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Phase Ordering and Onset of Collective Behavior in Chaotic Coupled Map Lattices
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The phase-ordering properties of lattices of band-chaotic maps coupled diffusively with some
coupling strengthg are studied in order to determine the limit valge beyond which multistability
disappears and nontrivial collective behavior is observed. The persistence of equivalent discrete spin
variables and the characteristic length of the patterns observed scale algebraically with time during
phase ordering. The associated exponents vary continuouslygwhilit remain proportional to each
other, with a ratio close to that of the time-dependent Ginzburg-Landau equation. The corresponding
individual values seem to be recovered in the space-continuous limit. [S0031-9007(99)08390-8]

PACS numbers: 05.45.Ra, 05.50.+q, 05.70.Ln

One of the most remarkable features distinguishing exnent# varies continuously with parameters, at odds with
tensively chaotic dynamical systems from most modeldraditional models [5]. Moreover, data obtained on various
studied in out-of-equilibrium statistical physics is that theytwo-dimensional CMLs is best accounted for by a relation
generically exhibit nontrivial collective behavior (NTCB), of the formé# ~ (g — g¢)*, which we use to estimatg. .

i.e., long-range order emerging out of local chaos, accomwe show further that this behavior is mostly due to the non-
panied by the temporal evolution of spatially averagedrivial scaling of the characteristic lengit{r) ~ ¢ during
quantities [1-3]. In particular, NTCB is easily observedthe phase-ordering process. Indeg¢d# % the expected

on simple models of reaction-diffusion systems such asalue for a scalar, nonconserved order parameter [6], and
coupled map lattices (CMLs) in which (chaotic) nonlinearis found to be proportional t@, with the exponent ratio
mapsS of real variablesX are coupled diffusively with ¢ /6 approximately taking the value known for the time-
some coupling strengtf [3]. dependent Ginzburg-Landau equation (TDGLE). We also

NTCB is often claimed to be anacroscopicattractor, provide evidence that, in the continuous-space limit, “nor-
well-defined in the infinite-size limit and reached for mal” phase-ordering behavior is recovered. Finally, we
almost every initial condition, provided the local coupling discuss the hierarchy of limit coupling valugswhich can
between sites is “large enough.” On the other hand, fobe defined when the local map is unimodal and sh2iwvs
smallg values, such as those corresponding to the so-callesand chaos, using recent results on renormalization group
“anti-integrable” limit which tries to extend zero-coupling (RG) ideas applied to CMLs [7].
behavior to small, but finite coupling strengths, CMLs Consider a/-dimensional hypercubic lattice§ of cou-
often exhibit multistability [4]. This is, in particular, the pled identical maps,, acting on real variable&; )< r
case if the local map shows banded chaos, because the
interfaces_separating_cluster_s of s_i_tes_inthe diffgrent bands X§+1 = (1 — 2dg)S, (X)) + ¢ Z S.(X:2), (@
can be pinned. This multistability is “extensive”: the eV
number of (chaotic) attractors may then be argued to grow _ . R s
exponentially with the system size, in opposition to NTCB"_"herev is the set oRd nearest neighboisof site0. We
for which this number is small and size independent. first present resglts obtained for the piecewise linear, odd,

In this Letter, we define and measure the limit cou-local maps,, defined by
pling _strengthge_ separating the strong-coupling _regime uX it X €[—1/3,1/3]
in wh|ch NTC_IB is _observ_ed from .the weak_—coupllng, ex- S,(X) =1 2u/3 — ux it X €[1/3,1] . @
tensive multistability region. Using the discrete “spin” —2u/3 — uX if X €[-1,-1/3]
variables which can be defined whenever the one-body ’
probability distribution functions (pdfs) of local (continu- which leaves thel = [—1,1] interval invariant. (For
ous) variables have disjoint supports, we study numericallyx = 3, this is the chaotic map introduced by Miller and
the phase-ordering process following uncorrelated initiaHuse [8].) Foru € [—2, —1], S, displays banded chaos,
conditions in cases where the spin variables take only twavhile, for oppositeu values, these bands become in-
values. We find that the persistence probabitity) (i.e.,  variant subintervals of. At u = 1.9, in particular,S,
the proportion of spins which have not changed sign up tpossesses two symmetric such intervais= [+ u(2 —
time r) saturates in finite time to strictly positive values in w)/3, = /3], separated by a finite gap. For any value of
the weak-coupling regime, whereas it decays algebraically, the support of the pdf oX for the CML defined by (1)
to zero wheng > g.. The associated persistence expo-and (2) can be separated into two components thanks to the
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symmetry of the map. This allows the unambiguous defiAt any rate, it provides an operational definition gof
nition of spin variablesr; = sign(X;). The deterministic yielding estimates consistent with those obtained using
nature of the system and the form of the coupling strictlyother, less accurate, methods [10].
forbids the nucleation of opposite-phase droplets in clus- The origin of this unusual behavior of the persistence
ters: the analog spin system is at zero temperature. exponent is largely explained by the evolution of the spa-

For large g values, complete phase ordering occurstial structures formed during phase ordering. Usually,
(Figs. 1a and 1b), and the system eventually reaches @ne expects the coarsening to be described by the alge-
regime in which all sites are situated in one of the twobraic growth of a single characteristic lengtltr) ~
intervals/=. For smallg, initial conditions with sites in with ¢ = 1/2 for a nonconserved, scalar order parame-
both intervals/ = lead to spatially blocked configurations ter [6]. In the CML studied above, the two-point corre-
where interfaces between clusters of each phase are strictgtion functionC(x,¢) = {o*,;o+) was measured during
pinned, while chaos is present within clusters (Figs. 1ghase ordering [11]. Length(z) was then evaluated to
and 1d) [9]. be the width at midheightJ(L(z),t) = 1/2], determined

To study the phase-ordering process efficiently, uncorreby interpolation. This procedure was then validated by a
lated initial conditions were generated as follows: exactlycollapse of allC(||x||/L(z), ) curves. Surprisingly, while
one half of the sites of & = 2 lattice were chosen at ran- the scaling behavior of(z) is observed, exponert de-
dom and assigned positive values drawn according to parts from the expected/2 value and varies continu-
the invariant distribution of , on7*, while the other sites ously with ¢ (Fig. 3). Again, we find a law of the form
were similarly assigned negative values. Large latticegh ~ (g — g.)" to be an acceptable Ansatz of our numeri-
with periodic boundary conditions were used, and the pereal results. The estimated values gf andw are con-
sistencep(r) was measured. Figure 2a shows the resultsistent, within numerical accuracy, with those found when
of single runs for various values gf For smallg, p(r)  fitting #(g). This is corroborated by studying direcii(r)
saturates at large times to strictly positive values, while ivs L(¢) (not shown), or by plottingg vs ¢ which con-
decays algebraically, for large on square lattices of lin- firms that the two exponents are proportional to each other
ear size 2048 sites. The associated persistence expdnentFig. 3d). Remarkably, the ratié/¢ is found to have,
varies continuously witly, and itsg dependence is nicely within our numerical accuracy, the = 2 TDGLE value:
accounted for by a functional formd ~ (g — g.)” with  6/¢ = 0.40(2) = 26 = 0.40 [12]. (We cannot, how-
ge = 0.169(1) and w = 0.20(3) (Fig. 2b). We have, at ever, completely exclude the values corresponding to the
this point, no theoretical justification of this fitting Ansatz. Ising model, or the diffusion equation, sin@g;,, = 0.22
[13], andfgier = 0.19 [12].)

The same analysis was also performed on CMLs with a
nonsymmetric, unimodal, local m&f, of the form

S,(X) =1— wplx|"** with x €[0,2], (3)
in particular, fore = 0 (tent map) ande = 1 (logistic

map). Foru € [u«,2], this map showg"-band chaos
and exhibits an inverse cascade of band-merging points
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FIG. 2. Phase ordering in the = 2 CML with local map (2)
FIG. 1. Snapshots of the = 2 CML with local map (2). atu = 1.9. (a) Algebraic decay of the persistence probability
Lattice of 1282 sites, grey scale fromk = —1 (white) to  p(¢) for the following (from top to bottom)g = 0.16 (<g.:
X =1 (black), uncorrelated initial conditions. (a),(b): Tran- saturates to a finite level), 0.17, 0.172, 0.174, 0.176, 0.18,
sient leading to complete ordering at= 0.2 > g., t = 100 0.185, and 0.195. (b) Variation of persistence expomewith
and 1000; (c),(d): blocked state at= 0.15 < g., t = 1000 g; solid line: fitting Ansatzd ~ (g — g.)" with g. = 0.169(1)
and 2000. andw = 0.20(3); inset: log#) vs logg — g.).
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FIG. 3. Same runs as in Fig. 2. (a) lag vs logr) (bottom 019
curve: g = 0.16, top curveg = 0.195); (b) 0(g) vs ¢(g) for

g values between 0.17 and 0.20; the solid line is the linear fit
6 = 0.396¢ — 0.002.
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and3, in particular, simple perio@” NTCB occurs, with FIG. 4. d — 2 lattice of coupled logistic maps fog — 0.2,

an infinite cascade qf phas_e tran§|t|on poipts d|st|nct' (a) Bifurcation diagram (&')s, large dots) superimposed on
from the band-m_erglng points (Fig. 43)-_ th—:-n period-that of a single logistic map (small dots). (bri): vs p
2 NTCB occurs in the two-band chaotic region of theplotted at 20 different time steps betweer= 500 and ¢ =
map w € [, it1] = [1.43,1.54]), two-state spin vari- 1000 for us < u =15 < . This “magnetiza_ltion” remains
ableso!: € {—1,1} can be defined, but the asymmetry of constant only forp = p* = 0.3465, whereas it reflects the
the two bands hinders the generation of “effectively” un-°Verall period-2 dynamics for all other values. (c)o(s) at
L -, . w=15andp = p*(g) with a log-log fit (inset) ¢. = 0.101,
correlated initial conditions. Indeed, an equal proportion,, ~ (06). (d) 6(g) vs ¢(g); the solid line is the linear fit
of sites in each band quickly leads to complete phase o® = 0.40¢ — 0.002.

dering and saturation gf(z), even in the strong-coupling
regime. This happens because these initial conditions cre-
ate, after a few time steps, configurations with a fairly largeables to study phase ordering take four values, indexed by
unbalance between the two phases. Tuning the initial prathe four-band chaotic cycle. However, these four bands
portion p of sites in, say, the band containidg= 0, one  can be grouped in two “metabands,” since they arise from
can minimize such effects. We determined the optimaR band splitting bifurcation afi,, so that two-state spin
proportionp* defined as the value for which the magne-variables can still be defined. Accordingly, two limit
tization (o'.) remains constant (Fig. 4b). Clean scalingcoupling strengths can be defineg, marking the onset
behavior ofL(r) and p(¢) is then observed with reason- of complete phase ordering between the two metabands,
able system sizes, as with the symmetric local map (2)and g? for ordering from initial conditions within one of
Varying the coupling strength, exponentsp andg show the metabands.A priori, g2 # g!, and there might ex-
the same behavior as above, decreasing continuously it coupling strengths such that, e.g., pinned clusters exist
zero atg.. Figure 4c shows the case of coupled logisticwithin, but not between, the two metabands. The “true”
maps, for which the Ansatd, ¢ ~ (g — g.)" is, again, onset of period-4 NTCB is then given gy= maxg/, g2).
valid, although not as good as in the case of local magimilarly, for u € [ue, t,], one can define: different
(2). Note that the estimated value = 0.06(2) is differ-  u-dependent limit coupling strengths, g2,..., g2, with
ent from that measured for the CML with local map (2),n — ® asu — u«. Using our recent work on renormal-
butd/¢ = 0.48(4) is still rather close to the TDGLE value ization group arguments for CMLs [7], one can show that
(Fig. 4d). the threshold values of this infinite hierarchy are related to
We now deal with the onset of more complex NTCB each other. Here, we describe only briefly these results,
such as the perio? cycles mentioned above for which while a detailed derivation can be found in [7]. The RG
the study of the phase ordering in terms of two-state spistructure of single map (3) induces the conjugacy between
variables may not be legitimate. (A7 ©S,)* andA3" o S,(,), whereS,, transforms each
Consider, for example, a CML with local maf), de- variableX; by S,,, AY is the diffusive operator applied
fined by (3) in a four-band chaotic regimg € [t3, 2])  times, andg(w) = w? for coupled tent maps. This rela-
which exhibits period-4 NTCB. The “natural” spin vari- tion can be shown to imply th@f(u, m) = gllq(r), 2m].
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Furthermore, using the fact thaf (v, m) decreases with ing with an order-parameter-dependent mobility [18], for
m, one can prove that the maximugg for all n, w, and  which, unfortunately, the behavior of the persistence is not
mis gf = gl(@1,1). Thus, whenevep = g, complete known. At any rate, the recovery of the “normal” scal-
ordering occurs for all bands. ing properties of the TDGLE in the space-continuous limit
The above results are at odds with the behavior okuggests that lattice effects are ultimately responsible for
usual models studied in phase-ordering problems [14]the nontrivial scaling properties recorded in discrete sys-
But, in both cases presented here, the exponentfdigo  tems. This calls for a detailed study of interface dynamics
seems to take the value expected for the TDGLE modein order to assess the effective role of discretization and
This “weak universality” is reminiscent of similar results anisotropy.
found recently at the Ising-like critical points shown by Finally, we believe our results are general and that
the same models [15]. We note, moreover, that, whesimilar behavior should be found in experiments on phase
g is increasedg approached /2 and 6 reaches values ordering of pattern-forming systems, such as, e.g., electro-
close tofgL. We believe that this tendency is mostly hydrodynamical convection in liquid crystals, or Rayleigh-
due to the lattice effects becoming less and less importai@énard convection [19].
(although strict pinning does not occur fgr> g.). We We thank Ivan Dornic for many fruitful discussions and
have shown recently [7] that, in the continuous-space limihis keen interest in our work.
of CMLs, the weak-coupling regime disappeags  0),
together with any pinning effects. One can thus wonder
whether, in this limit, one recovers more “conventional”
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