
EUROPHYSICS LETTERS 1 June 1999

Europhys. Lett., 46 (5), pp. 565-570 (1999)

Macroscopic model for collective behavior
of chaotic coupled map lattices

A. Lemâıtre
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Abstract. – We present a simple model for the collective behavior exhibited by chaotic coupled
map lattices (CMLs) in any space dimension which takes into account local fluctuations and
short-range correlations. This reduces the dynamics of CMLs to the evolution of a one-body
distribution function coupled to a coherence length. Quantitatively good results are obtained,
especially in the case of coupled tent maps, even though no free parameter is available.

The emergence of collective behavior in large dynamical systems made of coupled chaotic
units is now well documented [1-5]. Whether the connections are local or global, form a lattice
or a random network, one often observes that quantities averaged over the whole collection of
individual units evolve in time, usually in some regular fashion, while strong chaos is present at
the microscopic level, and no synchronisation occurs between sites. This constitutes some of the
main features of non-trivial collective behavior (NTCB). To them one must add the sometimes
implicit requirement that the collective behavior observed is a true macroscopic attractor, i.e.
that it has a well-defined infinite-size/time limit, and that almost any initial condition leads
to it. (The uniqueness of the collective motion is usually granted if the coupling between units
is strong enough, with the weak-coupling regime being characterized by multistability [6].)

In lattice dynamical systems such as coupled map lattices (CMLs), NTCB can be seen
as long-range order accompanied by the temporal evolution of spatially averaged quantities.
Whereas globally or randomly coupled systems are somewhat easier to handle, being closer to
some infinite-dimension limit, the case of lattice systems with local interactions is notably hard
to approach analytically, especially if one is interested in the strong-coupling case where there
is no hope of extending zero-coupling results (like in the so-called anti-integrable limit [7]).
One of the outstanding problems concerning NTCB in lattice systems is that of the prediction
of the collective motion from the local dynamical rules. In this letter, we present a model
accounting for NTCB in lattices of coupled chaotic maps at the macroscopic level.

Specifically, we consider the discrete-time dynamics of a set of variables X = (X~r )~r∈L lying
at the nodes of a d-dimensional hypercubic lattice L. The nodes are updated synchronously at
discrete timesteps which involve two stages: firstly, the operator S, applied to Xt, transforms
each local variable Xt

~r by a non-linear local map S, yielding an intermediate configuration

c© EDP Sciences



566 EUROPHYSICS LETTERS

0 1
-8

-5

1.0 0.0 1.0 1.0 1.5 2.0

0

1

1.0 1.5 2.0

0

1

p t tM
ln D

X µ

ln m

tM

µ

(a) (b) (c)

Fig. 1. – Non-trivial collective behaviour in lattices of coupled tent maps (g = 1/(2d + 1)) with
periodic boundary conditions. (a) d = 2 bifurcation diagram of the instantaneous spatial average M t

of a lattice of 20482 sites (thick curves) and bifurcation diagram of the single tent map (shaded area).
(b) Asymptotic single-site pdf p in the stationary regime of ∆m ◦S at µ = 2, for m varying from 1 to
32; the distance D =

∫
(pm − p32)2 (insert) shows evidence of convergence with m. (c) Same as (a)

for d = 3 (1283 sites).

Xt+ 1
2 . Secondly, Xt+ 1

2 is transformed by the diffusive coupling operator ∆,

[∆( X )]~r = (1− 2dg)X~r + g
∑
~e

X~r+~e , (1)

where g is the coupling strength, and the sum runs over the 2d nearest neighbors of every site.
The CML dynamics is thus simply written Xt+1 = ∆ ◦ S(Xt).

In the following, we consider tent maps S(X) = 1 − µ|X| with µ ∈ [0, 2], which leave the
interval I = [−1, 1] invariant. For µ > µ∞ (= 1 for the tent map), and for strong enough
coupling, CMLs ∆◦S exhibit NTCB [3,8]. The bifurcation diagram of the instantaneous spatial
average M t ≡ 〈X〉t is displayed in fig. 1 for g = 0.2 in dimensions 2 and 3. All sites evolve
chaotically and are statistically equivalent. In fact, the instantaneous one-body distribution
pt is smooth, wide, and follows the same collective behavior as its mean M t. Almost all initial
conditions lead to the same macroscopic attractor, well-defined in the infinite-size limit. Only
periodic regimes are observed in these cases, but quasiperiodic dynamics appears in higher
space dimensions, indicating that the collective motion may have no direct equivalent at the
microscopic level.

Standard mean-field approximations, relying only on the simple mean M t, fail to account
for NTCB [3, 9]. In this work, we focus on the instantaneous pdf pt, which encodes more
information about lattice variables than M t. We now define an effective non-linear operator
which governs the dynamics of pt and accounts for the behavior observed in CMLs. A first
attempt towards such an effective description was proposed in [9], via the definition of a
“conditional mean-field approximation”. We first recall this approach. Applying operator S
to an infinite lattice, pt is transformed by PS , the Perron-Frobenius operator associated to the
local map:

pt+
1
2 (X) = PS [pt] ≡

∫
pt(Y )δ

(
X − S(Y )

)
dY .

When ∆ is then applied to Xt+ 1
2 , the resulting pdf pt+1 depends on the joint pdf of X

t+ 1
2

~r

and of the local mean field m
t+ 1

2

~r =
∑
~eX

t+ 1
2

~r+~e at intermediate times. Neglecting short-range
correlations leads to the usual mean-field approximations unable to account for NTCB [3, 9].
On the other hand, it is known that keeping only short-range correlations is often sufficient
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to account for the collective motion [10,11]. In [9], we proposed that the local mean field m~r

around a “typical” site with value X should be represented by a fluctuating variable m = m|X
correlated with X. This led us to write the local mean field at intermediate times as a sum
involving X and N effective uncorrelated variables X̃j distributed according to pt+

1
2 . In this

framework, physical space disappears and the coupling stage is replaced by a simple sum

Xt+1
i = (1−G)X

t+ 1
2

i +
G

N

N∑
j=1

X̃
t+ 1

2
j ,

where G is an effective coupling strength a priori different from 2dg. From the point of view
of the pdf pt+

1
2 , this amounts to apply the convolution operator DG,N , defined by

DG,N [ p ] (X) =
1

1−G

∫
p

(
X −GY

1−G

)
pN (Y ) dY ,

where pN is the distribution of the average of N independent variables distributed according
to p. The computation of pN is done via Fourier transform, p̂N (ξ) = (p̂(ξ/N))N , and can be
performed for any N ≥ 1, not necessarily integer. Parameters G and N can be shown [9] to
be related to correlations and fluctuations in the original CML via the relations

〈Xt+1Xt+ 1
2 〉c

〈X2〉
t+ 1

2
c

= 1−G and

〈
X2
〉t+1

c

〈X2〉t+
1
2

c

= (1−G)2 +
G2

N
, (2)

with 〈XY 〉c = 〈XY 〉−〈X〉〈Y 〉 and where 〈 . 〉 denotes the p-average. Indeed, the corresponding

quantities in the CML are correlations like 〈[∆( X )]~r X~r 〉
t+ 1

2
c ,. . .where the brackets indicate

the spatial average. Since ∆ is a linear operator, they are simple combinations of the
correlations at time t+ 1

2 in a typical neighborhood.
At this stage, the approximation cannot provide any description of the dynamics of the

correlations, and G and N were assumed in [9], to be stationary with numerical values chosen
somewhat arbitrarily, but in a range suggested by numerical estimates of the above-mentioned
correlations. Surprisingly, it accounted well for the shape and dynamics of pt observed in
CMLs, and this for a wide range of N and G, at least for not too high-period collective cycles.

We now go further, and present a new model without any free parameter which insures that
the large-period collective cycles observed when µ → µ∞ are better accounted for. To this
aim, we need to incorporate the dynamics of short-range correlations in the model. Their
dynamical evolution, for usual CMLs, leads to write hierarchical equations which cannot
be easily handled [11]. However, this dynamics takes a particularly simple form in the
continuous-space limit defined in [8]. We now present this limit in which most properties
of NTCB are preserved, and then proceed to the definition of a closed model for the dynamics
of the distribution pt coupled to the short-range correlations.

The continuous-space limit of CMLs is reached by applying the coupling operator an
increasing number of times per iteration, i.e. when considering CMLs of the form ∆m ◦
S. When m → ∞, ∆m converges to a diffusive operator with a Gaussian kernel, ∆∞ =
exp[1

2λ
2∇2]. Its coupling range λ =

√
2gm‖~e ‖ diverges with m but ‖~e ‖, the lattice spacing,

can be chosen to scale like 1/
√
m so as to keep λ constant. Operator ∆∞ is universal in the

sense that all ∆m converge to it provided ∆ satisfies very general constraints [8].
In space dimensions d = 2 and 3, ∆∞ ◦ S presents the same periodic behavior as usual

discrete-space CMLs. For example, the pdf pt for a two-dimensional lattice of coupled tent
maps in a fixed-point collective regime is displayed in fig. 1b for increasing values of m. Fast
convergence towards a well-defined m→∞ limit is observed, corresponding to a fixed point of
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operator ∆∞ ◦S. For d = 2 and 3, the bifurcation diagrams obtained at different m are hardly
distinguishable from those of fig. 1a, c, although the bifurcation points tend to be shifted to the
right as m increases. Moreover, CMLs ∆m ◦ S obey a renormalisation group equation which
shows that, in any dimension, the system near µ∞ is conjugate to another with a larger m [8].
Thus, a faithful model of this continuous limit will also be valid for usual discrete-space CMLs.

Consider the correlation function C(~x) = 〈X~r X~r+~x 〉c and its Fourier transform, the

structure function Ĉ(~k ) = |x̂~k |
2, where x̂~k is the spatial Fourier transform of the centered

field x~r = X~r −〈X~r 〉. In the continuous limit, the diffusive coupling operator insures that the
field X~r is continuous and smooth in space at all times: therefore, the correlation function is
Gaussian at short range (Porod’s law). We can thus write, neglecting long-range correlations,

C (~x ) =
〈
X2
〉
c

exp

[
−
x2

2Λ2

]
and Ĉ(~k ) =

〈
X2
〉
c

(
Λ
√

2π
)d

exp

[
−

Λ2

2
k2

]
, (3)

with
〈
X2
〉
c

the variance of p and Λ the coherence length of the field. The spatial order
induced by the coupling is thus completely encoded by Λ, while the distribution pt, an
infinite-dimensional object, potentially bears all the complexity of the observed NTCB.

Next, we define an effective coupled dynamics for the system (pt,Λt). When the local map
is applied, pt is transformed by the Perron-Frobenius operator PS . The coherence length
decreases because of the divergence of nearby trajectories induced by the local chaos. The
evolution of pt during the coupling stage requires to evaluate the instantaneous parameters
G and N , which in turn are related to short-range correlations at times t + 1

2 and t + 1
via relation (2). The effect of the coupling on Λ is straightforward and permits to estimate

these parameters: applying ∆∞ in Fourier space, the structure function verifies Ĉt+1(~k ) =

exp
[
−λ2k2

]
Ĉt+

1
2 (~k ). The coupling operator respects the Gaussian form (3) and simply

increases Λ2 by a constant term: (Λt+1)2 = (Λt+
1
2 )2 + 2λ2. Moreover, identifying the

prefactors yields a relation which fixes the dynamics of the variance
〈
X2
〉
c

under the coupling

operator. The direct calculation of the correlation 〈Xt+1
~r X

t+ 1
2

~r 〉c provides a similar equation.
Finally, we have

〈Xt+1
~r X

t+ 1
2

~r 〉c

〈X2〉
t+ 1

2
c

=

(
1 +

λ2

(Λt+
1
2 )2

)− d2
and

〈X2〉t+1
c

〈X2〉
t+ 1

2
c

=

(
1 +

2λ2

(Λt+
1
2 )2

)− d2
. (4)

These relations determine the effective parameters G(Λ/λ) and N(Λ/λ) of the convolution
operator of the approximation: DG,N ≡ DΛ/λ.

We now have to estimate how the coherence length is changed when S is applied to the
continuous field X~r . For this purpose, the correlation function is written

C(~x ) = 〈X2〉c

(
1−

1

2

〈(X~r+~x −X~r )
2〉

〈X2〉c

)
to explicitly introduce the difference X~r+~x −X~r . Applying S to Xt

~r , it comes, for small ~x:〈
(X~r+~x −X~r )2

〉t+ 1
2

'
〈

(S′(X~r ))
2

(X~r+~x −X~r )2
〉t

= µ2
〈

(X~r+~x −X~r )2
〉t

,

since, for the tent map, S′(X) = ±µ everywhere. Finally, expanding C(~x ) as C(~x ) '

〈X2〉c(1−
1
2
~x 2

Λ2 ) near ~x = ~0 yields, for the coherence length,

Λt+
1
2

Λt
'

1

µ

√
〈X2〉

t+ 1
2

c

〈X2〉tc
=

1

µ

√
〈S(X)2〉tc
〈X2〉tc

≡ D(pt) . (5)
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Fig. 2. – Comparison of the model with the non-trivial collective behaviour in democratically coupled
tent maps of fig. 1. (a) Bifurcation diagram of the instantaneous spatial average M t in two dimensions
for the CML (m = 1, small circles) and for the model (large circles). (b) Asymptotic single-site pdf
p(X) in the stationary regime of ∆m ◦ S at µ = 2 and m = 32 (dashed line) compared with the
fixed-point regime obtained in the model (solid line). (c) Bifurcation diagrams for d = 3.

This relation couples the dynamics of Λt with pt. Coefficient D(pt) ≤ 1 opposes the divergence
of nearby trajectories, measured by µ, to the overall dilatation of the pdf pt, measured by the
ratio of standard deviations (1). The effective dynamics of p and Λ is now fully defined by

pt+1 = D
Λt+

1
2 /λ
◦ PS

(
pt
)
, with Λt+

1
2 = D(pt) Λt and Λt+1 = Λt+

1
2 + 2λ2 .

This model for the collective behavior of coupled tent maps in the continuous limit is self-
consistent, without free parameters. Operator DΛ/λ is one of the simplest which respects
relations (4), and it is worth noting that the space dimension d comes in only through these
expressions. Like in the original system, changing λ amounts to dilate Λ and has no influence
on p. The dynamics of Λt is particularly simple, and it is immediate to check that it is stable
for any periodic motion of pt (the reverse is, of course, not true). Our model also satisfies a
renormalisation group relation similar to that of the original system [8], which guarantees that
it displays self-similarity and an infinite subharmonic cascade of global bifurcations.

We studied the dynamics of the model by direct numerical simulations. All initial pdfs
tried led, at given parameter values, to the same asymptotic behavior. Figure 2 displays the
bifurcation diagram of the averageM t in the model and the original, m = 1 CML in dimension
d = 2 and 3. For d = 2, the whole bifurcation diagram is reproduced although the bifurcation
points are slightly shifted to the right. The bifurcations seem to be discontinuous, although
the hysteresis loops are very small (of the order of 10−2). We are currently investigating
whether the subcritical character of the bifurcations is a numerical effect of the method used
for implementing pdf dynamics. The shapes of the pdfs obtained in the model compare
fairly well to those measured in CMLs; they display the same asymmetry and inflexion points
(fig. 2b). For d = 3, the model accounts for periodic behavior and also for the shift of the
transition points to higher µ values. However, a window of quasi-periodic behavior of pt is
observed, which does not seem to be observed in the continuous limit (it is not observed for
discrete CMLs with m = 2, 3, 4).

(1) Note, in particular, that when the support of the pdf pt lies on an interval which does not
contain X = 0 (which is the case at every other timestep when the local map has two bands), the
local map is linear, D(pt) = 1, and Λ is unchanged; on the contrary, D(pt) < 1 when the pdf pt

crosses the inversion/folding point X = 0, i.e., when the chaotic map “destructurates” the spatial
organization induced by the coupling.
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Altogether, these results are of slightly lower quality than those obtained within the condi-
tional mean-field approximation when the free parameters N and G were chosen optimally [9].
Nevertheless, the present approximation is far more powerful: in addition to being free of any
arbitrary parameter, it accounts well for the high-period cycles observed near µ∞ in any space
dimension.

In higher space dimensions, the model often presents chaotic macroscopic behavior. Unfor-
tunately, we are unable, at this stage, to compare with the NTCB exhibited by the original
CMLs in their continuous limit because this requires very large calculations, possibly out of
reach of today’s most powerful computers.

The model has also been tested with other local maps than the tent map. Similar results are
obtained for piecewise linear maps with constant |S′| (which justifies (5)). But this relation
can also be used for more general maps, such as the logistic map, assuming that the field
difference X~r −X~r+~x depends only on ~x and is therefore independent of X~r . This also yields
qualitatively good agreement, reproduces the observed periodic behavior, but the bifurcation
points given by the model are shifted to higher µ values. Better quantitative agreement can
be expected from a more precise evaluation of coefficient D(pt).

Our work departs from standard mean-field approximations by the incorporation of fluc-
tuations of the local mean field and by taking into account, in the space-continuous limit of
CMLs, the dynamics of short-range correlations. For coupled tent maps, our approximation
leads to a parameter-free model in which the non-linear Perron-Frobenius operator dynamics
of the pdf pt is coupled to a single scalar variable. In so far as the continuous-space limit is
representative of the behavior of the original CMLs, the results obtained are qualitatively and
even quantitatively good. For other local maps, such as the logistic map, we expect equally
good results with a better treatment of the effect of the map on a pdf.

To our knowledge, this work constitutes the first macroscopic model for collective motion
displayed by spatially extended, chaotic, dynamical systems in the strong-coupling limit. We
hope it will trigger more rigorous, mathematical approaches, which have, so far, remained
largely confined to the weak-coupling limit [12].
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