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Alignment and scattering of colliding
active droplets

Kevin Lippera, Michael Benzaquen and Sébastien Michelin *

Active droplets emit a chemical solute at their surface that modifies their local interfacial tension. They

exploit the nonlinear coupling of the convective transport of solute to the resulting Marangoni flows in

order to self-propel. Such swimming droplets are by nature anti-chemotactic and are repelled by their

own chemical wake or their neighbours. The rebound dynamics resulting from pairwise droplet

interactions was recently analysed in detail for purely head-on collisions using a specific bispherical

approach. Here, we extend this analysis and propose a reduced model of a generic collision to

characterise the alignment and scattering properties of oblique droplet collisions and their potential

impact on collective droplet dynamics. A systematic alignment of the droplets’ trajectories is observed

for symmetric collisions, when the droplets interact directly, and arises from the finite-time

rearrangement of the droplets’ chemical wake during the collision. For more generic collisions, complex

and diverse dynamical regimes are observed, whether the droplets interact directly or through their

chemical wake, resulting in a significant scattering.

1 Introduction

Synthetic microswimmers have recently been a central focus for
various scientific communities, whether to mimic life at small
scales1 or the more general behaviour of so-called active
matter,2 but also to perform mechanical work,3,4 in industrial
processes5,6 or for biomedical and bioengineering applications.7,8

Many artificial microswimmers are powered by a macroscopic
forcing, e.g., using ultrasound waves9 or magnetic fields,10,11 or
extract energy directly from their physico-chemical environment in
order to self-propel at microscopic scales.12,13

Chemically-active droplets have become a prominent example
of the latter. They swim using local gradients in interfacial
tension created by their chemical activity, e.g., an internal
chemical reaction14 or a solubilisation process.15 The second
category has recently received much interest and, regardless of its
system-dependent physico-chemical details, involves the slow
solubilisation of the droplet’s fluid into the surfactant-saturated
outer fluid through the formation of swollen micellar structures
near the droplet’s surface.16,17 This effectively amounts to the
emission of a chemical solute by the droplet, whose concen-
tration near the droplet’s surface increases its local interfacial
tension.16 A local excess in chemical solute thus induces a
surface-driven flow and convective transport of the solute, as well
as the droplet’s migration away from the solute-rich region.

This nonlinear coupling has two fundamental consequences.
First, surface gradients of solute are enhanced by the self-
induced Marangoni flows, resulting in the droplet’s propulsion
when the convective transport exceeds molecular diffusion of the
large micellar structures, or equivalently above a critical Péclet
number, Pe 4 Pec.15,18 This instability mechanism thus under-
scores the fundamental role of fluid motion and convective
transport in the emergence of self-propulsion. As a second
consequence of this hydrochemical coupling, self-propelled
droplets are repelled by their own chemical trail and are
thus intrinsically negatively auto-chemotactic.19,20 Like phoretic
colloids, they drift down an existing gradient of chemical solute
(e.g., away from other droplets) and are therefore also anti-
chemotactic.19,20 In addition to their self-propulsion, active
droplets may deform spontaneously,21,22 exhibit chaotic
behaviour23–25 and swim along curly trajectories.26,27

Active droplets interact with and respond to ambient hydro-
dynamic flows or chemical gradients, generated by an external
forcing, confinement or other active droplets. Chemical and
hydrodynamic interactions thus influence the collective dynamics
of active droplets, and alignment events14,28 and clustering29 have
been reported in experiments. Confining boundaries likely also
have a strong influence on the droplet interactions.30,31

However, the nonlinear coupling of solute transport and
hydrodynamic flows distinguishes them fundamentally from
phoretic swimmers and renders the analysis and modeling of
such interactions particularly challenging. Indeed, it precludes
a priori any superposition argument or rigorous dichotomy
into two independent routes as typically envisioned when the
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chemical transport is purely diffusive.32,33 Some insight may
nevertheless be gained on droplet–droplet interactions, when
the large distance between the interacting droplets effectively
decouples the effect of hydrodynamic and chemical signatures
on the dynamics of their neighbours: a far-field estimation
of hydrodynamic interactions helps therefore to understand
cluster formations in the presence of boundaries.30,31 Repulsive
chemical interactions have also been estimated in this far-field
limit by neglecting the convection of the chemical solutes,
providing scaling laws that are in qualitative agreement with
experimental results.28,34

Yet, the droplets’ self-propulsion stems fundamentally from
the convective transport of the emitted solutes. In an effort to
retain such an essential ingredient, absent in far-field models,
an improved modelling of active droplets, near their self-
propulsion threshold, as moving sources of chemical solute
identified a weak alignment effect of droplet collisions, and
hydrodynamic interactions were shown to have little influence
on such dynamics.35 Note that a similar approach was also used
recently to analyse the self-propulsion of isotropic camphor
boats.36

A complete modeling of the chemo-hydrodynamic interactions
of active droplets was recently proposed for axisymmetric head-on
collisions,37 providing for any Pe a detailed and quantitative
characterization of the role of chemical transport and hydro-
dynamic flow in the rebound and subsequent dynamics.
Complex dynamical regimes were identified, including a delay
of the droplets’ rebound at larger Pe or the emergence of bound
states of chasing droplets of different radii.38 The subdomi-
nance of hydrodynamic interactions near the self-propulsion
threshold was also confirmed,37 as a result of the small stresslet
signature of the droplets.

These studies provide a unique insight into the detailed
chemical dynamics and hydrodynamic flows. Yet, generalizing
such a detailed framework to non-axisymmetric cases is tech-
nically difficult, motivating the development of reduced models
to analyse the generic collisions of active droplets, that are
more relevant to experimental situations. In particular, under-
standing the scattering or alignment properties of the droplet
interactions is expected to provide critical insight on the
emergence of collective dynamics in active emulsions.

To this end, the present study builds upon the observation
that hydrodynamic interactions play a limited role for moderate
Pe,35,37 and constructs a moving singularity model for active
droplets that retains the fundamental role of convective
transport in self-propulsion, neglects any hydrodynamic
influence of the droplets on each other and is able to repro-
duce the single-droplet dynamics exactly,15,18 in essence
improving upon a simpler version of this approach, which
significantly over-estimated the self-propulsion velocity.36 In
experiments, droplets evolve and interact within a plane, as
a result of buoyancy differences30 or confined geometry.25,39

We therefore purposely limit our analysis here to co-planar
interactions of the droplets, although the model itself remains
entirely three-dimensional and its application to generic 3D
trajectories is straightforward.

The paper is organized as follows: the moving singularity
model is first introduced in Section 2 and its validation for
pairwise collisions of droplets, against the results of the fully-
resolved interactions for head-on collisions37 is presented in
Appendix B. This model is then used in Section 3 to demon-
strate the aligning properties of symmetric collisions. Section 4
then extends the analysis to generic pairwise collisions, analysing
the influence of the incoming angle and relative delay between
the droplets on the emerging relative alignment and their
scattering. Our findings are then summarized and discussed in
Section 5, together with their implications on the collective
dynamics of active droplets.

2 Modeling droplet collisions
2.1 Description of the physical system

We first present a general framework to analyse the collective
dynamics of N chemically-active droplets. Although a full
description of the chemical and hydrodynamic problems is
possible for any inter-droplet distance in the case of axisym-
metric interactions of N = 2 droplets,37 generalisation to oblique
collisions or to N Z 3 droplets quickly proves particularly
challenging and intractable. Instead, we present and validate
here a simplified method to obtain the droplet dynamics while
still retaining the essential physical ingredients, inspired by
recent modelling of camphor boat swimmers.36

Each droplet has radius R, density r(i) and viscosity Z(i), and
is immersed in a second (outer) fluid of density r(o) and
viscosity Z(o). The droplets emit a chemical solute of diffusivity
D with a uniform and steady flux A 4 0 per unit area. The
solute, whose concentration field is noted c(x), interacts with
the droplets’ surface, thus modifying its interfacial tension. For
sufficiently small concentration changes, gc = (qg/qc) can be
considered as a constant, so that surface chemical gradients
induce local Marangoni stresses, r8g = gcr8c.40 The resulting
fluid flow advects the slowly-diffusing solute, and when gc 4 0
(as assumed here), this convective transport around the
droplets reinforces surface concentration gradients. This
mechanism is at the heart of the instability of the isotropic
base state (where the droplet and fluid do not move) and of
the droplets’ self-propulsion beyond a minimum advection-to-
diffusion ratio, or critical Péclet number Pec.15,41 Note that the
choice of positive gc and A corresponds to a solute species
emitted by the droplet and whose presence increases the surface
tension (e.g., swollen micelles15). The problem remains however
unchanged if both quantities are negative, e.g., if the solute
species corresponds to surfactant monomers adsorbed by the
droplet during its solubilisation.41

The droplets’ activity prescribes the characteristic scale of
solute concentration, c* = AR/D. We further define V* = ARgc/
[D(2Z(i) + 3Z(o))] the characteristic solutal Marangoni drift
velocity of a single droplet in a uniform concentration gradient
A/D.40 Using R, c* and V* as characteristic length, concen-
tration and velocity scales, the Péclet number, Pe = V*R/D,
provides a quantitative measure of the relative magnitude of
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convective and diffusive transport around a single droplet. In
most experimental situations, the Reynolds and capillary num-
bers, Re = r(o)RV*/Z(o) and Ca = Z(o)V*/g, are both small so that
inertial effects are negligible and the droplets remain spherical.

2.2 Self-propulsion and droplet interactions

The Pe-dependent surface distribution of solute may introduce
interfacial stresses that in turn set the flow and droplet into
motion. Obtaining the droplet velocity from the surface dis-
tribution of g (or c) is a classical fluid dynamics problem.
Indeed, using the Reciprocal Theorem for Stokes flow, the
dimensionless swimming velocity of an isolated droplet can
be obtained from the chemical polarity of its surface Si:

37,42

~vi ¼
vi

V�
¼ � 2

R2c�
cnh iSi : (1)

where h�iSi
denotes the surface-averaging operator on the sur-

face of droplet i whose outward-pointing normal is n.
By emitting solute and driving a fluid flow, droplets influ-

ence each other both hydrodynamically and chemically. Yet,
the complete modelling of two-droplet head-on collisions
demonstrated that hydrodynamic interactions only have a
subdominant contribution to the collision dynamics, at least
for moderate Pe.37 This provides quantitative arguments for the
simplified model detailed below, where direct hydrodynamic
coupling between droplets is neglected, and eqn (1) is therefore
valid for all the droplets. Note however that non-linear con-
vective solute transport around each droplet, and the emer-
gence of a chemical wake, are the essence of the self-propulsion
mechanism, and should necessarily be retained at the indivi-
dual droplet level, in particular their positive feedback on the
polarity of the concentration distribution around the droplet.

2.3 Moving singularity model

To do so, the moving singularity model proposed here
describes the effect of each droplet on the concentration
distribution, c(r,t), solely as a moving point source
singularity,35,36 so that the chemical transport dynamics is
governed by an unsteady diffusion equation:

@c

@t
¼ Dr2cþ 4pAR2

XN
i¼1

1þ z við Þvi � =½ �d r� xiðtÞð Þ; (2)

where xi(t) denotes the instantaneous position of droplet i,

whose velocity vi ¼
dri

dt
is obtained from eqn (1), thus account-

ing indirectly for the interfacial stress balance and the nonzero
size of the droplet. Each droplet is represented as (i) a moving
source of known intensity (i.e., total activity) and (ii) a moving
source dipole of intensity z oriented along the swimming
direction, that accounts empirically for the convective transport
associated with near-field flows around each moving droplet.
The intensity of the latter, z(v), depends on the velocity magnitude,
and is set so that the present moving singularity model applied to
a single isolated droplet matches the exact velocity obtained from
the full advection-diffusion problem for all Pe.15 The advantage of
this formulation is to retain the effect of the droplet motion on the

polarity of the distribution (a chemical ‘‘wake’’ can form behind
the moving point source) while allowing for linear superposition of
the chemical fields created by each droplet independently.

Note that eqn (1) and (2) are linear so that the concentration
field is the superposition of the concentration emitted by each
droplet independently, c ¼

P
j

cj where cj is the solution of

eqn (2) forced by droplet j only. As a result, the velocity vj of
droplet j is obtained in eqn (1) from the superposition of the
contributions of:
� The polarity at its surface Sj of its own concentration

footprint, i.e., the asymmetry of its chemical wake, Pj = �hcjniSj
,

� The polarity at its surface Sj of the concentration emitted
by other droplets, �hckniSj

with k a j.
In the case of a single isolated droplet in steady self-

propulsion with velocity v, the dimensionless concentration
field writes:

c

c�
¼ 1þ zðvÞv � =ð Þ R

r
exp � vrþ v � rð Þ

2D

� �� �

¼ R

r
1� zðvÞ v � r

r2
þ v vrþ v � rð Þ

2Dr

� �� �
exp � vrþ v � rð Þ

2D

� �
;

(3)

where r is the radial vector taken from the droplet’s center.
Using this result in eqn (1), and defining l = vR/2D = (ṽPe)/2,
provides the dipole intensity z uniquely in terms of the exact
result for the non-dimensional velocity ṽsp(Pe):15

zðlÞ
R2=D

¼ 1

2

l2el~vsp
�
2� l cosh lþ sinh l

2 sinh l� 2lþ 2l2 þ l3ð Þe�l

� �
� (4)

Note that in its non-dimensional form and for a fixed
viscosity ratio (which will affect ṽsp(l)), the dipole intensity only
depends on l. In the following, Z(i) = Z(o) is assumed.

Eqn (1), (2) and (4) together with the definition of the

droplets’ velocity vi ¼
dri

dt
provide a closed set of equations for

the droplets’ dynamics and concentration distribution. These
equations are solved spectrally in a large periodic domain (see
Appendix A).

In the following, we apply this moving singularity model to
analyse the collision dynamics of N = 2 droplets. Initially, the
droplets are located at a distance d that is large enough that
they essentially behave as isolated and have a steady self-
propulsion velocity of magnitude vsp(Pe). After the encounter
with the second droplet, each droplet recovers a steady self-
propulsion regime albeit with a modified orientation.

In order to validate the relevance and accuracy of the present
numerical model, its predictions for the head-on collision of two
droplets were compared to the exact results37 (see Appendix B).

Note that the model proposed here is fully three-dimensional.
Yet, motivated in part by the quasi-2D motion of active droplets in
experiments, we restrict our discussion of the collision problem to
planar trajectories of both droplets (the chemical dynamics
remains however three-dimensional). The sensitivity of the results
to 3D misalignment of the droplets is analysed in Appendix C.
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2.4 Oblique collisions

Active swimming droplets are anti-chemotactic, and thus swim
away from the zones of higher concentration, e.g., their own
chemical wake or the proximity with other emitting droplets.15,17,19

During the encounter of two droplets, the confinement-induced
accumulation of the emitted solute between them modifies the
orientation of their chemical polarity and velocity: after a transient
interaction, the droplets swim away from each other in different
and modified directions (Fig. 1).

In a head-on collision, the axisymmetry of the problem
imposes that the droplets’ velocity is strictly zero when they
are closest to each other.37 This is however not necessarily the
case in oblique collisions for which the droplets can maintain a
non-zero velocity at all time, and the chemical wake can rotate
around the droplet as a result of the change in swimming
direction (see Fig. 1). The outcome of such oblique collisions is
therefore not obvious, in particular for the final direction of the
droplets as they swim away from each other. Instead, it is
intimately linked to the detailed unsteady dynamics of the
droplets’ chemical wake.

This is the main focus of the present paper and in the
following, we analyse in detail the influence of generic droplet-
droplet interactions on their directional dynamics. Symmetric
oblique collisions are first analysed, where both droplets are
initially on an exact collision course (Section 3 and Fig. 2a). By
this terminology, we mean that the droplets are initially at the
same distance of the crossing point of their incoming trajec-
tories: the problem maintains therefore a reflection symmetry
at all times. In a second step, the general case is considered,
where one of the droplets (termed droplet 2 by convention) is
lagging by a finite distance (Section 4 and Fig. 2b).

3 Symmetric oblique collisions
3.1 Collision-induced alignment

We first consider the symmetric collision of two active droplets,
initially separated by a large distance d c R and swimming
towards each other (Fig. 2a). The droplets’ motion is completely
symmetric and we thus focus exclusively on the dynamics of
the left-most droplet (droplet 1). When the two droplets are

sufficiently far from each other, the solute concentration
emitted by each of them does not influence the other’s swim-
ming motion. As a result, long before and after the collision,
each droplet swims as if it was isolated, with a constant velocity
vsp and along a straight trajectory.

Defining (v0
1,v0

2) and (vf
1,vf

2) the initial and final droplets’
velocities (Fig. 2a), and their relative direction cosines and sines

w ¼ cos v1; v2ð Þ ¼ v1 � v2
v1j j v2j j

; s ¼ sin v1; v2ð Þ ¼ ez � v1 � v2ð Þ
v1j j v2j j

; (5)

the effect of the collision on the droplets’ alignment can be
quantified by relating their relative direction cosine before (w0)
and after (wf) the collision (Fig. 3).

In a sharp contrast with a perfect elastic collision of rigid
passive spheres (for which w0 = wf), the symmetric collision of
active droplets results in a systematic alignment of the droplets
regardless of their initial relative direction (wf 4 w0). This align-
ment is most striking for rather frontal collisions for which
w0 A [�1,0] which corresponds to droplets initially heading
mostly toward each other. Qualitatively, we understand this as
the result of the droplets coming closer to each other in such
configurations (smaller dmin): the chemical repulsion induced
by the other droplet, at the origin of the droplet’s reorientation
and rebound, is a decreasing function of their relative distance.

A second distinctive feature of Fig. 3 is the emergence of a
plateau for w0 A [�0.9,0.5]: within that range, the droplets swim
away from each other with a relative direction cosine wf E 0.5
that is essentially independent of their incoming relative
orientation. For greater w0 (i.e., almost parallel incoming
trajectories), the elastic rebound dynamics is recovered,
wf E w0, as a result of the weak interaction of the droplets
which remain far from each other at all times. For almost
head-on collisions (w0 o �0.9), the final direction of the
droplets is extremely sensitive to the exact impinging angle.
Perfect head-on collisions (w0 = �1) result in a normal rebound
(wf = �1) by complete reversal of the chemical wake and of their
swimming velocity; but a small departure from this situation
(e.g., w0 = �0.93) results in a sharp alignment of the droplets
(wf E 0.5). This sensitivity is intimately linked to the complex

Fig. 1 Oblique symmetric collision of two active droplets in exact colli-
sion course. Schematic snapshots of the polarity direction p1 = P1/P1 and
velocity v1 are provided along the collision (left) as well as the corres-
ponding concentration fields (right) for w0 = 0.5 and Pe = 6.

Fig. 2 (a) Symmetric and (b) generic co-planar collisions of two active
droplets. In (a), the two droplets are exactly on a collision course and the
problem is symmetric. For generic collisions (b), c denotes the lead distance
of droplet 1 on the second droplet, and the final velocity directions of droplets
1 and 2 are not symmetric anymore.
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reorganisation of the chemical polarity in this type of collisions,
and suggests furthermore that purely head-on collisions are
unstable.

Greater physical insight in the collision dynamics is pro-
vided by the dynamic evolution of the chemical wake which is
represented at different stages of a collision with w0 = 0.5 and
Pe = 6 on Fig. 1. The finite-time diffusion of solute is retained in
the moving singularity model, and it should thus be noted that,
as a result, the direction of the wake created by a droplet’s own
chemical footprint pi does not align instantaneously to its
velocity vi, but instead takes a finite time to adjust to changes
in the swimming direction induced by the additional drift
created by the other droplet’s chemical footprint.

3.2 Minimal collision model

These observations provide the basic ingredients of an even
simpler dynamic model for the collision, which is referred to in
the following as minimal collision model, with only two degrees
of freedom: the separation distance d between the droplets and
the direction, p1, of the chemical wake of the left-most droplet,
i.e., the polarity of its own concentration footprint c1 at its
surface S1. When the droplet is isolated, its velocity is aligned

with p1, i.e., v1 ¼
2V�

R2c�
P1 ¼ vspp1. In a more general situation,

invoking (1) and (2), its total velocity v1 is obtained as the sum

of two contributions,

v1 ¼
2V�

R2c�
P1 þ vr1; (6)

with vr
1 the chemical repulsive drift induced on droplet 1 by the

chemical footprint c2 of droplet 2. For simplicity, this repulsion
velocity vr

1 is modelled here as resulting from the chemical gradient
generated by a fixed source of intensity 4pAR2 at the instantaneous
location of the second droplet, thus retaining only the slowest
decaying signature of the moving singularity model:

vr1 ¼M
x1 � x2

x1 � x2j j3
¼ �M

d2
ex; (7)

where M is a positive constant characterizing the mobility of
a passive droplet in a chemical gradient. In the full moving
singularity model, the evolution of a droplet’s chemical wake in
response to changes in its total velocity is a complex process and
involves both changes of direction and magnitude in the chemical
self-polarity (i.e., corresponding to its own chemical footprint)
under the effect of diffusion and of the droplet’s translation. The
simplified model considered here is based on two main physical
features of that process, namely that the polarity (i) evolves in
response to changes in the droplet’s velocity and (ii) relaxes with a
finite delay t to the droplet’s swimming direction in steady state.
As a result, and further assuming that the magnitude of the
self-polarity P1 does not change in time, the evolution equations
for the velocity v1 and chemical wake direction p1 become (see
Appendix D)

v1 = vspp1 + vr
1, (8)

dp1
dt
¼ p1 � v1ð Þ � p1

tvsp
¼

k p1 � ey
	 


ez � p1ð Þ
d2

; (9)

where k = M/(tvsp) is a positive constant. The reorientation of the
polarity is then solely the result of the chemical repulsion by the
other droplet, eqn (9).

The essence of the collision dynamics observed for the
full system is well captured by this simplified model: as the
droplets get closer to each other, the chemical repulsion reduces
the magnitude of their relative velocity (i.e., the component along
the x-axis on Fig. 1) which eventually vanishes at a distance
dmin; at that instant, the component of self-propulsion in the
x-direction balances the chemical repulsion exactly. However, p1

is not yet aligned with v1 as a result of the finite time delay t: the
chemical wake continues to rotate for a finite time reducing (then
reversing) the self-propulsion component along ex which can not
balance the chemical repulsion vr

18�ex: this generates the
rebound of droplet 1 away from its neighbour.

The results of the minimal collision model can now be
compared with those of the original dynamics obtained from
the moving singularity description. In the simplified model,
the self-propulsion velocity vsp is directly imposed by the
choice of Péclet number;15 for fixed Pe, the minimal model,
eqn (8) and (9), therefore includes a single fitting parameter k.
Fig. 3 compares the final relative direction characterised by wf

predicted by the simplified model (solid lines) as a function

Fig. 3 Reorientation of the droplets’ dynamics in a symmetric collision for
Pe = 6 (red) and Pe = 8 (blue). The cosine of the velocities’ relative
orientation is compared in the initial and final steady propulsion regimes
when the droplets are far away from each other. The results of the moving
singularity model (symbols) are compared to the prediction of the reduced
model of Section 3.2 (lines). To illustrate the alignment dynamics, the
droplets’ trajectories are represented for three representative cases in
the top panels: nearly-head-on collision (w0 = �0.94), strong alignment
(w0 = �0.5) and symmetric rebound (w0 = 0.77).
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of w0 with the complete numerical results obtained for Pe = 6
and Pe = 8 (respectively red crosses and blue stars). We note
that for w0 4 �0.93 the simplified model captures the
emergence of the constant wf plateau for a large range of
approaching angles.

In head-on collisions, the norm of the droplets’ polarity
vanishes to zero at the moment they are closest (see Fig. 6). The
minimal collision model only describes the direction of polarity
and not its magnitude, and is therefore intrinsically unable to
reproduce the physics of such specific configurations.

The problem is invariant by translation along y, and the
simplified model provides a two-degree-of-freedom description
of the collision dynamics, namely the x position of droplet 1
and the angle of its polarity direction p1 with the y-axis. The
dynamics can therefore be fully characterised by the system
trajectories in the (x,p1�ex)-plane, Fig. 4. We note an accumula-
tion of the trajectories near the minimum distance and onto
the trajectory emerging from a perturbation of the head-on
collision (w0 E �1), which is indeed consistent with the
emergence of the plateau-behaviour of the outgoing relative
angle, regardless of the initial orientation of the droplets.

4 Generic oblique collisions

We now turn to the general problem of asymmetric or delayed
collisions, which are characterized below using the full moving
singularity model introduced in Section 2. In such collisions,
droplet 2 is initially located further than droplet 1 by a ‘‘delay’’
distance c from the virtual crossing point of the initial trajec-
tories (Fig. 2b). In contrast with many active particle systems,
active droplets leave a chemical ‘‘trail’’ that extends over several
tens of radii and is known to influence critically their collective
dynamics and trajectories:20,43 when crossing another droplet’s
trail, a second droplet is expected to be deviated away or
repelled by the slowly-diffusing solute left by the first droplet

when it went by. This interaction and deviation is obviously
strongest for close interactions, i.e., when c is small.

In the following, we analyse the possible outcome of such
general encounters of two droplets and the impact on their
subsequent relative dynamics. By convention, and without any
loss of generality, droplet 1 (resp. 2) is initially located on the
left (resp. right) and both droplets are heading toward each
other, so that s 4 0, see eqn (5). Depending both on their
initial relative alignment, w0, and the delay length c 4 0 of
droplet 2, the droplets can either cross paths (s0sf 4 0) or
rebound (s0sf o 0).

Each of these two general behaviours is further divided into
two different regimes depending on the sign of their final
relative alignment, wf (Fig. 5a):
� In the crossing regimes, sf o 0, droplet 2 passes through

the chemical wake of droplet 1. In their final state, the droplets
can either swim in opposite directions (opposed crossings,
wf o 0, red color on Fig. 5), or in the same direction (aligned
crossings, wf 4 0, brown color on Fig. 5).
� In the rebound regimes, sf 4 0, droplet 2 is repelled by

droplet 1 and its chemical trail, and is deviated away before
crossing its path (for sufficiently small c, droplet 1 may also be
deviated by the oncoming droplet 2). Again, the final relative
orientation of the droplets provides a distinction between acute
rebounds (wf 4 0, blue color on Fig. 5) and obtuse rebounds
(wf o 0, green color on Fig. 5).

These four different regimes are illustrated on Fig. 5b and
the influence on their selection of the delay length, c, and
initial alignment, w0, is fully characterised below.

When c is small, the problem is almost symmetric so that
both droplets rebound around the same time under the effect
of their repulsive interaction, oriented orthogonally to their
average initial direction, e. This symmetry is broken when c is
increased; as a result, when the droplets are closest, the
repulsive interactions experienced by each of them point
along distinct directions, and can lead to completely different
dynamics for the leading and trailing droplets.

Section 3 demonstrated that symmetric collisions (c = 0)
systematically lead to acute rebounds provided w0 4 �0.98,
while obtuse rebounds are observed for strictly head-on collisions
(w0 = �1). It is therefore no surprise that such observations are
maintained for small enough delay length c.†

In fact, acute rebounds are observed for most initial relative
orientations when c/R o 5, and for even larger delay lengths
when the droplets are initially swimming in rather parallel
directions (w0 4 0). For more frontal collisions (w0 o �0.3),
alignment of the droplets and acute rebounds are still observed
for small c, but the second (delayed) droplet follows a drastically
different dynamics above a critical delay length cc, leading to
obtuse rebounds. To understand this acute-to-obtuse rebound
transition, the detailed dynamics of the droplets must be
analysed in the interaction region, loosely defined here as the
region where their relative distance is minimum.

Fig. 4 Phase-space representation of the collision in terms of droplet 1’s
horizontal position x and its polarity direction p1�ex for different initial
angles: solid red line w0 = �0.98, dashed blue line w0 = 0.17, dashed dotted
green line w0 = 0.77 and black dotted line w0 = 0.94.

† Note that Fig. 5c and d do not include strict head-on and parallel collisions,
w0 = �1 for which c can not be defined.
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We noted previously the asymmetry of the chemical foot-
print of a swimming droplet: most of the chemical released by
the droplet is left in its wake. As a result, the interaction region
is almost solute-free as the first (leading) droplet crosses it, and
for larger delay length, droplet 1 is therefore only weakly deviated.
In contrast, when it finally crosses the interaction region, droplet
2 is repelled by the chemical wake of droplet 1 in a direction that
depends both on c (i.e., how long ago droplet 1 went by) and w0.
For large enough c and small w0 (droplets heading toward each
other), this repulsion includes a component along �e. This
justifies the existence of a critical delay length cc(w0) for the
acute-to-obtuse rebound transition observed on Fig. 5d: for
c E cc, the repulsion of droplet 2 along �e compensates its
initial velocity component along +e, which increases with w0.
As the interaction strength decreases with the droplet separation,
cc is an increasing function of w0, which is consistent with the
positive slope of the separation between acute and obtuse
rebound regimes on Fig. 5d.

For larger c (typically c \ 5–10), the sign of the droplets’
alignment, w, is conserved between the initial and final con-
figurations: droplets initially swimming along rather parallel

directions (w0 4 0) experience an acute rebound or a parallel
crossing while droplets heading more directly toward each
other (w0 o 0), experience an obtuse rebound or an opposed
crossing. In both cases, a rebound-to-crossing transition is
observed when the delay c is large enough (Fig. 5d). This is
consistent with the physical intuition that the droplets essen-
tially do not interact and maintain a straight trajectory for
sufficiently large c, as the solute emitted by the leading droplet
has diffused away by the time the second droplet crosses the
interaction region.

We note that the second critical delay length cc*(w0) required
for this rebound-to-crossing transition varies non-monotonically
with w0: it is minimum for w0 E 0 and diverges for rather parallel
or head-on configurations (w0 - �1). This feature results mainly
from the non-trivial variations of the minimum distance of the
two droplets with c and w0 as discussed below.

The minimum distance reached by the droplets generally
increases with w0 (see Fig. 4 for the case of symmetric collisions,
c = 0), and diverges for parallel configurations (w0 - 1).
To experience a rebound, the droplets must reverse the
component of their relative velocity normal to e, which is

Fig. 5 Four possible regimes following asymmetric (delayed) collisions of two droplets. (a) Initial and final relative orientations of the droplets in each
regime. (b) Illustration of each regime: acute rebound (blue, w0 = �0.77, c = 2), obtuse rebound (green, w0 = �0.34, c = 30), opposed crossing (red,
w0 = �0.77, c = 8) and parallel crossing (brown, w0 = 0.34, c = 30). In each case, the droplets’ trajectories are provided together with their position at a
given time before the collision. (c) Final alignment, wf, as a function of the initial alignment w0 and delay length c. (d) Phase diagram of the collision
outcome depending on the initial relative alignment, w0, and delay length, c.
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proportional to
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� w0

p
. For greater initial alignment (larger w0),

this is achieved at greater distances (the chemical repulsion
decreases as 1/d2). Furthermore, the interaction of the droplets
is stronger as their alignment increases due to the angular
asymmetry of their chemical wake (see eqn (3)). As a result, a
much greater delay length c is required to avoid a rebound when
the droplets swim initially parallel to each other, which is
consistent with the critical delay cc* for a rebound-to-crossing
transition being an increasing function of w0 when w0 4 0
(Fig. 5d).

Additionally, a first estimate of the minimum distance of the
two droplets is provided by the minimum distance reached by

two non interacting droplets dmin
� 	 ‘

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ w0

p
, which is always

small for head-on configurations, even for large c. As a result, a
rebound is observed for larger delay c when w0 - �1 (head-on
collisions), which is consistent with cc* being a decreasing
function of w0 for w0 o 0 (Fig. 5d).

Finally, in addition to the phase diagram of Fig. 5d, Fig. 5c
provides the evolution of the final relative alignment of the
droplets, wf, in the (w0,c)-parameter space. Two regions can
be distinguished on this figure. Acute rebounds (small c or
large w0) are characterised, as for symmetric collisions, by a
rather fixed directional outcome which corresponds to a general
alignment of the droplets (wf is almost constant and greater
than w0). This region is separated by a sharp transition from
the rest of the map in which the relative direction is mostly
conserved (wf E w0) and depends only weakly on c. This sharp
transition stems from sudden changes in the reorientation
direction of the trailing droplet under the effect of the chemical
wake left behind the leading droplet. It emphasizes the sensitivity
of the collision outcome to c and the scattering ability of such
collisions on the collective behaviour of the droplets.

5 Conclusions

Swimming droplets influence each other’s dynamics through
the wake of chemical solute they generate in order to self-
propel. These chemical interactions are repulsive and have
been identified as the dominant contribution to the droplets’
collective dynamics, both in experiments19 and from a com-
plete modelling of the two-droplet dynamics.37,38 Based on this
observation, this work proposes a general simplified framework
in terms of moving singularities to analyse the collisions of
N-droplet collisions. Building upon a detailed understanding of
the axisymmetric configuration, for which a full solution of the
chemo-hydrodynamic system is available, this model is then
exploited to characterise in detail the generic (oblique) planar
collisions of two droplets, which is more relevant to experi-
mental conditions. In fact, it is shown that purely axisymmetric
or head-on collisions are very specific in terms of the droplets’
wake dynamics whose chemical polarity must vanish in a
rebound, while it is able to rotate around the droplet in a more
generic setting. As a result, mostly (but not strictly) head-on
collisions lead to a significant scattering.

Our results show that symmetric collisions systematically
align the droplets (wf Z w0), and lead to a surprisingly constant
relative final alignment wf, regardless of the incoming orienta-
tion w0. This phenomenon was proved to result essentially from
the reorientation dynamics of each droplets’ own wake during
the collision, and was rationalised using a simple two-degree-
of-freedom model in terms of the chemical wake orientation
and inter-droplet distance.

This alignment ability of the droplet interactions is maintained
for significant asymmetry in the droplets’ oncoming dynamics, at
least for effective delay length of a few droplet radii. When the
asymmetry of the droplet interaction is greater (i.e., when the
trailing droplet crosses the interaction region long enough after
the leading droplet did), the interaction outcomes are much more
diverse, and both rebound regimes (where the droplets’ relative
velocity is reversed) and crossing regimes (where the droplets are
only deviated away from their original trajectory) were observed.
Two sharp transitions between fundamentally different outcomes
were observed as a result of the strong sensitivity of the trailing
droplet’s trajectory and final heading to the exact timing of its
crossing of the solute-rich region left behind the first droplet.

The alignment ability of the droplet interactions is expected
to favour a certain collective coherence of the droplets’ trajec-
tory at large scales. In contrast, sharp transitions in the final
dynamic regime denote the scattering ability of such collisions,
which provide the droplets with the ability to explore new
spatial directions.

For simplicity, we specifically focused here on planar
dynamics of the droplets, still accounting for the fully-3D
diffusion of the chemical solute. A preliminary analysis of more
generic (3D) trajectories (Appendix C) further suggested that
our findings are robust with respect to three-dimensional
perturbations. The detailed stability of such planar collisions
remains however to be studied. Yet, in experimental situations,
an external mechanism (in general confinement or buoyancy-
induced trapping close to a boundary) maintains such planar
configurations and we therefore expect the present findings to
be relevant to such situations. Note also, that the present
framework can be generalised to include the effect of confine-
ment on the solute dynamics, e.g., exploiting the linearity of the
chemical problem through the method of images, in order to
analyze the effect of confinement on the collective dynamics of
active droplets.30,31

Finally, the present model purposely considers a simplified
physico-chemical description of the system in order to focus on
the effect of finite-time diffusion of the solute on the droplets’
interactions. Although this is beyond the scope of the present
work, it should be noted that this model can easily be generalised
to account for multiple active species or more complex kinetics,
e.g., to analyse the effect of different solute diffusivities or the
activity inhibition by the local micellar content of the solution.
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Appendix
A Numerical solution of the moving singularity model

The dynamics of N droplets is obtained by solving eqn (1), (2)
and (4) in a large periodic domain of dimensions (Lx,Ly,Lz),
using a Fourier decomposition of the concentration field:

cðr; tÞ ¼
X
l;m;n

ĉl;m;nðtÞe2pik�r; (10)

where k = (l/Lx)ex + (m/Ly)ey + (n/Lz)ez. The velocity of droplet i is
then computed by substituting eqn (10) into eqn (1), as

vi ¼
V�

c�

X
l;m;n

ĉl;m;ne
2pik�xi

pRk2
cosð2pRkÞ � sin cð2pRkÞð Þk: (11)

In this paper, we analyse the joint dynamics of two droplets
and choose the dimensions of the periodic simulation box much
larger than the droplets’ radius and initial distance so that the
periodic images of the droplets do not influence the results.

B Validation: axisymmetric collisions of two droplets

The moving singularity model was validated for the axisymmetric
collision of two active droplets, for which the exact dynamics was
recently solved completely for various Pe.37 In a head-on collision,
droplets slow down and stop at a minimum distance dmin from
each other, as a result of their anti-chemotactic behaviour (they
are effectively repelled by the solute they emit). The confinement-
induced accumulation of the emitted solute between the droplets
reverses the chemical polarity of the droplets which start
swimming in the opposite direction and rebound.

Fig. 6 presents the evolution of the droplet velocity as a
function of their relative distance as predicted by the moving
singularity model and the exact solution.37 The droplets’ slowing
down and reversal dynamics is clearly visible and the moving
singularity model is shown to provide a quantitatively accurate
approximation of the exact rebound dynamics. The rebound
distance dmin is slightly underestimated in the moving singularity

model, which is consistent with the modelling of the droplet as
point singularities for the chemical field which effectively reduces
the confinement-induced accumulation of solute between the
droplets.

C Three-dimensional collisions and alignment sensitivity

For simplicity of analysis, and motivated by the two-dimensional
kinematics of active droplets observed in experiments, the results
presented in the main text are restricted to purely co-planar
trajectories of the droplets. The sensitivity of the results pre-
sented to symmetric collisions in Section 3 is analysed here by
introducing a small three-dimensional perturbation d, defined as
follows: the initial conditions are identical to that considered in
Section 3 (Fig. 2a), but the droplets are now located on two
different horizontal planes separated by a distance d in the
z-direction (Fig. 7).

We observe that a small perturbation of the co-planar
configuration does not modify the main results and conclusions,
neither qualitatively nor quantitatively, in particular the align-
ment property of the collision over a large range of incoming
relative orientation. This is obviously not the case for purely
head-on collisions, w0 E �1, for which a small vertical mis-
alignment is essentially equivalent to a small variation of the
initial relative cosine w0, whose sensitivity has already been
emphasized and discussed in the main text: as a result, even
a small misalignment d induces large modifications of the
collision’s outcome.

D Simplified model for the evolution of the polarity evolution

For an isolated droplet in steady self-propulsion, its velocity v
and polarity P = �hcni are proportional, see eqn (1). During the
collision with a second droplet, the self-propulsion still adjusts
instantaneously to the chemical distribution in the Stokes
regime, but the chemical polarity now results from the transla-
tion of the droplet and the unsteady diffusion of the chemical

Fig. 6 Droplet axial velocity in an axisymmetric head-on collision with a
second identical droplet for Pe = 6 (red) and Pe = 8 (blue) as obtained
using the moving singularity model, eqn (1) and (2) (solid) and from the
exact result of the fully-coupled hydro-chemical model37 (dashed).

Fig. 7 Sensitivity of the droplets’ alignment in coplanar symmetric
collisions (Fig. 3) to a small initial misalignment d, defined as the initial
vertical distance between the two droplets. The evolution of the final
relative orientation wf with their initial relative heading w0 is presented for
Pe = 6 and d = 0, 0.1, 0.3 and 0.5.

Soft Matter Paper



374 | Soft Matter, 2021, 17, 365--375 This journal is©The Royal Society of Chemistry 2021

trail left behind it. This introduces a finite relaxation time t of
the self-polarity or wake toward (c*R2/2V*)v (or to zero if the
droplet stops moving), and a simple model for the polarity
dynamics is an overdamped relaxation

dPi

dt
¼ 1

t
c�R2

2V�
vi �Pi

� �
: (12)

As a result, the polarity magnitude Pi = |Pi| and direction
pi = Pi/Pi satisfy

dPi

dt
¼ 1

t
c�R2

2V�
vi � pi �Pi

� �
(13)

dpi
dt
¼ c�R2

2tV�Pi
pi � við Þ � pi: (14)

In the following, we further neglect changes in magnitude of
the polarity; as a consequence, the self-induced propulsion
velocity (i.e., that due to the solute released by the droplet
itself) has constant magnitude vsp and Pi E (c*R2/2V*)vsp, and
the wake’s orientational dynamics simplifies into

dpi
dt
¼ pi � við Þ � pi

tvsp
(15)

Note that neglecting changes in the polarity magnitude is
only valid when the chemical wake reorganization is dominated
by its reorientation (as in Fig. 1) and certainly does not hold
for purely head-on collisions where the polarity must vanish in
magnitude in order to reverse direction.37
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