase equation. 
For the CGL equation, this procedure involves 

the study of "reference" regular planewave solutions 

which read: 

A(x ,  t)  ----- Rq exp[i(q - x - COqt)], (2) 

where Rq and O)q c a n  easily be obtained by substitu- 
tion in (1): 

Rq = V/1 - q2,  (.Oq = - c  3 -q- (c I --1- c3)q 2, 

q = [ql. (3) 

The stability criterion of these solutions, derived 

from a standard stability analysis, involves the value of 
the underlying wavevector q and, of course, parame- 

ters cl and c3. The least unstable wavevector is q = 0, 
i.e., the solution corresponding to a spatially-uniform 

rotation with frequency coo = -c3.  The dynamics of 
perturbations around this solution can be obtained by 
a standard center manifold reduction which yields a 

set of equations governing the magnitude R and phase 
perturbations. At fourth-order in V~b, the phase dy- 

namics obeys: 

Ot~P = D V 2 ~  - K V 4 ~  + g 0 ( V ~ )  2 

+ g l  (V1/r)(V3~ r) + g 2 ( V 2 ~ )  2 

+g3 (V~)2(V2~),  (4) 

with 

1 2  C2), D=l--clc3,  K = g C l ( l +  

go = --(Cl -t- c3), (5) 

gl = 2g2 = clg3 = --2c1(1 + c2), 

where 7*(x, t) is the effective phase field parameter- 
izing the manifold, i.e., a nonlinear transform of the 

original phase field 4~ (for a detailed derivation see, 

e.g., [171). 
When the phase diffusion coefficient D = 1 - Cl c3 

is positive, small phase perturbations relax, and it is 

legitimate to keep only the diffusion term in (4). On 
the other hand, when D < 0 (Newell's criterion), a 
phase instability - the so-called Benjamin-Feir insta- 
bility [18] - occurs, and one has to take higher orders 

into account. Assuming I DI small, a consistent trun- 
cation at order IOI 3 with 0t~P ~ V21/t ~ IVgtl 2 

DV2~ --- IDI 3 - which implies a length (time) scale 

diverging as ID1-1/2 (ID1-2) as D approaches zero - 

yields the Kuramoto-Sivashinsky (KS) equation [ 191: 

OtO = DV20  - K V 4 ~  + go ( V ~ )  2.  (6) 

The KS equation is one of the major components 
of our understanding of space-time chaos [61. It is 
well known for exhibiting bounded chaotic solutions 
for large-enough system sizes. The term "phase turbu- 
lence" [14,201, is often used to describe them, because 
the KS equation, in this context, governs a phase vari- 
able. However, it should be clear that, with respect to 
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the CGL equation, the KS equation is a valid phase 

description only in the immediate vicinity of the BF 
line. 

As a matter of fact, while the KS equation is math- 

ematically well-behaved [21], this does not seem to 

be the case of the higher-order truncations of the 
phase dynamics such as Eq. (4). Indeed, finite-time 

singularities have been observed in numerical simu- 

lations [22,20]. Ongoing work aims at a systematic 
exploration of this situation in the relevant region of 

the (Cl, c3) plane and for various orders of truncation 
of the phase gradient expansion leading to the phase 

equation. 

The breakdown of the phase regime, marked by the . . . . . . . . . . . . . . . . . . . .  
(local) divergence of the phase gradient, is associated 

with the advent of a defect, i.e., a zero of A, in the 
CGL context. In practice, however, no firm conclusion 

about the breakdown of phase turbulence in the CGL 

equation itself can be drawn from the truncation of the 
phase gradient expansion at a finite order; one thus has 
to resort to direct simulations of the primitive equation 

to decide whether phase turbulence can be observed 
at finite distance from the BF line. 

3. Existence of phase turbulence for CGL in two 
dimensions 

The finite character of numerical experiments ob- 

viously leaves unanswered the theoretical question of 
the persistence of phase turbulence at the infinite-time 
infinite-size limit. As usual in statistical mechanics, 
one can nevertheless provide an educated guess by ex- 

trapolating carefully-studied finite-size and finite-time 

effects. 
Before presenting our results, we recall some of the 

basic phenomenology of the phase turbulence regimes 
of CGL. One of the striking features is the presence of 
cellular structures (Fig. 2). Their origin is easily under- 

stood in the context of the phase Eq. (4) introduced in 
Section 2. Linear stability analysis immediately leads 
to the existence of a most-unstable wavelength: 

)-max ~--- 2 ~ - / 2 K  V IDI I1--ClC31-1/2 , (7) 
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Fig. 2. Grey level picture of R in a (160 × 160) do- 
main around the deepest minimum recorded during the 
(5120 × 5120)-experiment (c] = 2.0, c3 = 0.75, t = 6118; 
R = 0.712 --~ black, R = 1.125 -~ white). The life-time of 
such "anomalies" is usually short (At ~ 10). The "ordinary" 
cells contribute to the central part of the histogram of R. 

which achieves an optimum between the destabiliz- 
ing second-order term and the stabilizing fourth-order 
term in the linear part of (4). The cells actually ob- 

served precisely have a typical size of the order of 

).max. They are best observed in snapshots of the phase 

gradient V@, or, equivalently, of the magnitude R, 

since, at lowest order in V~b, the magnitude fluctua- 

tions defined through R = Ro + &R, are "slaved" to 
the phase gradient according to: 

~R = / ( V ~ ) 2  _ I C l V 2 ~  , (g) 

Since ).max diverges as IDI-1/2 when approaching the 

BF line, the simulation of truly large systems (i.e., of 

size much larger than )-max), remains out of reach in 
this region of parameter space. Sufficiently far from 

the BF line, though, current computer power permits 
the study of systems large enough to accomodate thou- 

sands of cells. In this limit of many cells, as is consid- 
ered here, phase turbulence is an extensively chaotic 

regime (as demonstrated for d = 1 by Egolf and 
Greenside), and statistically stationary dynamics is ob- 
served. 

In this paper, we restrict ourselves to the line Cl = 

2 in the (cl, c3) plane, i.e., we only consider c3 in- 
creasing from the BF value c3 = 0.5 up. As already 
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reported in our numerical exploration [ 12], defects nu- 

cleate rapidly for c3 > 0.78. Below this value, phase 

turbulence is only metastable in the sense that it per- 

sists over long periods of  time but does not withstand 

the introduction of  a strong local perturbation (e.g., 

a defect), after which amplitude turbulence develops 

irreversibly. 

The simplest way to study the persistence of  phase 

turbulence is to monitor Rmin, the minimum of R over 

the surface of  the system as a function of  time. The 

direct study of  the phase gradient, though in some 

respect more directly related to our problem, is com- 

putationally more expensive and has not been system- 

atically performed, taking advantage of  Eq. (8), which 

relates V~ to R (see, however, Fig. 7 below). Time se- 

ries of  Rmin have been recorded for system sizes vary- 
ing from 80 x 80 to 5120 x 5120.1 Fig. 3 displays 

the time-series of  Rmin for L = 1920 and c3 = 0.70, 
sampled every At = 1. After a short size-independent 

transient (t < 700 when starting from a nearly uni- 

form initial conditions), the field R reaches a statis- 

tically stationary regime, with well-defined averages 

and fluctuation levels. Strictly speaking, since the sam- 

piing is discrete in time and involves evaluations of  R 

only at the collocation points, the absolute minimum 

is missed, but "typical minima" are captured. 2 

Fig. 4 displays IRrnin)T, the average of  Rmin over 
a time T, as a function of  In(L) for T ----- 50000 and 

for c3 = 0.70 and 0.75. (Rmin)T decreases logarithmi- 

cally with L close to the breakdown boundary (c3 = 

IT  he simulations have been performed using a standard 
Fourier-based pseudo-spectral method adapted to periodic 
boundary conditions, with exact integration of the linear terms 
in (1) and slaving of fast decaying modes, as proposed in: U. 
Frisch, Z.-S. She and O. Thual, Viscoelastic behaviour of cel- 
lular solutions to the Kuramoto-Sivashinsky model, J. Fluid 
Mech. 168 (1986) 221. Initial conditions and space-time res- 
olution were chosen appropriate to the concerned regime. For 
the phase regime, which is only slowly varying, relatively large 
space steps ~x, up to 2.5, could be used but they had to be 
reduced down to ~x ~ 1 when defects were present. Usually, 
the time step 8t = 0.05 was taken, guaranteeing a sufficiently 
faithful dynamics in all cases. 

2A similar analysis was also performed by measuring the 
minimum of R in portions of size L x L extracted from bigger 
systems. Values of (Rmin) T (L) obtained this way are undistin- 
guishable from those measured in systems of total size L × L. 

0.75), and more slowly further away (C3 = 0.70). A 

complementary way to analyze the time series of  Rmin 

consists of  looking at the variation of  (Rmin)T with T 

at given size L. The time-series of  the experiments at 

c3 = 0.75 of  Fig. 4 were divided into successive sec- 

tions of  duration T, yielding, for each size L, a set 

of  realizations of  (Rmin)T, which was then averaged. 

Fig. 5 shows the logarithmic variation with L of  this 

quantity ((Rmin) T ). 
These results can be fitted by: 

(Rmin)T (L) ,v --KL ln(L) and 

( (Rmin)T)(T) "~ - K r  In(T) 

with 

KL = 0.0164 ± 0.0009 and 

K r  = 0.0077 ± 0.0002, 

i.e., roughly KL = 2 K r .  

To get a deeper insight into this behavior, we studied 

the statistics of  R in greater detail. Fig. 6 displays the 

histogram of R (lin-log scales) for c3 ----- 0.70 and 

L = 1920. The shape of  the central part for R '-~ 1 

does not change as parameters are modified. It simply 

reflects the general tessellated organization of  the R 

field described in the beginning of  this section (see 

Fig. 2). The tail of  the histogram at low values of  R is 

of  primary interest here since the breakdown process 

involves small values of  the magnitude (large values 

of  the phase gradient). As already noticed for the one- 

dimensional case [8], the behavior of  this tail changes 

with the relative distance to the BF line: for c3 = 0.70 

this tail is well approximated by a parabola, suggesting 

a Gaussian behavior (Fig. 6, right, and Fig. 7). Closer 

to the breakdown value, for c3 = 0.75, the histogram 

develops an exponential tail, as shown in Fig. 8. The 

left part of  this figure clearly shows that the shape 

of  the tail is independent of  the system size, and is 

explored further and further down as L increases (at 

fixed T). 
The behavior of  the tail of  the histogram can be 

related to the scaling of  (Rmin) T with L and T. The 
low values of  R are due to "anomalous" cells of the 
kind shown in the middle of  Fig. 2. From numerical 

evidence, we can assume that such cells are scattered 
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Fig. 3. M i n i m u m  of  R over  the sys tem (size 1920 x 1920), recorded as a function of  t ime every At  ---- 1 for Cl = 2 and c 3 = 0.7. 
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Fig. 6. Lin-log plot of the histogram of R for c] = 2 and c3 = 0.7 in a system of size 1920 × 1920. Averaging was performed over 
samples taken every At = 1 from t = 11 000 to t = 31 000). Left: Complete histogram. Right: Tail of the histogram fitted against a 
parabola corresponding to a Gaussian behavior. 

r andomly  over  the surface o f  the system with some 

low densi ty and that they have a finite l i fet ime,  so 

that configurat ions  sufficiently far apart in t ime (and 

space) are independent .  F rom a statistical point  o f  

view, this is equivalent  to cons ider ing  the dynamics  

o f  ex t reme events  as drawing at random a number  

nL oc L 2 of  anomalous  cells, and repeat ing this pro-  

cess  at some fixed f requency (i.e., a number  nT o¢ 

T of  such draws is pe r fo rmed  over  a given t ime 

interval  T). 

Assuming  the exponent ia l  tail o f  the h i s togram of  

R, fitted to: 

P r (R)  c~ e x p ( - K R ( R *  - R ) ) ,  



P. Manneville, H. ChaM/Physica D 96 (1996) 3@-46 37 

"e- 
D 

-12.5 

-2.5 

-7.5 

t 

-17"5.00 0.10 

i 

o o , O O O , ° ° ° ° t ° , , o  ° 

Oo 

tV l 

I g 
0 

I 
I 

I 

0.20 
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Fig. 8. Left: Lin-log plot of the tail of the cumulated histograms of R for Cl = 2.0, c3 = 0.75 and L = 80 (circles), 160 (squares), 
320 (diamond), 640 (plus sign), 1280 (triangle up), 2560 (asterisk), and 5120 (thick line). Right: Lowest part of the tail for L = 5120, 
fitted to a straight line corresponding to an exponential behavior. The histograms were recorded at a rather low frequency to save 
computer resources. To palliate the lack of data, we have chosen to display the - less noisy - integrated histogram of R, which does 
not affect the exponential behavior observed. 

the  p r o b a b i l i t y  for  R to r e m a i n  larger than Rmin after 

nLnT CX L2T d r a w s  is then propor t iona l  to: 

IR f* exp(-Kk(R* - R)) dR 1 LzT 
rnirl 

cx [1 - e x p ( - K R ( R *  - Rmin))] LzT 

[1 - L 2 v  exp(-KR R* - Rmin) ] • 

T h i s  probab i l i t y  van i shes ,  i .e . ,  R is a l m o s t  sure ly  

s m a l l e r  than Rmi n for 
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exp(-KR(R* - R m i n ) )  c< (L2T)  -1 

or  

Rmin ~ Cst. - (1/KR) In(L2T), 

a result consistent with the analysis of (Rmin)T. More- 
over, fitting the tail of the histogram of Fig. 8 (right), 
one gets KR = 153 + 2, which yields ½KL = KT = 
1/KR ~-- 0.0065, in good quantitative agreement with 
the above-mentioned values. This is an a posteriori 
confirmation of the picture emerging from the idea 
that the extreme events of interest are local in space 
and time and that they occur randomly in space-time. 
We note finally that the slower-than-logarithmic de- 
crease of (Rmin)T as a function of L or T closer to the 
[3F line (Fig. 4, c3 = 0.70) is also consistent with the 
quasi-Gaussian behavior of the histogram (Fig. 6). 

The statistical analysis presented above has revealed 
regular scaling properties for the quantities of interest, 
and it is tempting to extrapolate these numerical results 
to the infinite-size, infinite-time, thermodynamic limit. 

When and how does the breakdown of phase tur- 
bulence occur? Numerical experiments such as those 
reported in [8] and [12] suggest that, at given parame- 
ter values, there exists a nonvanishing "critical" mag- 
nitude Rc (and, correspondingly, a finite critical phase 
gradient) beyond which the system is locally attracted 
to a defect solution. We can thus define the probabil- 
ity of breakdown Pb as the probability for R to reach 
values smaller than Rc (here we estimate Rc ~ 0.6 for 
the range of c3 values considered). 

The numerical evidence presented above revealed 
that, at fixed parameter values, there exists a unique 
histogram of R whose -----exponential tail is revealed 
when increasing L or T. This is true for c3 = 0.75. 
For smaller values of c3, we believe this is also the 
case, although, due to the divergence of scales in this 
limit, we are obviously unable to provide numeri- 
cal evidence justifying this. At any rate, exponential 
tails are easily observed in the breakdown region. We 
then deduce that for parameter values, system sizes 
L, and integration times T for which the histogram of 
R shows an exponential tail, we can define a line of 
"sure breakdown" (Pb = 1) in the (Cl, c3) plane once 
the dependence of KR, R*, and Rc with parameters 

P. Manneville, H. Chatg /Physica D 96 (1996) 30-46 

is determined. In fact, following the hypothesis that 
exponential tails eventually develop for any c3 value 
provided that L or T is large enough, we expect that 
the dependence of Rc and R* on c3 is weak and that 
only KR varies substantially, probably diverging when 
the BF line is approached. Let us remark finally that 
the experimental protocol used for the determination 
of lines L1, L3, and k in [7] and [12] (see caption of 
Fig. 1), is equivalent to the above definition of the line 
of sure breakdown. 

In the above argument, we followed the "natural" 
trend indicated by our numerical results and discussed 
their consequences and meaning when extrapolating 
them to the thermodynamic limit. That notwithstand- 
ing, we naturally cannot exclude, on the sole basis of 
numerical experiments of this kind, the possibility that 
the observed scaling properties do not carry to infinity 
(in space and/or time). Indeed, in such a determinis- 
tic setting - fundamentally different from stochastic 
systems submitted to unbounded noise - ,  there may 
well be cut-off mechanisms which "prevent" the oc- 
currence of (too) extreme events. If such were the case 
- but, again, we did not see any evidence for it - ,  
then phase turbulence might exist in the infinite-size, 
infinite-time, thermodynamic limit, at least in some 
region of parameter space. 

4. Effective large-scale description of  phase 
turbulence 

As long as the breakdown of phase turbulence re- 
mains of negligible probability, one can try to reduce 
the dynamics of the complex amplitude A to that of the 
large-scale fluctuations of its phase tp together with an 
"effective noise". In such a Langevin-like approach, 
the local fluctuations, and in particular those of R, 
would be accounted for by the "microscopic" noise 
term since they take place on scales of the order of 
the cell size (see Figs. 2 and 3 in [12]). 

Furthermore, when considering the fluctuations of 
the phase field, the problem of the effective large-scale 
description is similar to the one posed in the context 
of the KS equation or any other fluctuating interface 
problem. Unwinding the phase variable on the real axis 
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as a coordinate in a direction transverse to the physi- 

cal space (a third dimension here), the phase advance 

is turned into the progression of an d-dimensional sur- 
face in a (d + D-dimensional space. This approach 

leads to investigate the (possible) scaling behavior of 

the phase interface. For an interface of position h (x, t), 
these properties are expressed by the dilatation invari- 

ance according to 

h(lx ,  lZt) -=/(h(x,  t), (9) 

where 1 is a similarity factor, and ( and z are known as 
the "roughness" and "dynamical" exponents [23]. A 

large body of work on fluctuating interface problems 

has brought evidence that there exist large universality 

classes characterized by the values of the (dimension- 
dependent) scaling exponents ( and z. To determine 

which universality class a given problem belongs to, 
one should study the series of moments of h(x, t). 

In practice it is often the case that even the double 
correlator (h(x, t)h(x t, t ')) is difficult to estimate, and 

one usually considers more global quantities such as 

the width w(t )  of the interface defined from the mean 
square of the height distribution [23]. 

w(t)2  = ((h(x ,  t) - (h)x)2)x , 

where ( . . ) x  denotes space average. Scale-invariance 

of h(x, t) (Eq. (9)) implies that 

w(t )  -'~ LCG(t /LZ) ,  

where ~(u) is a function whose asymptotic behavior 

must be given by 

~(u << 1) "-~ u (/z,  
G(u ---, o c )  = Cst. 

The large-scale properties of many microscopic 

fluctuating interface models can be described by an 
effective stochastic partial differential equation most 
often called the Kardar-Parisi-Zhang (KPZ) equation 
[24]. The KPZ model reads: 

Oth = vV2h  - ½)~(Vh) 2 q- ~(x, t), (10) 

where ~(x, t) is a &correlated Gaussian noise with 

(~(x, t)~(x', t'))~ = 2D6(x - x')8(t - t ') (11) 

(here (...)~ denotes the average over realizations and 

D measures the intensity of the noise). The scaling 
exponents for the KPZ class are known exactly for 
d = l: ( = ½ and z = 3 [24]. For higher dimensions, 

only numerical results are available. For d = 2, one 

expects ( ~_ 0.39 and z ~ 1.61 [25]. As a matter of 

fact, much more is known about the dynamics of inter- 

faces governed by the KPZ equation at large scales. In 
particular, during an experiment initiated with a flat in- 

terface, gradients build up progressively and the corre- 

sponding nonlinearities are not effective from the start. 
A preliminary phase takes place, usually called the 

"linear," "free-field," or "Edwards-Wilkinson" regime 
[26], during which one may observe a scaling behav- 

ior consistent with the simple, exactly-solvable case 

where nonlinearities are negligible, i.e., )~ = 0 in (10). 

One then gets z : 2 (i.e., a standard diffusive behav- 
ior) and ( = (2 - d ) /2 .  The two-dimensional case is 

marginal (( = 0) and logarithmic corrections are ex- 

pected. It is only when the system size is larger than 
a well-defined crossover scale Lc and when it can be 

observed for times longer than a crossover time tc, that 
the nontrivial scaling properties of KPZ are observed. 

The KPZ class is characterized by three important 

ingredients. First, there must be, at large-scales, an ef- 
fective diffusion. In the context considered here, this 

may appear as a major problem since phase turbulence 

is essentially linked to a negative phase diffusion coef- 
ficient D. However, Chow and Hwa have given, for the 

KS equation, a convincing account of how a positive 

diffusion constant may arise at large scales. The sec- 
ond characteristic ingredient of KPZ is the quadratic 

nonlinear term (V4~) 2. In phase turbulence, this non- 

linear term is, in some sense, naturally expected: it is 
"built-in microscopically" as seen from the phase dy- 

namics approach (see Section 2). The third ingredient 
is the nature of the effective noise ~. It is by no means 

obvious, in a deterministic setting such as considered 

here, that the effective noise at large scales is Ganssian 
and &correlated. This is all the more crucial than it 
was shown that correlated noise influences the scaling 
exponents [27]. 

Previous work on phase turbulence has nevertheless 
brought some evidence for the relevance of the KPZ 
class, although this is still a matter of controversy. 
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The KS Eq. (6) has been the subject of numerous 
theoretical and experimental studies in this context. 

In one space dimension, all the results obtained lean 
toward the relevance of KPZ as the effective large- 
scale description [28-33]. Yet, no direct, full-fledged, 
numerical evidence of the nonlinear scaling regime has 
been given so far, with the exception of [30] where the 
crossover was reached. For d = 2, the matter is even 
less settled, with an ongoing controversy over the right 
asymptotic scaling behavior [35-38] that numerical 
results are so far unable to resolve definitively. 

Recently, phase turbulence in the one-dimensional 
CGL equation has also been numerically tested against 
KPZ scaling, together with general conjectures about 
the behavior of space and time correlations for the 
field A in that hypothesis [39]. The recorded behavior 
was consistent with the linear regime, but the nonlin- 
ear scaling regime was not observed. Further results 
by one of us [34] on larger systems using a higher ac- 
curacy code did reveal the expected scaling exponent 
(/z = ½ beyond crossover scales actually smaller than 
those estimated in [39]. Here, we consider the two- 
dimensional case. 

The continuous phase interface was extracted at reg- 

ular intervals in time during the same runs as those 
presented in Section 3. Large-scale fluctuations, al- 
though of rather limited amplitude, are easily observed 
(see Fig. 3(b) in [12]). The full distribution of the 
phase variable (not recorded systematically) was al- 
ways found to be reasonably well fitted against a Gaus- 
sian (Fig. 9). In the following, only data for the width 
w of the phase distribution is presented. 3 

Moreover, we mostly studied the parameter values 
cl = 2 and c3 = 0.75 in order to have the largest pos- 
sible effective aspect-ratio (L/imax) without reach- 
ing the breakdown limit. For all sizes studied but the 
largest one (5120 x 5120), runs could be followed long 
enough to observe the saturation of the growth of w. 
Fig. 10 shows the case of the largest system consid- 
ered, for which, naturally, the growth behavior is the 

3 Results for the power spectra of  the phase field ~b = arg A 
or the full field A, and for the corresponding correlation func- 
tions, were found to be more difficult to interpret, which is 
understandable since they carry a much richer information than 
the simple quantity w [39]. 

least noisy and can be observed during the longest 
time. A clear logarithmic law is observed. The same 
behavior was observed for all sizes L > 640. When 
fitted (poorly) against power laws, ridiculously small 
exponents are obtained. The same conclusion applies 
to the scaling of the saturated width with L (Fig. 11). 
These logarithmic dependences are a clear signature 
of the linear regime [40]. As is the Gaussian charac- 
ter of the full phase distribution (Fig. 9), since one 
expects non-vanishing values of the skewness in the 

nonlinear regime [23]. 
Following [40,25], we now estimate the effective 

parameters v, Z, and D, of (10). 
In the linear regime, in the limit of large sizes, one 

expects the width w to grow as [40]. 

w 2 =  4"rrvD [ln(Kt)+o(V~2)] , (12) 

where x is a constant homogeneous to t - l  that reads 

'd 
t¢ = 2"n "2 exp(y) ~-~. 

Here a is a "microscopic" length and y = 0.5772. . .  
is Euler's constant. Fitting the results in Fig. 10 against 
A ln(t) + B one obtains: 

A = 0.019641 ± 0.00003, B = 0.0740 4- 0.003, 

which leads to the estimates: 

D v 
--v -~ 0.25, a2 _ 1.23, 

provided that the second term in (12) is indeed smaller 
than the first one (see below). 

In the same way, the dependence of the saturated 
width with L in the linear regime is given by 

w2 = D ln(L/a) +0(1). (13) 
2'try 

A fit of the results of Fig. 11 against A ln(L) + B 
yields: 

A = 0.0378 4- 0.0030, B = -0.021 ± 0.017, 

giving 

D 
- -  ~ 0 . 2 4 .  
p 
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Fig. 9. Lin- log plot of  the instantaneous distribution of the phase ¢ = argA over the (5120 × 5120) system for cl = 2.0 and 
c 3 = 0.75, at time t = 25 000. The fit against a parabola indicating Gaussian behavior is satisfactory. The skewness is negligible. 
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Fig. 10. Mean-square width w 2 of the phase distribution as a function of In(t) during the growth stage for c 1 = 2, c3 = 0.75 and 
L = 5120, following a slightly-perturbed homogeneous initial condition. 
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i I 
0.10 5 0 7.0 

In(L) 
Fig. 11. Time-averaged mean-square width W2at of the phase distribution after saturation as a function of In(L) for L varying between 
80 and 2560. The error bars have been determined from the average over five independent simulations with L = 1280. 

We first note that the two estimates of  D / v  are fully 

consistent with each other. The above fit should in 

principle also provide an estimate of  a. This is mis- 

leading since in (13) the "effective initial" value w0 of  

the width is not taken explicitly into account. In fact, 

w0 can be seen as the typical width for a system of  

size a, i.e., w~ is given by the O(1) term in (13). We 

thus need an independent estimate of  a or w0 to be 

able to complete our estimates of  the effective KPZ 

parameters. 

The most "natural" microscopic scale for phase tur- 

bulence should not be much different from the cell 

s i ze  ~-max. Taking simply a ~ ~,max ~--- 22.4 and in- 

jecting this value in (13), together with the estimate 

of  D / v  ~_ 0.25, we get 

w 2 - w 2 ~ 0.0378(In(L) - 3.1). 

Using values of  w 2 extracted from our results finally 
yield: w 2 _~ 0.089, which is small compared to the 

typical values of  w 2 measured, validating Eq. (13). 

4 An experimental determination of the average cell-size, from 
the spatial power spectra, yields: krnax ----- 19, in good agreement 
with the "theoretical" value. 

In fact, it is possible to derive an a priori estimate for 

w0 from the phase dynamics analysis of  CGL, through 

its KS approximation. The typical scale of  the phase 
field (squared) is given by: w 2 ~- (D/go)  2 ~- 0.033 at 

the parameter values considered here. This value is of  

the same order of  magnitude as the value determined 

from the analysis above, following our choice of  a. 

Accepting these values, one obtains 

v ~ 6 0 0  and D_~ 150. 

Finally, coming back to Eq. (12), we note that using 

a ~ ~,max yields typical values of  the ( v t / L  2) smaller 

than the dominant term, in consistency with our anal- 

ysis. 

The observation of  the linear regime does not imply 
that the nonlinear term in (10) is absent, but simply 

that it is irrelevant at the scales considered here. The 

value of  the coefficient k of  this nonlinear term is 

usually estimated by considering "tilted" interfaces. It 

was shown in [23] that 

~" = ~q2 q=0' 
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Fig. 12. Variation of the winding rate as a function of q = I qb and fitted quadratic dependence A-4-Bq2. Statistical errors were estimated 
by performing five experiments with mode (1, 2) yielding a rate -0.72412 and an unbiased standard deviation O'n_ 1 = 7 x 10 -5. 
This value was then used uniformly for all the other entries, which is probably too conservative since the fitted curve goes easily 
through all the error bars. 

where q here is the average slope of  the interface and 

v(q)  the corresponding velocity. 

In the present context, one has to study phase turbu- 

lence with nonzero winding number: solutions evolv- 

ing from initial conditions close to a plane wave with 

nonzero wavevector q compatible with the periodic 

boundary conditions (q = (nx, ny) x 2xr/L)  and cor- 

responding to tilted interfaces with an average slope 

q = Iql. Their velocity is nothing but the winding rate: 

v = d(q~)x/dt. Results obtained for small wavenum- 

bers are shown in Fig. 12. They are well approximated 
by a parabola A + Bq 2 with: 

A = -0 .7247  + 0.0001, B ----- 5.03 ± 0.25. 

The estimate for ~. then derives immediately from this 

fit, 

~.___ 10. 

This value is significantly larger than the "bare" value 

2g0 = 2(cl -t- c3) = 5.5 given by the phase velocity 
O)q of the planewave solutions (2,3). A similar discrep- 

ancy was reported for the KS equation [30,37] and for 

the one-dimensional CGL equation [39]. A detailed 

study of  this problem for the one-dimensional case 

[34] has shown that this is not a numerical effect. In- 

creasing the resolution, the measured value of L con- 

verges to a limit distinct from the bare value. The in- 

trinsic spatio-temporal chaos of  phase turbulence has 

therefore a nontrivial effect on the average velocity of 

the phase interface. In a given numerical context, the 

experimentally-determined value of  ~. - which incor- 

porates the intrinsic noise and the effect of numerical 

truncation - reflects the actual noise in the discretized 

system evolving on the computer. To be consistent, 

one should thus keep this value together with those 

of the other parameters of  KPZ evaluated in the same 

conditions. 

Finally, the so-called coupling constant is evaluated. 

g = DL2/v  3 ..~ 10 -4 " 

The value of the crossover length Lc -- a exp(8xr/g) 
beyond which the nontrivial scaling regime is expected 

[40] is astronomically large, and certainly much larger 

than the largest size considered here. 
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Even though this estimate is subjected to large error 

bars given the exponential dependence of Lc on g, 
the fact remains that the crossover regime is out of 
reach of the power of current computers. This result is 

of course consistent with our observation of the sole 
linear regime even for the largest size considered. Our 
estimates of u and D are much larger than those found 
in the one-dimensional case [30,33,39]. We attribute 
this discrepancy to the much greater "rigidity" of the 
phase interface in two dimensions. 

5.  S u m m a r y  a n d  c o n c l u s i o n  

We have presented extensive numerical simulations 
of the two-dimensional CGL equation in a parameter 
range where phase turbulence is observed. Two central 

questions were addressed: 
- Does phase turbulence exist in the infinite-size, 

infinite-time, thermodynamic limit? 
- Is the KPZ equation the relevant Langevin-like 

large-scale description of phase turbulence? 
It should not come as a surprise that definitive answers 
to these questions have not emerged out of the numer- 
ical approach taken here. But our careful statistical 
analysis did provide a clearer view of these problems, 
together with some plausible answers. 

Extrapolating the size- and time-effects revealed by 
the statistical analysis of R(x, t), we conclude that 
the probability of breakdown of phase turbulence, i.e., 
of the nucleation of a defect, may be minute but is 
always finite. But we cannot exclude a scenario in 
which, in a region of parameter space, "regularizing" 
mechanisms deterministically prevent the occurrence 
of the extreme fluctuations which would have led to 
breakdown. If such were the case, phase turbulence 
would exist in the thermodynamic limit. Our results 
also suggest the dependence of this probability on sys- 
tem size, integration time and, to some extent, param- 
eters. In this respect, it would be interesting to try to 
check the conjecture made above according to which 
the histogram of R would develop an exponential tail 
as close as desired from the IBF line for large enough 
system sizes and/or integration times. 
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To complete our analysis of the statistics of R, 
the (localized) events characterizing the breakdown 
should be studied in detail. The "anomalous" cells 
could be approached as special solutions in the frame- 
work of low-dimensional dynamical systems. Such a 
study would put the estimation of the critical magni- 
tude Rc on firm ground. More easily, one could inves- 
tigate the statistical properties of these extreme events 
- from which the coefficients KL and K r  introduced 
in Section 3 derive -,  and a precise link with the statis- 
tical behavior of R - in particular the coefficient KR 
- could then be drawn. 

The large-scale properties of phase turbulence in the 
CGL equation, a spatio-temporal chaos regime pro- 
duced by a deterministic system, are reasonably well 
described within the framework of a Langevin formal- 
ism: local chaotic fluctuations are well accounted for 
by an effective noise. Experiments on tilted interfaces 
have produced evidence for the existence of the (Vq~) 2 
nonlinear term in the effective Langevin equation, one 
of the characteristic features of the KPZ model. Our 
study of the scaling properties of the "phase inter- 
face" have revealed a behavior characteristic of the 
Edwards-Wilkinson equation, establishing the exis- 
tence of an effective positive diffusion constant v, and 
the uncorrelated nature of the effective noise. These 
properties are in fact fully consistent with KPZ, since 
the observed scaling is, of course, that of its so-called 
linear regime, and since, furthermore, the crossover 
scale Lc, beyond which the nonlinear scaling regime 
could be observed in theory, has been estimated to be 
much larger than the largest size considered here. 

In view of the results presented here, if the valid- 
ity of the KPZ description seems likely, it is not en- 
sured. Even when assuming the relevance of KPZ, the 
expected nonlinear regime might not be observable 
at all: the crossover scales could be beyond the limit 
of "sure breakdown." This is one of the reasons why 
it may be important to study the variation of the ef- 
fective KPZ parameters with the parameters of CGL 
(here with c3), and, in particular, how the (estimated) 
crossover scale and the breakdown probability vary 
when approaching the BF line. 

This could also, in turn, bring new insights into the 
corresponding problem for the KS equation in two 
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dimensions, which appears as a limit case in this con- 

text. Is phase turbulence in CGL different from phase 

turbulence in KS? It was shown in [8] that, for d = 1, 

the local dynamics is very different for the two mod- 

els. For  d = 2 and for the large-scale properties, this is 

much less clear. Without entering the controversy sur- 

rounding the two-dimensional KS equation, we note 

as a fact that the results of  Fig. 4 do not fit well  against 

the scaling w ~ l n ( l n ( L / L * ) ) ,  which was proposed 

in [35] for the latter equation. 

At any rate, the difficulties encountered are certainly 

due to the marginal character of  the two-dimensional 

case. A more precise approach than the global one 

taken here, for example along the lines of [32], could 

be followed to decide whether the logarithmic scalings 

observed can really be attributed to the irrelevance of 

the nonlinear term in KPZ or results from some other 

property, such as the nonlocality of couplings in k- 

space. 

We hope that this work will help strengthen the 

current trend toward the extension of methods and 

concepts of  equilibrium statistical mechanics and field 

theory to large out-of-equilibrium dynamical  systems, 

for which space- t ime chaos in "extended" systems is 

one of  the most promising areas. 
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