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Abstract 

In this paper I elaborate on a talk given at the workshop "Physical and numerical modeling of mantle convection 
and lithospheric dynamics". The main purpose is to present recent advances in the understanding of the transition to 
turbulence from a theoretical point of view; a more detailed presentation has been given elsewhere. After a brief 
recall of the chaos picture of turbulence, I discuss the conditions under which it can be acceptable (i.e. when 
confinement effects control the space dependence of unstable modes), then describe the tools used when the 
confinement is weak enough to allow for modulations ending in a genuine space-time chaos. A particular scenario 
called spatio-temporal intermittency is then analyzed. Finally, the connection with hydrodynamic turbulence and the 
relevance of some of the ideas presented for geodynamics are discussed. 

1. Dynamical systems and the 'nature' of turbu- 
lence 

Turbulence presents itself as a wildly fluctuat- 
ing flow regime the understanding of which is 
important  for many fields of basic and applied 
research, as its mixing and transfer propert ies  are 
strongly enhanced with respect to their molecular 
counterparts.  Following the suggestion of Landau 

• (1944), one can think of turbulence as resulting 
from a superposition of an infinite number  of 
oscillation modes, the randomness of the regime 
arising from the absence of knowledge of the 
initial phase of  each mode. However, as stressed 
originally by Ruelle and Takens (1971), this idea 
of a mere  superposition is in some sense too 
linear. In fact, nonlinear interactions among a 
small number  of modes generically yield chaotic 
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behavior characterized by a decay of correlations 
that more appropriately describe a turbulent 
regime. In this new perspective, the key concept 
becomes that of strange attractors, i.e. robust 
objects defined in phase space, attracting trajec- 
tories starting from arbitrary initial conditions but 
characterized by a long-term divergence of trajec- 
tories starting from neighboring initial states. 

This last property, of utmost importance, is 
termed sensitivity to initial conditions. It can be 
illustrated by means of a simple generic example. 
Let us consider the following iteration: 

X ~  2 X  (mod 1) (1) 

called the diadic map (Fig. l(a)) and known to 
generate  chaotic trajectories. A trajectory of this 
system is the time series X1, X 2 . . .  issued from 
some initial condition X0; it can easily be seen 

reserved 
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that two trajectories initially separated by 
3X o diverge exponentially rapidly with a charac- 
teristic (Lyapunov) exponent A = log2, i.e. 
lim~xo~ol6X,/3Xo I ~- expAn for large n. Rep- 
resenting trajectories as a walk in the complex 
plane: 

Z,  = Z , _ ]  + exp(27riX,) 

one can visualize this divergence (Fig. l(b)) and, 
further, compare the deterministic but chaotic 
walk generated by iteration (1) with that given by 
a truly random walk (Figs. l(c) and l(d)). 

This comparison is enlightening, as the natural 
formalism of the Ruelle-Takens theory is that of 
low-dimensional dynamical systems, i.e. ordinary 

differential systems with a small number of vari- 
ables that are functions of time: 

d A  n 

dt 
=F~({Am;m = 1 ..... ,N})  n = l , . . . , N  

(2) 

Such continuous-time dynamical systems are then 
quickly reduced to deterministic discrete time 
systems, i.e. iterations such as (1), using classical 
tools called Poincar6 sections and return maps 
(for a pictorial introduction, consult the series of 
volumes by Abraham and Shaw (1983)). 

The 'nature' of turbulence as inferred from 
the Ruelle-Takens theory thus relates to the 
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Fig. 1. (a) Diadic map X ~, 2 X  (mod 1). (b) Divergence of neighboring trajectories. (c) Deterministic but chaotic walk. (d) Random 
walk. 
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chaotic evolution of the amplitudes {A n} of a 
small number of well-defined modes. As all the 
space dependence of the physical system consid- 
ered is absorbed in the definition of these modes, 
the term temporal chaos seems most appropriate 
to describe this picture. Although it is undoubt- 
edly a step forward in understanding how unpre- 
dictability enters deterministic systems, the ques- 
tion of its relevance to concrete situations in 
out-of-equilibrium macroscopic systems still re- 
mains to be examined. This is the purpose of the 
next section. 

2. Dissipative structures and confinement effects 

A question that must certainly be addressed is 
'how does the picture emerge?'  or, equivalently, 
'where do these dynamical systems come from?' 
To answer this, one has to recall that the modes 
introduced above are related to physical states 
induced by instability mechanisms. These states 
are usually called dissipative structures (Nicolis 
and Prigogine, 1977); the convection pattern that 
appears above some critical temperature gradient 
in a fluid layer heated from below is perhaps the 
best known and most studied example. 

A crucial fact is that the instability mechanism 
insures a well-defined space- t ime coherence of 
spontaneous fluctuations. Schematically, for a pe- 
riodic pattern in one direction, one can write the 
field of interest V(x,t)  in the form 

V( x , t  ) = Aexp(  ikx )exp( st ) 

where A and k are the amplitude and the wave- 
vector of the fluctuation mode, and s = ~r + ioJ is 
the corresponding complex evolution rate. Quan- 
tities s and k are related through a dispersion 
relation s =s(k;r) ,  which is a function of the 
control parameter  r. The real part or of s tells us 
whether the given mode grows (is unstable) or 
decays (is stable) (see Fig. 2). 

Different cases are possible according to 
whether the most unstable mode, i.e. the mode 
with the largest positive tr, has kc a n d / o r  the 
corresponding frequency to c different from zero. 
For example, convection in ordinary fluids (plain 
Rayleigh-B6nard convection) yields a stationary 
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dispersion relation s= s(k) at criticality for an instability 
producing dissipative waves with wave-vector k c and pulsation 
60 c • 

(to c = 0) cellular pattern (kc :~ 0) whereas convec- 
tion in binary mixtures evolves into propagating 
thermo-diffusive waves (k¢ :~ 0 and to c :~ 0). The 
case of a uniform oscillatory instability (kc = 0, 
to¢ :~ 0) can arise in diffusion-reaction systems 
(Belousov-Zhabotinsky reaction in chemistry). 

Fourier modes introduced above are a special 
case appropriate only for translationally invariant 
laterally unbounded systems. More generally, one 
has to use normal modes X n specific to the 
geometry of the problem and encoding the char- 
acteristic space and time scales of the instability 
mechanism. These normal modes can be used as 
a basis for representing arbitrary fluctuations: 

I / =  E h n X n  
n 

each X n being an eigenvector associated with the 
eigenvalue s n =trn + it% of the linear stability 
problem around some basic state. These modes 
can be ordered by decreasing values of the real 
part ~n of their complex growth rate s n. Strongly 
stable modes have tr < 0 with I tr I large whereas 
central, i.e. nearly neutral, modes have I tr I small, 
either negative or positive. Situations of interest 
for the moment are those where the number n~ 
of central modes is sufficiently small and the 
stable modes are sufficiently strongly damped 
([trn [ large for n > n c) so that there is a wide gap 
in the spectrum between the stable and central 
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parts. Then the amplitudes of the stable modes 
quickly relax toward values imposed by the cou- 
pling to unstable modes. They are said to be 
'slaved' to the central modes (Haken, 1983). Ow- 
ing to this property, one can eliminate them 
'adiabatically' and obtain an effective system with 
only the set of central modes coupled together. 
To illustrate this important process, let us con- 
sider a system of only two real modes X c (ampli- 
tude A c) and X s (A S) coupled together through 
a dynamical system that formally reads 

dA c 
dt = ~rcAc + gc( Ac 'A~)  

dAs 
dt = tr~A~ + gs( Ac 'A~)  

and where the relevant assumptions are: (1) tr c 
positive or negative but small (mode Xc nearly 
marginal); (2) cr~ negative and large (mode X S 
strongly stable). If the amplitude A c evolves 
slowly, as these assumptions imply, then the sec- 
ond equation can be solved for As, with A c 
considered as a parameter. After a brief transient 
of duration ~ (1 / I  tr~ ]), A s settles to the root of 

~rsA s + gs( Ac ,As )  = 0 

Schematically, this equation defines a manifold in 
the space (At ,A, ) .  The value found for A s, de- 
noted as As(A~), is then inserted in the first 
equation, which becomes 

dA~ 

= O-cA c + g e f f ( A c )  

i.e. an effective equation for A~ that parametrizes 
the position of the system on the previously de- 
fined manifold. In this case, the degree of free- 
dom A s has been eliminated and the number of 
effective degrees of freedom is reduced to one 
(see Fig. 3). 

This possibility of a reduction is important for 
interpreting the transition to turbulence in con- 
tinuous media that are infinitely dimensional a 
priori. Indeed, one can then analyze the bifurca- 
tions of the resulting system using tools devel- 
oped for low-dimensional dynamical systems, 
write its normal form, and study the correspond- 

As 

Ac 

Fig. 3. Reduction to the center  manifold: trajectories relax in 
a time @(1/ Icr  s I) toward the manifold A~ = As(Ac) and then 
evolve slowly along it at a rate controlled by ~r~. 

ing scenarios of transition to temporal chaos, 
such as period doubling (Feigenbaum, 1983) or 
intermittency (Pomeau and Manneville, 1980); for 
a review, readers are referred to Schuster (1988) 
or Manneville (1990). 

Assumptions (1) and (2) above are fulfilled in 
the presence of strong lateral confinement ef- 
fects, as the corresponding linear stability prob- 
lem has a fully discrete spectrum and clearly 
distinct eigenmodes (e.g. a convection experiment 
in a cubic box). In this case, one can view the 
transition to turbulence as a process involving 
more and more unstable modes via individual 
bifurcations as the forcing is increased. After a 
sufficient but small number of bifurcations, chaos 
is observed to set in. Not too far from the insta- 
bility threshold, the best representation of the 
system's evolution remains in terms of a small 
number of chaotically evolving amplitudes A, ,  
even though naive observation may suggest strong 
spatio-temporal fluctuations. Numerous tools 
have been elaborated to count and identify the 
relevant modes, e.g. fractal dimension measure- 
ments (see Gershenfeld, 1988). 

However, when the forcing is further in- 
creased, different regimes are entered (soft and 
hard turbulence in convection; for a review, con- 
sult Siggia (1994)). At some stage, the dynamical 
system approach is no longer appropriate, be- 
cause too many modes are involved and the rep- 
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resentation of the dynamics in a high-dimensional 
phase space becomes too abstract, i.e. (strictly) 
temporal chaos ceases to be a good model of 
turbulence. It may then be legitimate to come 
back to an approach where physical space has 
recovered at least part of its natural role. 

The above discussion implies that the increase 
in the number of degrees of freedom is due to a 
'filling' of the physical system by structures of 
smaller and smaller size generated by higher- 
order instabilities when the control parameter  is 
increased (the revenge of Landau?). In practice, 
the growth of spatio-temporal chaos is not easily 
studied in this context where the system lies 
already far from the primary instability threshold. 
However, one can immediately realize that there 
is a case where the number of degrees of freedom 
can be increased while remaining reasonably close 
to threshold. This is when the instability mecha- 
nism generates a periodic structure with a typical 
size of the order of some critical wavelength 
he = 2~r/k~.  Indeed, assuming that each cell can 
be viewed as a unit bearing its own degrees of 
freedom and the whole system as a lattice of such 
units coupled to their neighbors, one can suppose 
that the number of degrees of freedom increases 
proportionally to the size of the system as mea- 
sured in terms of its width L relative to Ac: 
F = L / A ¢  (aspect ratio). Universality and speci- 
ficities of the routes to turbulence corresponding 
to this case are the subjects of the next two 
sections. In practice, we shall be interested in 
systems where only one physical mode is relevant. 

Although the emergence of a stationary structure 
can be accounted for by a single variable, two 
components merged into a complex variable are 
needed for an oscillatory mode. We shall then 
describe the dynamics of the system close to 
bifurcation by a single equation: 

dA 
dt =Fr  - ~4r(A) 

where the amplitude of the bifurcated state A 
can be real or complex. Quantity r is the control 
parameter  and ¢4P;(A) represents nonlinearities 
operating beyond the bifurcation point (instability 
threshold) at r = r c = 0. Solution A = 0 is stable 
below the threshold r < 0 and unstable for r > 0. 
The behavior of the bifurcated solution essen- 
tially depends on whether the instability becomes 
saturated or not beyond the threshold, i.e. on the 
structure of JY;(A). In the real case, we shall 
then consider 

. /F;(A) = E A 3 + A  5 with e =  +1 (4) 

Here, • = + 1 corresponds to the supercritical 
case where the bifurcated solution tends continu- 
ously to zero with r as v~-, i.e. from above (see 
Fig. 4(a); the fifth-order term is then essentially 
irrelevant). By contrast, for • = - 1 ,  the third- 
order term is destabilizing, the bifurcation is sub- 
critical. The fifth-order term insures the satura- 
tion of the order parameter  at a finite value 
beyond threshold; this discontinuous variation ex- 
plains that hysteresis cycles can be described by 
varying the control parameter  (see Fig. 4(b)). The 

rc r 

A 

Y 
(a) (b) (c) 

Fig. 4. Typical bifurcation diagrams. (a) Supercritical bifurcation. (b) Subcritical bifurcation. (c) Transcritical bifurcation. 
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cases described up to now have a built-in A 
- A  invariance. The supercritical version is ap- 
propriate for plain Rayleigh-B6nard convection 
under Boussinesq conditions (moderate heating) 
and symmetrical top and bottom boundaries. 
When this symmetry is broken or non-Boussinesq 
effects are taken into account, this invariance 
property is lost and Eq. (3) must be completed by 

a lower-order quadratic term A 2, which is able to 
account for the occurrence of a transcritical bi- 
furcation to a hexagonal pattern (Fig. 4(c)). 

In the complex case, coefficients in Eq. (3) 
above now have an imaginary part (i.e. e replaced 
by E + ic 3, the coefficient of the fifth-order term 
being 1 + iCs, if necessary). Essentially, the same 
holds true for the modulus of the order parame- 
ter (Hopf bifurcation toward an oscillatory regime, 
super- or subcritical according to the sign of E). 

An important property of the real case is that 
(3) derives from a potential, known in this context 
as a Lyapunov function: 

d A  aG, 

dt aA 

with 

1 1 1 
G r ( A )  = - - r A 2 + 2  4 ~A4+ 6 A6 

with the consequence that this quantity decreases 
monotonically in the course of time: 

dG aG d A  [ d A  ~ 2 
/ / 

d---t-=a--'A d---t - =  ~ - ~ t  ] ~<0 

The extension to the complex case is straightfor- 
ward as long as coefficients of the evolution 
equation are real (G r = Gr(A,A*)  and d A / d t  = 
-OGr/OA*), but the potential property is lost 
when the coefficients are complex. The distinc- 
tion between sub- and supercritical, illustrated in 
Fig. 4, turns out to be very important when the 
possibility of modulations appears in weakly con- 
fined systems. 

3. Envelopes and envelope equations 

By contrast with confined systems (aspect ratio 
of order unity), extended systems are character- 

(a) Ly ~ ~  Lx ~ Lz 

def t = 0 def t = 1 

(e) L y ~  Lx ~ Lz . ~  

def t = 2 
Fig. 5. (a) Conf ined  sys tem with L x = L y  = L z. (b) E x t e n d e d  

system wi th  effect ive d imens ion  def f = 1, L x >> Ly -- L z. (c) 
Two-d imens iona l  sys tem wi th  L x >> L z and  L y  >> L z. 

ized by quasi-continuous linear stability spectra 
made of branches parametrized by the wave-vec- 
tor. Neighboring modes thus have comparable 
structures and only differ by the precise value of 
their wavelength. Furthermore,  a large number of 
them can be excited close to the threshold. From 
a linear stability viewpoint, this number grows 
generically as Fe~fV~, where F is the aspect ratio 
defined above, def f is the effective dimensionality 
of the problem (see Fig. 5) and r, the relative 
distance to threshold, is assumed to be small 
enough. In this estimate, the reduction factor v~- 
expresses the fact that each cell does not bring its 
degrees of freedom independently of its neigh- 
bors but has to behave coherently with them. Of 
course, this reduction effect holds only in the 
supercritical case when both r---0 and A = 0, 
because, in the subcritical case, the coherence of 
the saturated state (A --- G(1) even for r = 0) can- 
not be estimated without taking nonlinearities 
into account (see the next section). 

In fact, in Fourier space, solutions close to 
threshold can be analyzed as superpositions of 
modes belonging to the unstable band of width v~ 
around k c. These solutions are then better un- 
derstood as modulations superimposed on an ide- 
ally periodic pattern with wavelength h c. Return- 
ing to physical space, one sees that the scale of 
the allowed modulations varies as s ¢ =Ac/V~,  
that is to say, it diverges at threshold. The coher- 
ence length ~: is in fact the right length unit to 
use for estimating the actual size of the system, 
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i.e. the effective number of degrees of freedom. 
The interesting parameter  range for studying spa- 
tio-temporal chaos is then given by the double 
inequality 

A c << ~ << L 

The left inequality implies that we remain close 
to the threshold of the primary instability (which 
makes analysis possible) and the right one that 
the system is large; it should be noted that r 
large means ~: of the order of A c, which is helpful 
for size considerations, but the analysis by pertur- 
bation expansions becomes difficult as A is large 
(as would be also the case for a subcritical bifur- 
cation). 

Let us now take nonlinearities into account. 
For the sake of simplicity, we consider here only 
the case of a stationary cellular instability (~o c = 
0,k c :~ 0). We then review the case of a uniform 
supercritical oscillatory instability (k¢ = 0,to c 4= 0) 
which also describes propagating dissipative waves 
(toe 4= 0 and k¢ 4= 0) in a moving reference frame. 
More intricate situations occur when the direc- 
tion of propagation cannot be specified a priori, 
so that one has to allow for the possibility of 
standing or traveling waves or, further, when sev- 
eral instability mechanisms are competing. 

Beyond the linear stage, one has to describe 
the effect of nonlinearities on the evolution of 
the wave packets accounting for the modulated 
patterns expected close to the threshold. The 
starting point is the amplitude A of the suppos- 
edly uniform ideally periodic pattern at the infi- 
nite size limit. Though we deal with a single real 
mode, we have to modify (3) to take into account 
translational invariance at the infinite-L limit. 
For a stationary instability, the solution can be 
written as 

V( x,t)  =A(t )cos(kcx  + c~) + . . .  

where A is the solution of (3) and the spatial 
phase variable ~b specifies the absolute position 
of the pattern in the laboratory frame. Here  the 
cosine term represents the contribution of the 
fundamental component at k c to the complete 
periodic solution, and the ellipsis suggests the 
presence of higher-order corrections. In fact, it 
turns out to be more convenient to understand ~b 

as the phase of a complex number still denoted 
A, i.e. A = I A l exp(i4,), so that V now reads 

1 
V( x,t  ) = ~ [ A( t )exp( ikcx ) 

+ complex conjugate] + . . .  

For this complex amplitude, Eq. (3) can then be 
written as (supercritical case) 

dA 
d---~-=rA- IAI2A (5) 

and the solution is easily shown to be indifferent 
to the value of ~b (d~b/dt = 0 ~ ~b = constant). 
The important point is that the coefficients in (5) 
are still real and that the variational property is 
not lost, as noted above. 

In large aspect ratio systems, lateral boundary 
effects are not able to maintain spatial coherence 
in the middle of the system. Modulated patterns 
are therefore expected to be the rule rather than 
the exception. Though it can be derived more 
rigorously by means of multi-scale expansions 
(Newell and Whitehead, 1969), we introduce here 
the evolution equation for modulations heuristi- 
cally by assuming that they relax in a diffusive 
way: 

0A 
Ot = Fr( A) + VzA 

(the diffusivity is normalized to unity by proper  
rescaling of the lengths). 

With F r as given in (5), one obtains an equa- 
tion written here in one-dimenslonal form: 

OA OZA 
- -  = A  + - -  - I Z l ~ l  ( 6 )  
0t 0x 2 

Eq. (6) generically governs the slow space-t ime 
modulations of a uniform stationary periodic ref- 
erence pattern. From the scalar variable A func- 
tion of time governed by (5), an ordinary differen- 
tial equation, we we have passed to a field A(x,t) 
function of time and space governed by (6), a 
partial differential equation. Slow space depend- 
ence means VA is small when compared with 
kcA. 

The case of a modulated uniform oscillatory 
state or that of a propagating wave in a frame 
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moving at its own group velocity can be treated 
similarly to yield the same equation, but with 
complex coefficients: 

0A 02A 
- A + ( l + i c 2 ) ~ x 2 - ( l + i c 3 ) l A I 2 A  (7) 

0t 

(The need for complex coefficients can be appre- 
ciated when taking the limit (c2,c 3) ~ o¢ which 
yields the nonlinear Schr6dinger equation, known 
to account for the dispersion of nearly monochro- 
matic wave trains.) 

Eqs. (6) and (7) are generic examples of enve- 
lope equations called Ginzburg-Landau equa- 
tions (GLEs). They are adapted to the descrip- 
tion of long-wavelength, low-frequency perturba- 
tions to an extended system in the vicinity of its 
bifurcation point. In fact, the extension to higher 
effective dimensions may not be as trivial as sim- 
ply replacing 02A/Ox 2 by V2A, because the sym- 
metries of the system have to be taken properly 
into account (Newell et al., 1993), but this simple 
extension already offers a rich phenomenology of 
space-t ime behavior. 

Modulations can have basically two origins. 
The most obvious one is extrinsic, i.e. imposed by 
the presence of lateral boundaries at large but 

finite distance; for example, A(x = + L / 2 ) =  O. 
The other one is intrinsic, either because the 
uniform solution is unstable or because field A 
can support topological defects. A spectacular 
example of the latter is the spiral solution of the 
two-dimensional complex GLE, which corre- 
sponds to a zero of I A I accommodating a rota- 
tion of + 2~- of the phase around it (see Fig. 6). 

The next step in the study of the transition to 
spatio-temporai chaos is to examine the stability 
of special solutions of Ginzburg-Landau-like 
equations. The main difference between the real 
and complex cases come from the 'potential '  
structure of the equation with real coefficients. In 
the real case (stationary instability), the equation 
derives from a potential. Accordingly, the asymp- 
totic time behavior is a monotonic relaxation to- 
ward some static configuration (any non-trivial 
asymptotic time dependence can derive only from 
higher-order non-variational contributions ne- 
glected at this stage). This does not mean that the 
final solution is simple, because it has to accom- 
modate the boundary conditions. For example, in 
the two-dimensional case, straight rolls have a 
tendency to be perpendicular to the boundary; 
however, this condition cannot be fulfilled in a 

Fig. 6. Gray-level image of the modulus and phase of a solution A(x,y,t) of the two-dimensional complex GLE for c 2 = -2 .0  and 
c 3 = 0.8 with periodic boundary conditions at L = 128. Left: modulus, L A I = 0 is black, I A I = I A I m a x  is white. Right: phase 
represented by equally spaced gray levels over a 2~- interval. Here the system has frozen on a spiral state; owing to the boundary 
conditions, the waves emitted by the spiral collide to form steady shocks at the intersection of which one finds another zero of the 
amplitude. 
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Fig. 7. Two examples of patterns observed in high Prandtl 
number convection (reproduced with permission of P. Berg6 
and M. Dubois). 

closed container without introducing some curva- 
ture or grain boundaries linking domains with 
different orientations or other defects such as 
dislocations. As a result, disordered textures are 
usually obtained. These textures attempt to mini- 
mize the frustration generated by the presence of 
lateral boundaries, and this adjustment can take a 
very long time in large systems. Indeed, we have 
to deal with a diffusive behavior on a scale @(L) 
that takes at least a time @(L2). This framework 
is well adapted to the description of textured 
patterns observed in high Prandtl number con- 
vection, such as those illustrated in Fig. 7. In low 
Prandtl number fluids, non-variational contribu- 
tions come into play early on, possibly generating 

weak turbulence in the form of t ime-dependent 
disordered patterns. In the oscillatory case, the 
variational structure is lost from the beginning 
and the time dependence is expected to be much 
more active already for the one-dimensional case 
(see below). 

Intrinsic modulations can also be generated by 
secondary instabilities. In this context, dangerous 
modes are often related to the translation invari- 
ance of the problem at the infinite-L limit. In- 
deed, among possible perturbations, those corre- 
sponding to a local translation of the solution can 
be viewed as slight modifications of the global 
translation mode. This mode is neutral in the 
absence of boundary effects, and one can easily 
imagine that such perturbations could be slightly 
unstable. Local translations are directly inter- 
preted in terms of the phase variable ~b intro- 
duced above, which, uniform and time-independ- 
ent in the basic state, becomes modulated as the 
result of specific instability modes. As an exam- 
ple, let us consider a long-wavelength compres- 
sion mode corresponding to a phase that varies 
sinusoidally in the direction of the wave-vector of 
a system of stationary rolls. When the wave-vec- 
tor k 0 of the underlying pattern differs suffi- 
ciently from the critical value, this mode becomes 

(b) 

~ r E ( d k )  h a u  

925  

F 

s t a b l e  U 

Fig. 8. (a) Illustration of the collapse of a pair of rolls induced by a slight local compression of a pattern whose wave-vector k lies in 
the Eckhaus-unstable domain (regions 'U '  in (b) between the marginal stability curve rm(k)= ( 1 -  ~k2) 1/2 and the Eckhaus 
threshold rE(k) = (1 -- 3~kZ) I/e, where ~k = k 0 - kc). 
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unstable (Eckhaus instability): the phase modula- 
tion increases up to the birth or collapse of a pair 
of rolls (Fig. 8(a)). This instability is universal in 
the sense that its threshold does not depend on 
the mechanism that induces the dissipative struc- 
ture but only on the distance to the critical point: 
r E = [(k 0 - k c ) / 3 ]  1/2. At given k0, the pattern is 
Eckhaus-unstable for r < r E} (Fig. 8(b)). 

As already pointed out, the case of the com- 
plex GLE is expected to yield much more ' turbu- 
lent' situations. The plan of parameters (c2,c 3) as 
defined by (7) has been studied thoroughly, and 
different regimes of space-t ime chaos have been 
identified (for a review of results in the one-di- 
mensional case, see Chat6 (1995)). The main dis- 
tinction between these regimes may be the pres- 
ence of amplitude defects, i.e. points in space 
where the phase ~b of the complex field A cannot 
be defined because the modulus I AI vanishes. 
The starting point here is the study of the stabil- 
ity of plane wave solutions to (7) with wave-vector 

ko: 

A (  x , t  ) = A o e x p [  i( k o x  - mot)] 

with I Aol 2 = 1 - k g and ~00 = c 3 + (c2 - c3)k20 • 
These solutions exist for ko 2 < 1, but they can be 
unstable with respect to side-band modes of Eck- 

haus type. When 1 + c2c 3 < 0 (Newell's criterion) 
all solutions are unstable, even the uniform one 
(k 0 = 0); this is the so-called Benjamin-Feir  in- 
stability (BF for short). As before, the phase of 
the solution is a slow variable, and one can expect 
parameter sets for which the modulus of the 
solution is slaved to the phase. When this is the 
case, the gradient of the phase, ~O = ax~b, which 
measures the local wave-vector of the phase mod- 
ulation ~b, can be shown to be governed at lowest 
order by the Kuramoto-Sivashinsky equation 
(KSE) (Kuramoto and Tsuzuki, 1976; Sivashinsky, 
1977): 

a,~0 + ~ 0 a x 6  = - a x x q ,  - a x ~ x x 4 ,  

In this equation, the anti-diffusive term -ax~$ 
derives directly, by rescaling, from a diffusion 
coefficient varying as (1 + c2c 3) which becomes 
negative in the BF-unstable range. The interest 
of the KSE lies in the fact that it spontaneously 
displays turbulent solutions when the length of 
the system is large enough. Furthermore,  this 
so-called phase turbulence regime turns out to be 
extensive, in the sense that the amount of chaos 
is proportional to the length of the system (see 
Manneville, 1988). 

1.0 

0.9 

0.8 

300 

(a 

IAI 

40O 

1 

Fig, 9. S p a c e - t i m e  evolut ion  of I A I for the  I D - C G L E .  (a) Phase - tu rbu lence  r eg ime  for c 2 = - 2 . 0 ,  c 3 = 0.7, 1 + c2c 3 = - 0 . 4 .  (b) 
A m p l i t u d e - t u r b u l e n c e  r eg ime  for c 2 =  - 2 . 0 ,  c 3 = 1.25, 1 + c 2 c  3 = - 1 . 5 ;  per iod ic  boundary  cond i t ions  at  L = 512. (Note  the 
var ia t ion  range  of I A I in each  case.) 
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For the one-dimensional complex GLE (1D- 
CGLE), there is some numerical evidence from 
simulations that phase turbulence - -unders tood 
as a regime where I AI is bounded away from 
zero so that the phase th is defined everywhere 
(see Fig. 9(a))--exists closely enough to the BF- 
line (see the discussion by Chat6 (1995)). This 
seems (experimentally) true when the linear dis- 
persion (c2 term) is comparatively large; however, 
when the non-linear contribution becomes impor- 
tant, i.e. 1/c  3 is comparatively small, this may not 
be the case: the phase gradient can diverge lo- 
cally, which allows the vanishing of I AI.  The 
1D-CGLE can then enter a regime of amplitude 
turbulence where I A I varies wildly (Fig. 9(b)). In 
this case, space-time chaos can be understood 
from the viewpoint of the dynamics of a popula- 
tion of 'defects'. Present knowledge on the differ- 
ent regimes observed in the 1D-CGLE is summa- 
rized in Fig. 10. The study of the two-dimensional 
case is in progress (amplitude and phase regimes 
and the stability of spirals). 

Studying model equations of the same kind as 
the GLEs reviewed above is of considerable help 
in understanding the transition to spatio-tem- 
poral chaos in realistic cases such as Rayleigh- 
B6nard convection, as they offer a framework 
that is far more simple than primitive hydrody- 
namic equations (e.g. Boussinesq) and yet is suffi- 
cient to deal with universal features of pattern 
formation. 

4. Spatio-temporal intermittency 

Up to now, we have considered systems in 
which the transition to chaos is rather progres- 
sive: supercritical primary instability saturating 
gently beyond threshold and spatio-temporal 
chaos understood in terms of envelope modes. 
However, as already noted by Landau (1944), a 
much wilder situation can take place when there 
is no stable bifurcated state in the neighborhood 
of the state that loses stability. In the case of 
low-dimensional systems (i.e. that of strong con- 
finement) this fundamentally subcritical case leads 
generically to attractor coexistence in state space, 
to bifurcations displaying characteristic hysteretic 

4 . . . .  I . . . .  I . . . .  I 

--C2 j1/~ph 3 - L I - 

ase 

- amplitude / turbul. 2 
turbulence 

0 

(i) 

i/c3 

0.0 0.5 1.0 1.5 

Fig. 10. Diagram displaying the different regimes observed in 
simulations of the 1D-CGLE as a function of 1 / c  3 and - c2 
(adapted from Chat6, 1995) BF: Benjamin-Feir  instability 
line given by 1+ c2c 3 = 0; plane waves are linearly stable 
below this line. In region (II), above line L2, they are 
metastable against a spatio-temporally intermittent regime 
involving localized 'defect solutions' whereas in region (I), 
below this line, they attract all initial conditions except some 
solitary waves stable close to line L 2. In region (III), between 
line BF, line L 3 and line L2, amplitude turbulence and phase 
turbulence coexist ('bi-chaos'). Line L I marks the smooth 
transition from amplitude turbulence to phase turbulence (the 
density of amplitude defects goes to zero when approaching 
line L 1 from the left). 

features, or to crises (Grebogi et al., 1983). In 
extended systems, this coexistence of attractors in 
state space translates into a coexistence in physi- 
cal space of different regimes, each in its own 
domain and separated from the others by a dis- 
continuity region called a front. 

As stressed by Pomeau (1986), an original route 
to turbulence, called spatio-temporal intermit- 
tency (STI), can take place when two states are in 
competition, one being regular and the other 
chao t icbu t  metastable, i.e. having a finite life- 
time. In this case, the transition then presents 
itself generically as a contamination process, the 
locally chaotic state occupying turbulent patches, 
spots, puffs, slugs, etc., and the regular state 
corresponding to the part of the system which is 
still laminar. When the control parameter is in- 
creased, one can observe the transition from a 
fully laminar state to a fully turbulent regime by 
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Fig. 11. Directed percolation on a one-dimensional lattice. (a) 
Sites can be in active (white) or absorbing (black) states. (b) 
Probability of the different configurations as a function of the 
contamination probability p. (c) Evolution of a randomly 
initialized lattice for p = Pc. 

monitoring the turbulent fraction, i.e. either the 
fraction of space occupied by the turbulent state 
or the fraction of time the system remains in the 
chaotic state at a given place. The transition can 
be continuous in the sense that the turbulent 
fraction increases continuously f rom zero, 
whereas the local state of the system can change 
discontinuously in physical space. 

The existence of two well-distinguished states 
strongly suggests the use of binary coding 
' l amina r / tu rbu len t ' ,  ' d ead / a l i ve ' ,  ' u p / d o w n ' ,  
' b l ack /whi t e ' ,  etc. By assuming that chaos pre- 
sent at some sites can contaminate neighboring 
laminar states with some probability p, one ar- 
rives at a model akin to directed percolation. This 
fully stochastic process is a mathematical  ideal- 
ization applicable, e.g. to the flow of a liquid 
through a porous medium: whether the fluid can 
percolate through it or remain t rapped in it de- 
pends on the void fraction that is interpreted as 
the local probability of having a given channel 
between grains open or not. The problem is then 
to find the probability that a given site inside the 

medium is 'wet '  or 'dry', or else to find continu- 
ous directed paths of open channels. Other  cur- 
rent applications pertain to forest fires or epi- 
demics. In the present context, this process is 
used to characterize a specific turbulent regime 
where chaotic domains coexist with regular do- 
mains, as described above. 

When studied in the framework of statistical 
physics, directed percolation is a process defined 
on a lattice with two possible states per site. The 
probability for one site at time t + 1 to be in a 
given state is a function of the transition probabil- 
ity p and the configuration of its neighborhood 
on time t. One of the states has to be absorbing, 
i.e. it cannot become active by itself but only 
through contamination from active neighbors at a 
previous time (see Fig. 11). When the contamina- 
tion probability is small, the 'epidemic '  stops, but 
beyond a well-defined threshold Pc, it does not 
stop. In the context of flow through porous me- 
dia, this simply means that a given channel can- 
not be wet if all its parent channels are dry and 
that when the void fraction is sufficiently large 
the fluid can percolate to infinity ( 'directed'  
meaning essentially one-way; for a review, consult 
Kinzel (1983)). Beyond a threshold, the contami- 
nated fraction is observed to vary as a power law: 
F = ( p - p c )  ~, where /3 is a 'critical exponent '  in 
the terminology of phase transitions. This expo- 
nent is believed to take some universal value 
depending only on the dimensionality of the lat- 
tice on which the process is defined. 

Specially designed deterministic models of such 
a contamination process have been built with 
units that are governed by a local dynamics allow- 
ing for transient chaos toward a steady state. An 
example is given in Fig. 12: local maps X t + l =  
f(X') such as that described in Fig. 12(a) are 
sitting in a row (one-dimensional model) and 
coupled to nearest neighbors in a diffusive way 
(Chat6 and Manneville, 1991): 

X / + '  = f ( X / ) +  e [ f ( X ] + l ) -  2 f ( X ] )  

Local transient chaos is present in each map for 
X < 1 (owing to a slope r larger than two, active 
state); the regular (laminar, absorbing) state cor- 
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responds to the domain X > 1. The transition is 
observed upon varying the diffusion constant E. 
The coupling, provided it is strong enough, is able 
to convert local transient temporal chaos into 
sustained spatio-temporal chaos (see Fig. 12(b)). 
For this particular case, the turbulent fraction is 
seen to increase as F = ( e -  e~) ~ with /3 ~ 0.25; 
the value expected from directed percolation us- 
ing the universality assumption would be/3 = 0.28. 
Owing to limitations inherent in numerical simu- 
lations (limited amount of data), it is not easy to 
decide whether a given transition to turbulence 
via STI is in the same universality class as di- 
rected percolation, but models such as that intro- 
duced in Fig. 12(a) clearly show that, being sensi- 
tive to the nature of the local dynamics, the 
process is clearly not universal. Indeed, the tran- 
sition can be continuous or discontinuous and, 
when it is continuous, the critical exponents de- 
pends up on local features (controlling, e.g. the 
existence of propagating, soliton-like, structures 
visible in Fig. 12(b)). 

This transition can be observed in models such 
as the 1D-CGLE, but also in laboratory experi- 
ments, for example, convection in a narrow annu- 
lar gap at moderate to high Prandtl numbers 

(Ciliberto and Bigazzi, 1988; Daviaud et al., 1989) 
or 'printer instability' (Rabaud et al., 1990). The 
understanding gained by its study can also help us 
better describe other transitions involving turbu- 
lent spots, e.g. in plane Couette flow or in the 
Blasius boundary layer flow. 

5. Further problems 

In this paper, it has been at tempted to summa- 
rize recent progress in understanding the emer- 
gence of spatio-temporal chaos, with emphasis on 
the role of physical confinement by lateral bound- 
ary effects. Apparently, this restricts the ap- 
proach to the case of flows taking place in a 
closed container, e.g. natural convection, and ex- 
cludes open flows, i.e. flows where the fluid goes 
through the set-up, tube, channel, etc. In the 
latter case, new features can appear as a conse- 
quence of the average transport of matter. These 
new features relate to the absolute or convective 
nature of the instability (see, Huerre,  1987). 
Schematically, when the effect of downstream 
advection dominates the instability mechanism, 
one can observe the growth of the unstable modes 

r/2 

1 

, x t+ l  (a) 
/ 

X t 

at threshold 

space 

above threshold 

i ,  
active absorb. ([3) space 

Fig. 12. Transition to turbulence via STI. (a) Local map. (b) Regimes observed for E = E c (top), and ~ >> E c (bottom). Active sites 
( X <  1) are black and sites in the absorbing state ( X >  1) white. 
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Fig. 13. Absolute and convective instabilities in an open flow 
system. 

only in a frame moving at the average speed of 
the flow, not in the laboratory frame; if the 
residence time of the fluid in the set-up is insuffi- 
cient, the instability is not observed. In this case, 
the instability is called convective. When, on the 
contrary, the mechanism is stronger than the ad- 
vection effect, the instability is observed in the 
laboratory frame in spite of the downstream 
transport. Such an instability is said to be abso- 
lute (see Fig. 13). 

In practice, the situation may be not so clear- 
cut, owing to the development of the flow down- 
stream. Indeed, the global advection kept con- 
stant in space, the local strength of the mecha- 
nism can vary with the distance to some special 
point in the flow. For example, in the wake of an 
obstacle, the instability can be absolute just be- 
hind the obstacle and convective further down- 
stream. The domain of absolute instability is 
roughly limited to the region of recirculation, 
which presents itself as a hydrodynamic resonator 
with properties akin to those of a confined sys- 
tem, though there is no physical confinement 

along the flow direction (see Oertel, 1990). On 
another hand, the absolute-convective distinction 
can become relevant even in closed systems, when 
the instability involves dissipative waves that have 
to accommodate end effects, as, for example, for 
convection in binary mixtures (Cross, 1986). The 
recourse to simplified models in terms of en- 
velopes, i.e. variants of the Ginzburg-Landau 
equations introduced above, is a prerequisite to 
the study of the concrete situations found in 
hydrodynamics. 

Further steps are still necessary before an un- 
derstanding of developed turbulence is obtained, 
in particular with respect to the emergence of 
scaling in the so-called inertial range, where the 
energy cascades from large scales where it is 
injected by instability mechanisms to small scales 
where it is dissipated by viscous damping. It seems 
possible to understand this hierarchy of scales as 
resulting from the successive excitation of modes 
in the spirit of Landau. In fact, the stress has 
recently been put on large-scale coherent struc- 
tures on the one hand and on the generation of 
filaments in fully developed turbulence on the 
other (Tabeling, 1995). In turbulent convection at 
high Rayleigh numbers, boundary-layer instability 
at low to moderate Prandtl numbers or plume 
generation and motion at higher Pr have received 
much attention (Siggia, 1994). 

The account given may suggest that the ad- 
vances thus far are mainly conceptual; neverthe- 
less, one can hope to apply some of these findings 
to concrete situations of geophysical f lu id--not  
forgetting, of course, all the specificities of the 
problem considered (e.g. convection), its geome- 
try (e.g. a spherical shell), the nature of the fluid 
(i.e. its Prandtl number), etc. Use can certainly be 
made of the methods developed (modeling by 
envelope equations, coupled maps) and the vast 
catalog of behaviors already discovered in pattern 
dynamics (amplitude and phase turbulence, de- 
fect stability, spatio-temporal intermittency, etc.). 
Also, analog reasoning stemming from the study 
of 'universal' features of spatio-temporal chaos 
can be of great help in clearly distinguishing what 
is relevant to temporal chaos, spatio-temporal 
chaos, or turbulence, and in choosing the best 
tools to attack the geophysical phenomenology. 
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