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Phase Ordering and Onset of Collective Behavior in Chaotic Coupled Map Lattices
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The phase-ordering properties of lattices of band-chaotic maps coupled diffusively with some
coupling strengthg are studied in order to determine the limit valuege beyond which multistability
disappears and nontrivial collective behavior is observed. The persistence of equivalent discrete sp
variables and the characteristic length of the patterns observed scale algebraically with time durin
phase ordering. The associated exponents vary continuously withg but remain proportional to each
other, with a ratio close to that of the time-dependent Ginzburg-Landau equation. The correspondin
individual values seem to be recovered in the space-continuous limit. [S0031-9007(99)08390-8]
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One of the most remarkable features distinguishing
tensively chaotic dynamical systems from most mod
studied in out-of-equilibrium statistical physics is that th
generically exhibit nontrivial collective behavior (NTCB
i.e., long-range order emerging out of local chaos, acco
panied by the temporal evolution of spatially averag
quantities [1–3]. In particular, NTCB is easily observe
on simple models of reaction-diffusion systems such
coupled map lattices (CMLs) in which (chaotic) nonline
mapsS of real variablesX are coupled diffusively with
some coupling strengthg [3].

NTCB is often claimed to be amacroscopicattractor,
well-defined in the infinite-size limit and reached fo
almost every initial condition, provided the local couplin
between sites is “large enough.” On the other hand,
smallg values, such as those corresponding to the so-ca
“anti-integrable” limit which tries to extend zero-couplin
behavior to small, but finite coupling strengths, CML
often exhibit multistability [4]. This is, in particular, the
case if the local map shows banded chaos, because
interfaces separating clusters of sites in the different ba
can be pinned. This multistability is “extensive”: th
number of (chaotic) attractors may then be argued to gr
exponentially with the system size, in opposition to NTC
for which this number is small and size independent.

In this Letter, we define and measure the limit co
pling strengthge separating the strong-coupling regim
in which NTCB is observed from the weak-coupling, e
tensive multistability region. Using the discrete “spin
variables which can be defined whenever the one-b
probability distribution functions (pdfs) of local (continu
ous) variables have disjoint supports, we study numeric
the phase-ordering process following uncorrelated ini
conditions in cases where the spin variables take only
values. We find that the persistence probabilitypstd (i.e.,
the proportion of spins which have not changed sign up
time t) saturates in finite time to strictly positive values
the weak-coupling regime, whereas it decays algebraic
to zero wheng . ge. The associated persistence exp
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nentu varies continuously with parameters, at odds wi
traditional models [5]. Moreover, data obtained on variou
two-dimensional CMLs is best accounted for by a relatio
of the formu , sg 2 gedw , which we use to estimatege.
We show further that this behavior is mostly due to the no
trivial scaling of the characteristic lengthLstd , tf during
the phase-ordering process. Indeed,f fi

1
2 , the expected

value for a scalar, nonconserved order parameter [6], a
is found to be proportional tou, with the exponent ratio
fyu approximately taking the value known for the time
dependent Ginzburg-Landau equation (TDGLE). We al
provide evidence that, in the continuous-space limit, “no
mal” phase-ordering behavior is recovered. Finally, w
discuss the hierarchy of limit coupling valuesgn

e which can
be defined when the local map is unimodal and shows2n-
band chaos, using recent results on renormalization gro
(RG) ideas applied to CMLs [7].

Consider ad-dimensional hypercubic latticesL of cou-
pled identical mapsSm acting on real variablessX$r d$r[L :

Xt11
$r ­ s1 2 2dgdSmsXt

$r d 1 g
X

$e[V

SmsXt
$r1$ed , (1)

whereV is the set of2d nearest neighbors$e of site $0. We
first present results obtained for the piecewise linear, od
local mapSm defined by

SmsXd ­

8<: mX if X [ f21y3, 1y3g
2my3 2 mX if X [ f1y3, 1g
22my3 2 mX if X [ f21, 21y3g

, (2)

which leaves theI ­ f21, 1g interval invariant. (For
m ­ 3, this is the chaotic map introduced by Miller an
Huse [8].) Form [ f22, 21g, Sm displays banded chaos
while, for oppositem values, these bands become in
variant subintervals ofI. At m ­ 1.9, in particular,Sm

possesses two symmetric such intervalsI6 ­ f6ms2 2

mdy3, 6my3g, separated by a finite gap. For any value o
g, the support of the pdf ofX for the CML defined by (1)
and (2) can be separated into two components thanks to
© 1999 The American Physical Society
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symmetry of the map. This allows the unambiguous de
nition of spin variabless$r ­ signsX$r d. The deterministic
nature of the system and the form of the coupling strict
forbids the nucleation of opposite-phase droplets in clu
ters: the analog spin system is at zero temperature.

For large g values, complete phase ordering occu
(Figs. 1a and 1b), and the system eventually reache
regime in which all sites are situated in one of the tw
intervalsI6. For smallg, initial conditions with sites in
both intervalsI6 lead to spatially blocked configurations
where interfaces between clusters of each phase are stri
pinned, while chaos is present within clusters (Figs. 1
and 1d) [9].

To study the phase-ordering process efficiently, uncorr
lated initial conditions were generated as follows: exact
one half of the sites of ad ­ 2 lattice were chosen at ran-
dom and assigned positiveX values drawn according to
the invariant distribution ofSm on I1, while the other sites
were similarly assigned negative values. Large lattic
with periodic boundary conditions were used, and the pe
sistencepstd was measured. Figure 2a shows the resu
of single runs for various values ofg. For smallg, pstd
saturates at large times to strictly positive values, while
decays algebraically, for largeg, on square lattices of lin-
ear size 2048 sites. The associated persistence exponeu

varies continuously withg, and itsg dependence is nicely
accounted for by a functional formu , sg 2 gedw with
ge . 0.169s1d and w . 0.20s3d (Fig. 2b). We have, at
this point, no theoretical justification of this fitting Ansatz

FIG. 1. Snapshots of thed ­ 2 CML with local map (2).
Lattice of 1282 sites, grey scale fromX ­ 21 (white) to
X ­ 1 (black), uncorrelated initial conditions. (a),(b): Tran
sient leading to complete ordering atg ­ 0.2 . ge, t ­ 100
and 1000; (c),(d): blocked state atg ­ 0.15 , ge, t ­ 1000
and 2000.
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At any rate, it provides an operational definition ofge
yielding estimates consistent with those obtained us
other, less accurate, methods [10].

The origin of this unusual behavior of the persisten
exponent is largely explained by the evolution of the sp
tial structures formed during phase ordering. Usual
one expects the coarsening to be described by the a
braic growth of a single characteristic lengthLstd , tf

with f ­ 1y2 for a nonconserved, scalar order param
ter [6]. In the CML studied above, the two-point corre
lation functionCs $x, td ­ kst

$r1 $xs
t
$rl was measured during

phase ordering [11]. LengthLstd was then evaluated to
be the width at midheight [CsssLstd, tddd ­ 1y2], determined
by interpolation. This procedure was then validated by
collapse of allCsssjj $xjjyLstd, tddd curves. Surprisingly, while
the scaling behavior ofLstd is observed, exponentf de-
parts from the expected1y2 value and varies continu-
ously with g (Fig. 3). Again, we find a law of the form
f , sg 2 gedw to be an acceptable Ansatz of our numer
cal results. The estimated values ofge and w are con-
sistent, within numerical accuracy, with those found wh
fitting usgd. This is corroborated by studying directlypstd
vs Lstd (not shown), or by plottingu vs f which con-
firms that the two exponents are proportional to each ot
(Fig. 3d). Remarkably, the ratiouyf is found to have,
within our numerical accuracy, thed ­ 2 TDGLE value:
uyf . 0.40s2d . 2uGL . 0.40 [12]. (We cannot, how-
ever, completely exclude the values corresponding to
Ising model, or the diffusion equation, sinceuIsing . 0.22
[13], andudiff . 0.19 [12].)

The same analysis was also performed on CMLs with
nonsymmetric, unimodal, local mapSm of the form

SmsXd ­ 1 2 mjXj11´ with m [ f0, 2g , (3)

in particular, for ´ ­ 0 (tent map) and́ ­ 1 (logistic
map). Form [ fm`, 2g, this map shows2n-band chaos
and exhibits an inverse cascade of band-merging po

FIG. 2. Phase ordering in thed ­ 2 CML with local map (2)
at m ­ 1.9. (a) Algebraic decay of the persistence probabili
pstd for the following (from top to bottom):g ­ 0.16 (,ge:
saturates to a finite level), 0.17, 0.172, 0.174, 0.176, 0.
0.185, and 0.195. (b) Variation of persistence exponentu with
g; solid line: fitting Ansatzu , sg 2 gedw with ge ­ 0.169s1d
andw ­ 0.20s3d; inset: logsud vs logsg 2 ged.
1141



VOLUME 82, NUMBER 6 P H Y S I C A L R E V I E W L E T T E R S 8 FEBRUARY 1999

n

by
ds

om

it

ds,

xist
e”

-
at
to
lts,
G
en

-

FIG. 3. Same runs as in Fig. 2. (a) logsLd vs logstd (bottom
curve: g ­ 0.16, top curveg ­ 0.195); (b) usgd vs fsgd for
g values between 0.17 and 0.20; the solid line is the linear
u . 0.396f 2 0.002.

m̄n whenm ! m`. In the strong-coupling limit, the cor-
responding CMLs exhibit, depending ond, periodic or
quasiperiodic NTCB with a period equal to, or a multipl
of, that of the band chaos of the local map [3,7]. Ford ­ 2
and3, in particular, simple period-2n NTCB occurs, with
an infinite cascade of phase transition pointsmc

n distinct
from the band-merging points (Fig. 4a). When period
2 NTCB occurs in the two-band chaotic region of th
map (m [ fm̄2, m̄1g ø f1.43, 1.54g), two-state spin vari-
abless

t
$r [ h21, 1j can be defined, but the asymmetry o

the two bands hinders the generation of “effectively” un
correlated initial conditions. Indeed, an equal proportio
of sites in each band quickly leads to complete phase
dering and saturation ofpstd, even in the strong-coupling
regime. This happens because these initial conditions c
ate, after a few time steps, configurations with a fairly larg
unbalance between the two phases. Tuning the initial p
portionr of sites in, say, the band containingX ­ 0, one
can minimize such effects. We determined the optim
proportionrp defined as the value for which the magne
tization kst

$rl remains constant (Fig. 4b). Clean scalin
behavior ofLstd and pstd is then observed with reason-
able system sizes, as with the symmetric local map (2
Varying the coupling strengthg, exponentsf andu show
the same behavior as above, decreasing continuously
zero atge. Figure 4c shows the case of coupled logist
maps, for which the Ansatzu, f , sg 2 gedw is, again,
valid, although not as good as in the case of local m
(2). Note that the estimated valuew . 0.06s2d is differ-
ent from that measured for the CML with local map (2)
butuyf . 0.48s4d is still rather close to the TDGLE value
(Fig. 4d).

We now deal with the onset of more complex NTCB
such as the period-2n cycles mentioned above for which
the study of the phase ordering in terms of two-state sp
variables may not be legitimate.

Consider, for example, a CML with local mapSm de-
fined by (3) in a four-band chaotic regime (m [ fm̄3, m̄2g)
which exhibits period-4 NTCB. The “natural” spin vari-
1142
fit

e

-
e

f
-
n

or-

re-
e

ro-

al
-
g

).

to
ic

ap

,

in

FIG. 4. d ­ 2 lattice of coupled logistic maps forg ­ 0.2.
(a) Bifurcation diagram (kXt

$r l$r , large dots) superimposed o
that of a single logistic map (small dots). (b):kst

$r l$r vs r
plotted at 20 different time steps betweent ­ 500 and t ­
1000 for m

c
2 , m ­ 1.5 , m̄2. This “magnetization” remains

constant only forr ­ rp . 0.3465, whereas it reflects the
overall period-2 dynamics for all otherr values. (c)usgd at
m ­ 1.5 andr ­ rpsgd with a log-log fit (inset) (ge . 0.101,
w . 0.06). (d) usgd vs fsgd; the solid line is the linear fit
u . 0.40f 2 0.002.

ables to study phase ordering take four values, indexed
the four-band chaotic cycle. However, these four ban
can be grouped in two “metabands,” since they arise fr
a band splitting bifurcation at̄m2, so that two-state spin
variables can still be defined. Accordingly, two lim
coupling strengths can be defined:g1

e , marking the onset
of complete phase ordering between the two metaban
andg2

e for ordering from initial conditions within one of
the metabands.A priori, g2

e fi g1
e , and there might ex-

ist coupling strengths such that, e.g., pinned clusters e
within, but not between, the two metabands. The “tru
onset of period-4 NTCB is then given byg $ maxsg1

e, g2
ed.

Similarly, for m [ fm`, m̄ng, one can definen different
m-dependent limit coupling strengthsg1

e, g2
e, . . . , gn

e , with
n ! ` asm ! m`. Using our recent work on renormal
ization group arguments for CMLs [7], one can show th
the threshold values of this infinite hierarchy are related
each other. Here, we describe only briefly these resu
while a detailed derivation can be found in [7]. The R
structure of single map (3) induces the conjugacy betwe
sDm

g ± Smd2 and D2m
g ± Sqsmd, whereSm transforms each

variableX$r by Sm, Dm
g is the diffusive operator appliedm

times, andqsmd ­ m2 for coupled tent maps. This rela
tion can be shown to imply thatg2

esm, md ­ g1
efqsmd, 2mg.
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Furthermore, using the fact thatgn
e sm, md decreases with

m, one can prove that the maximumge for all n, m, and
m is gp

e ­ g1
esm̄1, 1d. Thus, wheneverg $ gp

e , complete
ordering occurs for all bands.

The above results are at odds with the behavior
usual models studied in phase-ordering problems [1
But, in both cases presented here, the exponent ratiouyf

seems to take the value expected for the TDGLE mod
This “weak universality” is reminiscent of similar result
found recently at the Ising-like critical points shown b
the same models [15]. We note, moreover, that, wh
g is increased,f approaches1y2 and u reaches values
close touGL. We believe that this tendency is most
due to the lattice effects becoming less and less impor
(although strict pinning does not occur forg . ge). We
have shown recently [7] that, in the continuous-space li
of CMLs, the weak-coupling regime disappears (ge ! 0),
together with any pinning effects. One can thus wond
whether, in this limit, one recovers more “conventiona
phase-ordering dynamics.

The continuous limit of CMLs such as those defined
(1) and (2) is reached when applying the coupling step
the dynamics more and more times per iteration, i.e., wh
taking them ! ` limit of Dm

g ± Sm. In this limit, Dm
g

converges to a universal Gaussian kernelD`
l ­ exps l2

2 =2d
with a coupling rangel ­

p
2gm k$ek wherek$ek is the

lattice spacing, which can thus be chosen to scale suc
1y

p
m so as to keepl constant. We investigated the phas

ordering properties of these CMLs with the symmet
local map (2) for increasing values ofm. At a qualitative
level, the scaling behavior ofLstd and pstd is observed
at all m values. Quantitatively, exponentsu andf vary
with m at fixedg. Increasingm, f seems to converge to
1y2, while u ! uGL: for m ­ 1 to 3, we findf ­ 0.467,
0.479, 0.505, andu ­ 0.174, 0.184, 0.196, from single
runs on lattices of linear size 4096 sites.

Our work provides a quantitative method for determi
ing the onset of NTCB in chaotic coupled map lattice
It also reveals that the phase-ordering properties of m
tiphase, chaotic CMLs are different from those of mo
models studied traditionally. More work is needed, esp
cially at the analytical level, to clarify the origin of th
nonuniversality observed and put our numerical results
firmer ground, since we cannot completely exclude a v
slow, unobservable, crossover of the scaling behavior
served to that of a more traditional model. Different a
proaches can be suggested.

A continuous variation of the scaling exponentf for the
characteristic length of domains is not usually observ
but (at least) two exceptions are known. One is the cas
coarsening from initial conditions with built-in long-rang
correlations [16], but then the persistence probabilitypstd
doesnot decrease algebraically with time [17]. Anothe
situation of possible relevance is the case of phase or
of
4].
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ing with an order-parameter-dependent mobility [18], fo
which, unfortunately, the behavior of the persistence is n
known. At any rate, the recovery of the “normal” scal-
ing properties of the TDGLE in the space-continuous lim
suggests that lattice effects are ultimately responsible f
the nontrivial scaling properties recorded in discrete sy
tems. This calls for a detailed study of interface dynamic
in order to assess the effective role of discretization an
anisotropy.

Finally, we believe our results are general and tha
similar behavior should be found in experiments on phas
ordering of pattern-forming systems, such as, e.g., electr
hydrodynamical convection in liquid crystals, or Rayleigh
Bénard convection [19].

We thank Ivan Dornic for many fruitful discussions and
his keen interest in our work.

[1] H. Chaté, Int. J. Mod. Phys. B12, 299 (1998).
[2] J. A. C. Gallas et al., Physica (Amsterdam)180A, 19

(1992); J. Hemmingsson, Physica (Amsterdam)183A, 255
(1992); H. Chaté and P. Manneville, Europhys. Lett.14,
409 (1991); H. Chaté, G. Grinstein, and L.-H. Tang, Phys
Rev. Lett.74, 912 (1995).

[3] H. Chaté and P. Manneville, Prog. Theor. Phys.87, 1
(1992); Europhys. Lett.17, 291 (1992); H. Chaté and
J. Losson, Physica (Amsterdam)103D, 51 (1997).

[4] R. S. MacKay and T. A. Sépulchre, Physica (Amsterdam
82D, 243 (1995); T. A. Sépulchre and R. S. MacKay, Non
linearity 10, 679 (1997); S. Aubry, Physica (Amsterdam)
103D, 201 (1997).

[5] See, e.g., I. Dornic and C. Godrèche, J. Phys. A31, 5413
(1998), and references therein.

[6] P. C. Hohenberg and B. I. Halperin, Rev. Mod. Phys.49,
436 (1977).

[7] A. Lemaı̂tre and H. Chaté, Phys. Rev. Lett.80, 5528
(1998); (to be published).

[8] J. Miller and D. A. Huse, Phys. Rev. E48, 2528 (1993).
[9] In CMLs, pinning can be strict (the “effective noise”

arising from local chaos is bounded). It islocal, and thus
no finite-size effect is observed for large enough system

[10] A. Lemaı̂tre, Ph.D. thesis, Ecole Polytechnique, 1998.
[11] The same analysis was also performed using the contin

ous variablesX$r , yielding similar, albeit noisier, results.
[12] S. Cueille and C. Sire, cond-mat/9803014; S. H. Corne

(private communication).
[13] D. Stauffer, J. Phys. A27, 5029 (1994).
[14] A. J. Bray, Adv. Phys.43, 357 (1994).
[15] P. Marcq, H. Chaté, and P. Manneville, Phys. Rev. Let

77, 4003 (1996); Phys. Rev. E55, 2606 (1997).
[16] B. Derrida, C. Godrèche, and I. Yekutieli, Phys. Rev. A

44, 6241 (1991).
[17] H. Nakanishi, H. Chaté, and I. Dornic (unpublished).
[18] C. L. Emmott and A. J. Bray, cond-mat/9808308.
[19] M. C. Cross and D. I. Meiron, Phys. Rev. Lett.75, 2152

(1995).
1143


