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As shown by Landau, Levich and Derjaguin, a plate withdrawn out of a wetting bath at low capillary num-
bers deforms the very top of the liquid reservoir. At this place, a dynamic meniscus forms, whose shape
and curvature select the thickness of the film entrained by the plate. In this paper, we measure accurately
the thickness of the entrained film by reflectometry, and characterize the dynamic meniscus, which is
found to decay exponentially towards the film. We show how this shape is modified when reversing
the motion: as a plate penetrates the bath, the dynamic meniscus can ‘‘buckle’’ and present a stationary
wavy profile, which we discuss.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Coating is a widespread industrial process that consists in
depositing a liquid film of uniform thickness on a solid [9,13]. It
is commonly achieved by extracting a solid from a bath, a process
often referred to as dip coating [11,20,22,26]. Dip coating has been
extensively studied in various geometries such as tubes, Hele-
Shaw cells and fibers [2,14,16] and for various fluid properties
[3,19,17,21,8,1,18,15].

Let us describe the different phenomena observed when a ver-
tical plate is moved out of a bath of wetting liquid of density q and
surface tension c. At rest, first, a meniscus develops along the plate
[5]. Such a static meniscus can be seen in Fig. 1c. Wetting and grav-
ity are responsible for the deformation of the free surface: for a
wetting liquid, the contact angle is zero between the solid and
the liquid, while gravity imposes a horizontal surface ‘‘far’’ from
the wall. Both constraints can be satisfied by curving the interface
by a radius R, such that the increase of gravitational energy �qg R4

is compensated by the decrease of surface energy �cR2. This bal-
ance indicates that the meniscus size scales as the capillary length
a, with a ¼

ffiffiffiffiffiffiffiffiffiffiffi
c=qg

p
.

If the solid plate is moved upwards at a velocity V0 > 0, some li-
quid is entrained as seen in Fig. 1d and e. The first quantitative
analysis of this process was done by Landau, Levich and Derjaguin
[10,6]. The driving force for entrainment is viscosity: molecules
close to the wall follow its motion and entrain their neighbors.
ll rights reserved.

. Clanet).
The viscous force per unit volume scales as gV0=h2
0, denoting h0

as the entrained thickness. Two different volumetric forces resist
viscous entrainment, namely gravity qg and surface tension. As
emphasized above, the meniscus is curved: according to Laplace,
its pressure is lower than the ambient pressure by an amount c/
a. Conversely, the pressure in the entrained flat film (far above
the meniscus) is the ambient pressure, which implies a pressure
gradient opposing liquid entrainment. The corresponding Laplace
force is c/ak, where k is the characteristic length of the dynamic
meniscus connecting the static meniscus to the flat film. The ratio
between gravity and capillary resistances reduces to k/a, that is,
the ratio between the sizes of the dynamic and static menisci. If
k < a, capillary resistance dominates gravity. We call it the ‘‘capil-
lary wiper’’ regime since the dynamic meniscus acts as an elastic
wiper on a windshield, limiting the film thickness right beyond
the wiper (Fig. 1d). In this regime, the balance between viscosity
and surface tension leads to: h2

0=k � aCa0, where Ca0 = gV0/c is
the capillary number. Since the static meniscus is hardly deformed
by the motion of the wall [4], the curvature of the dynamic menis-
cus, h0/k2, matches the curvature of the static meniscus 1/a. This
implies a second relation: k2 � ah0. We eventually deduce the film
thickness h0 � aCa2=3

0 and the length of the dynamic meniscus
k � aCa1=3

0 . These expressions are expected to be valid in the small
deformation regime k� a, that is, for Ca0� 1. A rigorous asymp-
totic matching allowed Landau, Levich and Derjaguin to derive
the numerical factors in these laws [10,6]:

h0 ’ 0:94 a Ca2=3
0 ð1Þ

k ’ 0:65 a Ca1=3
0 ð2Þ
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Fig. 1. Deformation of a liquid bath induced by the motion of a vertical solid plate at different capillary numbers Ca0 = gV0/c. Ca0 > 0 corresponds to an upward motion of the
plate that comes out coated with a film. Conversely, a plate coated at Ca0 > 0 can be plunged in the bath (Ca0 < 0).
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Fig. 2. Thickness h0 of the film entrained by a silicon wafer extracted at V0 out of a
bath of silicone oil. Full and empty symbols correspond to reflectometry and weight
measurements, respectively. The symbols indicate the viscosity of silicone oil
(g = 5 mPa s, diamonds; g = 10 mPa s, circles; g = 300 mPa s, squares; g = 1000
mPa s, asterisks), which all have the same surface tension (c = 20 mN/m), density
(q = 970 kg/m3) and capillary length (a = 1.5 mm). The solid line is the Landau–
Levich law (Eq. (1)).
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For high capillary numbers, we observe in Fig. 1e that the dynamical
meniscus becomes much larger than the static one and that the film
has a non-uniform thickness. In this regime, gravity dominates sur-
face tension which leads to the force balance gV0=h2

0 � qg. As early
noticed by Derjaguin, the entrainment law becomes h0 � aCa1=2

0 .
Since the gravitational drainage of a film of thickness h0 takes place
at a velocity qgh2

0=g, we also deduce that the film falls down at the
entrainment velocity V0, explaining why it cannot reach a uniform
thickness.

Once the plate is coated, its motion can be reversed (Ca0 < 0). At
small velocity (�1 < Ca0 < 0), the static meniscus is weakly affected
by the motion of the wall (Fig. 1b), while it gets inverted at high
negative capillary numbers, as seen in Fig. 1a where we observe
a centimetre-size black region below the free surface. In this re-
gime, the meniscus shape looks like the one obtained during the
impact of liquid jets in a pool of the same liquid [12], and air
entrainment may occur [25].

Here, we focus on the domain of small capillary numbers [Fig. 1d
and b] and measure the characteristics of the dynamic meniscus for
entrainment (Section 2) and immersion (Section 3). For entrainment,
we compare the size and shape of the dynamic meniscus to the pre-
dictions of Landau–Levich. For immersion, we show how this shape
is affected by the direction of the motion, and interpret our results
using predictions by Wilson and Jones [25].
2. Dragging a plate out of a wetting liquid

2.1. Measurements of the film thickness

The thickness of the liquid layer was measured by reflectome-
try. The measurement consists in analyzing the interference fringes
of the light reflecting on the different layers of the plate. The var-
ious indices of reflection are known, so that the thickness of the li-
quid layer can be deduced from the analysis of the interference
pattern. The spectrum of light wavelength is 400–850 nm. The inci-
dent and reflected beams are driven by an optical fiber at a dis-
tance of typically 5 mm from the substrate. A spectrometer
analyses the light reflected by the substrate: we used silicon wa-
fers, smooth at the atomic scale and reflective like mirrors. The
thicknesses accessible by this technique are in the range of
20 nm to 30 lm, with a precision of typically ±3%. Less than 1 sec-
ond is necessary for acquiring one data point, and the error bars
correspond to the data size, in Fig. 2 and others. For films thicker
than 10 lm, we complemented the optical technique by weight
measurements: the plate was totally extracted from the bath and
its mass determined using a precise balance. We checked for three
different velocities that the results obtained using the reflectome-
ter and the balance were the same, with a comparable precision.
As liquids, we used silicone oils (PDMS) of viscosity g from 5 to
1000 mPa s, and constant surface tension c = 20 mN/m and density
q = 970 kg/m3. The corresponding capillary length a is 1.5 mm. Sil-
icone oils totally wet the wafers. The substrates were fixed, and the
coating achieved by lowering the reservoir of liquid, using a step-
by-step motor and a software to control its displacement. The
withdrawal velocities V0 could be varied between 10 lm/s and
2 cm/s.

We display in Fig. 2 the results of the measurements. The data
are compared to the Landau–Levich law (Eq. (1)), and an excellent
agreement is found on more than two decades in capillary number
(5.10�5 < Ca0 < 10�2). The film is always thick enough (h0 > 1 lm)
to neglect the role of long range forces, which generally tend to
thicken the film in a wetting case. The agreement is not found only
for the scaling law ðh0 � Ca2=3

0 Þ, but also for the numerical
coefficient.

On the other hand, data for Ca0 > 10�2 deviate from (Eq. (1)) and
the deviation increases with Ca0. For such capillary numbers, the
Landau–Levich assumptions are not satisfied anymore and gravity
thins the entrained film [24,23,7]. As shown in the introduction,
one expects the thickness to scale as Ca1=2

0 at high capillary num-
ber, in qualitative agreement with the tendency observed at large
Ca0 in Fig. 2. However, a complete theoretical study of this regime
remains to be done.

We now discuss the actual shape of the dynamic meniscus, first
recalling the classical results of the Landau–Levich analysis and
then comparing them to the experimental profiles obtained by
reflectometry (see Fig. 3).



Fig. 3. Sketch of the dynamic meniscus in the withdrawal case. The dotted line
shows the position of the static meniscus and k is the length of the dynamic
meniscus connecting the static meniscus to the uniform entrained film.
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2.2. The Landau–Levich profile

For small capillary numbers, the Laplace pressure can be simply
expressed as �cd2h/dx2 and the Stokes equation takes the form:
gd2u/dy2 = �cd3h/dx3, where x and y are the directions along and
perpendicular to the velocity u. Integrating this equation with clas-
sical boundary conditions [no slip at the solid surface (y = 0), neg-
ligible viscous stress at the free surface (y = h)], a Poiseuille profile
is found for the flow: u(y) = V0 � c(d3h/dx3)y(y � 2h)/(2g). The film
profile being steady, the flux is conserved along x, which can be
written:

h0V0 ¼ hV0 þ
c

3g
d3h

dx3 h3 ð3Þ

As emphasized in Ref. [10], this equation can be made dimen-
sionless by scaling the film thickness h by h0, and x by k = h0/
(3Ca0)1/3. Putting H = h/h0 and X = x/k, Eq. (3) becomes:

d3H

dX3 ¼
1� H

H3 ð4Þ

In order to satisfy the boundary condition H(X = +1) = 1, we can
write close to the film: H(X) = 1 + �(X) (�� 1), which reduces Eq.
(4) to: �XXX = ��. This linear equation admits solutions of the type
�(X) = aebX with b3 = �1. The only solution matching the uniform
film is b = �1, which leads to H = 1 + ae�X, or:

hðxÞ ’ h0 1þ ae�x=k
� �

ð5Þ
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Fig. 4. (a) Stationary profile of the dynamic meniscus in the region of the entrained film
silicone oil of surface tension c = 20 mN/m and viscosity g = 100 mPa s. The dots are
Characteristic length L of the dynamic meniscus deduced from fits such as reported in (a)
L = k.
In this equation, a is a constant which reflects the invariance of
the dynamic meniscus (4) with respect to a translation along X. Eq.
(4) can be integrated numerically down to the meniscus region,
starting from the asymptotic shape H = 1 + ae�X. It is found that
HXX saturates at the value 0.644 in the limit X = �1: at large H,
the right hand side of the Eq. (4) quickly vanishes, meaning that
d2H/dX2 indeed tends towards a constant. This property was
exploited by Landau and Levich: matching this constant with the
curvature

ffiffiffi
2
p

=a at the top of the static meniscus allowed them to
deduce both the thickness of the entrained film h0 ’ 0:644ffiffiffi

2
p

aCa2=3
0 (Eq. (1)) and the length of the dynamic meniscus

k ’ 0:644
ffiffiffi
2
p

=31=3aCa1=3
0 (Eq. (2)).
2.3. Measurements of the meniscus characteristics

We measured the stationary shape of the dynamic meniscus
during the film deposition by scanning the free surface along the
flow with the reflectometer. Fig. 4a shows such a scan, obtained
as withdrawing a silicon wafer at V0 = 25 lm/s out of a silicone
oil of surface tension c = 20 mN/m and viscosity g = 100 mPa s.
The corresponding capillary number is low (1.25 � 10�4), in the
range of applicability of the Landau–Levich laws. We expect from
Eq. (1) a thickness h0 = 3.5 lm for the deposited film, in excellent
agreement with the value at large x in Fig. 4a. It is also observed
that the film is flat, which confirms the negligible role of gravity
in the limit of small capillary numbers. In the same figure, the pro-
file is nicely fitted by an exponential function, h(x) = h0(1 + ae�x/L),
as expected from Eq. (5). We deduce from the fit a value for L,
which for this particular example is found to be 47 ± 1 lm. This va-
lue is in good agreement with the length calculated by Eq. (2),
which is k = 47 lm.

We repeated this experiment for different oil viscosities and
withdrawal velocities, which allowed us to vary the capillary num-
ber between 10�4 and 2 � 10�4. In each case, the profile of the dy-
namic meniscus could be nicely fitted by an exponential law,
whose characteristic length L is plotted in Fig. 4b as a function of
k, the length calculated from Eq. (2) for each experiment. There
again, the fit is quite good (the data scatter around the line L = k),
without any adjustable parameter. As a conclusion, reflectometry
appears to be suitable for quantitatively describing the dynamic
meniscus, whose shape directly reflects the hydrodynamics of
the problem. Therefore, we can think of using this technique in sit-
uations where some added complexity should impact the flow, and
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obtained by reflectometry, for a silicon wafer drawn at V0 = 25 lm/s out of a bath of
the data, and the line is an exponential fit of characteristic length L = 47 lm. (b)
as a function of the Landau–Levich length k [Eq. (2)]. The data scatter around the line
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Fig. 5. Stationary profile of the dynamic meniscus, for a plate coated by a thin film
(h0 = 4.46 lm) of silicone oil (c = 20 mN/m and g = 350 mPa s) immersed at
V = 10 lm/s inside a bath of the same silicone oil. The data are obtained by
reflectometry. The profile is found to be wavy, with a half-wavelength W � 200 lm
and amplitude A � 0.3 lm.
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Fig. 6. Stationary profile of the dynamic meniscus, for a plate coated at a velocity V0

by silicone oil (c = 20 mN/m and g = 350 mPa s) and then immersed at V = V0 inside
a bath of the same oil. The film thickness h is scaled by the deposited thickness h0,
and the x coordinate by the length k = h0/(3gV/c)1/3 of the dynamic meniscus. The
data correspond to V = 10 lm/s (triangles) and V = 20 lm/s (squares). The line is the
numerical solution of Eq. (6), which yields a solution close to Eq. (7), with a = 1.
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the dynamic meniscus – such as coating with surfactants, with
non-Newtonian fluids, or immersion experiments as done below.
3. Driving the wetted plate in the pool

3.1. Observations

We now discuss what happens as immersing at a velocity �V a
plate first coated at a velocity V0 (Fig. 1b). There again, the motion
distorts the top of the quasi-static meniscus, but the shape of the
interface is found to differ from previously. As shown in Fig. 5,
we now observe stationary ripples, instead of the monotonous pro-
file in Fig. 4a: the film (of thickness h0 = 4.45 lm) covering the
plate ‘‘buckles’’ in the dynamic meniscus (small values of x). The
amplitude A of the wave is a fraction of a micrometer while the
wavelength is typically 400 lm. At smaller x, h grows quickly
and meets the meniscus, a region not shown in the figure since
our reflectometry method only works for small slopes and thin
films. We now comment on the origin of such oscillations.

3.2. Wavy Landau–Levich meniscus

At small capillary numbers (gV/c� 1), the only difference with
the withdrawing case is a change in sign for the plate velocity.
Replacing V0 by �V in Eq. (4) yields the following equation for
the profile [2,25]:

d3H

dX3 ¼
H � 1

H3 ð6Þ

where h and x are scaled by h0 = 0.94a(gV0/c)2/3 and k = h0/(3gV/c)1/3.
Close to the film, the linearization of Eq. (6) [H = 1 + �X] leads to
�XXX = �, whose acceptable solutions are �ðXÞ ¼ a1eb1X and
�ðXÞ ¼ a2eb2X with b1 ¼ �1=2þ i

ffiffiffi
3
p

=2 and b2 ¼ �1=2� i
ffiffiffi
3
p

=2. The
film thickness thus varies as:

HðXÞ ¼ 1þ ae�/=
ffiffi
3
p

e�X=2 cos
ffiffiffi
3
p

X=2þ /
� �

ð7Þ

where the phase / reflects the invariance of the dynamic meniscus
(6) with respect to a translation along X. This function indeed shows
an oscillatory behavior, damped by an exponential decay as going to
the film region. The characteristic length scale for this inverted dy-
namic meniscus is 2k. The corresponding wavelength is 4pk=

ffiffiffi
3
p

,
which yields W (defined in Fig. 6) of 2pk=

ffiffiffi
3
p
’ 3:6k. For the partic-

ular case of Fig. 5, we have k = 55 lm and we measure
W = 200 ± 5 lm, in excellent agreement with the expected value
of 198 lm.

The linear solution (7) can be used to integrate the non-linear
Eq. (6). There again, HXX saturates in the limit X = �1, at a value
depending on a. This is not a surprise because of the independence
of the coating and immersion velocities V0 and V. Using the relation
hxx = h0/k2 HXX together with k ¼ h0=ð3CaÞ1=3

; h0 ¼ 0:94aCa2=3
0 and

the curvature
ffiffiffi
2
p

=a at the top of the static meniscus, we get:

HXXð�1Þ ¼ 0:64
Ca0

Ca

� �2=3

ð8Þ

If Ca = Ca0, we recover the former limit HXX = 0.64.
3.3. Comparison with the experiments

Eq. (6) suggests to present the results in a dimensionless fash-
ion, which is done in Fig. 6 for two series of data. The data are ob-
served to collapse in a single curve, and this curve is fairly well
fitted by the numerical solution of Eq. (6) (solid line), which is
solved and matched with the film (this yields a solution very close
to Eq. (7) with a = 1). The fit nicely captures the period of the wave
and slightly overestimates the height of the largest bump. The
numerical solution also predicts the existence of a second mini-
mum close to X = 0, but, as emphasized earlier, this region could
not be characterized experimentally.

In Fig. 6, pre-coating and immersion were performed at the
same velocity (V = V0). This situation is the most natural one. It
arises in roll coating, where a roller half immersed in a bath drags
oil as it turns and re-enters the bath at the same velocity after half
a turn. It also corresponds to the case described by Bretherton,
where a long bubble is moved in a tube filled with liquid [2]. The
front and the rear part of the bubble move at the same velocity:
the front region generates a film along the wall, while ripples ap-
pear at the rear of the bubble.

We considered other values for the ratio V/V0, and always ob-
served ripples. We show in Fig. 7 how the ratio V/V0 controls their
amplitude and wavelength. While increasing V/V0 by a factor 400,
the reduced amplitude A/h0 slowly decreases by a factor 3 while
the wavelength increases by a comparable amount. In addition,
we calculated the film profile expected from Eq. (7), and deduced
the theoretical values of A and W. We report in Fig. 7 the compar-
ison between both these quantities (solid lines) and the measured
ones.
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The agreement is quite good provided that the ratio V/V0 is large
enough. We see in particular that the dimensionless half-wave-
length W/k tends towards a constant ’3.5, in excellent agreement
with the calculated value W = 3.6k. Below V/V0 ’ 0.1, both the
amplitude and the wavelength deviate from the expected values.
In this limit, the drainage of the film should perturb the analysis:
for V = 0 (fixed wall), liquid still enters the pool, yet by a different
mechanism (gravitational drainage). Then, as theoretically shown
by Wilson and Jones [25], ripples should also exist in the region
matching the film and the meniscus.

The transition between Landau–Levich–Bretherton and Wilson–
Jones ripples is expected to occur when the drainage velocity Vd of
the film exceeds the wall velocity. Since, Vd � qgh2

0=g, this criterion
can be written V/V0 < (gV0/c)1/3, independent of g ! For capillary
numbers of the order of 10�3, the transition is expected for
V/V0 < 0.1, as indeed seen in Fig. 7. In this ‘‘fixed wall’’ limit, gravity
can no longer be neglected in the dynamic meniscus and the sta-
tionary condition implies:

qgh3
0 ¼ qgh3 � ch3 d3h

dx3 ð9Þ

Following [25], this equation can be made dimensionless by scaling
h by h0 and x by a new characteristic length kg = (a2h0)1/3. For our
micrometric films, we expect kg to be in the range of 100–
300 lm, as observed experimentally. Eq. (9) then becomes:

d3H

dX3 ¼
H3 � 1

H3 ð10Þ

Close to the film (H = 1 + �), we obtain �XXX = 3�, which implies
oscillations of half-wavelength W = 2pkg/35/6, i.e. approximately
2.5kg, independent of V. This explains why in Fig. 7b the quantity
W/k quickly decreases: W tends towards a constant value, while
k diverges at small V. The study of the evolution of the amplitude
A in this small velocity regime remains to be done.

4. Conclusion

We studied by reflectometry the characteristics of Landau–
Levich dynamic menisci, that is, the transition region between a
static meniscus and a film entrained by a moving solid. If the solid
is extracted from the bath, the shape of the ‘‘stretched’’ dynamic
meniscus was found to be exponential (close to the film), with a
characteristic length slowly increasing as a function of the capillary
number (as Ca1=3

0 ), in excellent agreement with the classical
Landau–Levich picture. In addition, we could describe in a very
wide range of capillary numbers the law of deposition, which
provides precise data on plate coating, even at ‘‘large’’ capillary
numbers for which gravity also contributes to thin the entrained
film.

Once coated, the plate can re-enter the bath. Looking at the
common case where the deposition and coating velocities are of
the same order, we reported that the dynamic meniscus has a sta-
tionary wavy shape. We studied the amplitude, wavelength and
envelope of this shape, and found that all these characteristics
are quantitatively captured in the Landau–Levich–Bretherton
frame. Strong deviations were also observed at small immersion
velocities, which were interpreted as resulting from gravitational
drainage that also provokes interface undulations, yet of different
wavelength as proposed by Wilson and Jones.
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