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A nonperturbative renormalization group is derived for chaotic coupled map lattices (CMLs) wit
diffusive coupling, leading to a natural space-continuous limit of these systems. We show that, un
very general conditions, the universal properties of the local map are translated to the spatiotemp
level, demonstrating the self-similarity of the bifurcation diagrams of strongly coupled CMLs and th
accompanying divergence of length scales. [S0031-9007(98)06460-6]
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The use of renormalization group (RG) ideas to unve
the universal features of the cascades of bifurcatio
of nonlinear dynamical systems with few degrees
freedom has played a major role in our understanding
(temporally) chaotic systems [1]. Simple maps of the re
interval such as the logistic map have been the models
choice on which most theoretical advances were made [
4]. No similarly general framework is available, howeve
for spatiotemporal chaoswhen the basic equations canno
be legitimately reduced to the interaction of a few mode
This holds even for simple models such as coupl
map lattices (CMLs), i.e., discrete-time discrete-spa
dynamical systems in which maps, arranged at the no
of a lattice, interact locally [5]. Literature dealing with
the question of the extension of single-map RG to CML
does exist [6], but it is restricted to perturbative treatmen
around the accumulation points of bifurcation cascad
of the local map. Moreover, it usually considers th
small coupling limit and small deviations from spatially
homogeneous solutions in one or two space dimensio
One notable exception is the numerical work of van d
Water and Bohr [7], who showed numerically that man
quantities of interest do exhibit scaling properties relat
to those of the local map, even for rather large values
the coupling.

In this Letter, we introduce a nonperturbative reno
malization group approach to CMLs with linear diffusive
coupling which translates to the spatiotemporal level t
universal features of the local maps involved. We sho
that, under broad conditions, the bifurcation diagrams
CMLs present the same self-similarity as that of their loc
maps, with the same coupling-independent accumulat
point, around which length scales diverge with a unive
sal scaling related to the diffusive coupling. Our wor
also leads to a definition of a “natural” continuous-spa
limit for CMLs which can be seen as a good starting poi
for analytical approaches of spatiotemporal chaos. W
believe that these results are relevant to general reacti
diffusion systems. Our findings extend the scope of pr
vious studies [6,7]. They are valid in chaotic regimes, a
not restricted to the vicinity of accumulation points, an
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apply to large classes of solutions in all dimensions. Th
are demonstrated exactly for coupled tent maps, w
they are valid asymptotically for more general local fun
tions such as the logistic map.

For simplicity, we consider real variablesX lying at the
nodes of ad-dimensional hypercubic latticeL . They are
updated synchronously at discrete time steps by

Xt11 ­ Dg ± SmsXtd , (1)

whereXt ­ sXt
$rd$r[L represents the state of the lattice

time t, Sm transforms each variable by the local mapSm,
andDg is the diffusive coupling operator

fDgsXdg$r ­ s1 2 2dgdX$r 1 g
X

$e[V

X$r1$e , (2)

with g the coupling strength andV the set of the2d
nearest neighbors of site$0. Without loss of generality,
we consider the family of local maps

SmsXd ­ 1 2 mjXj11´

with m [ f0, 2g and ´ . 0 , (3)

which leave thef21, 1g interval invariant and, in particu
lar, the tent (́ ­ 0) and the logistic (́ ­ 1) maps.

We first present the collective behavior observed
strongly coupled, chaotic CMLs, and their self-simil
bifurcation diagrams, and then define the strong coup
limit to which our study is especially relevant.

In the “chaotic region” of the local map (m . m`

with m` ­ 1 for the tent map, andm` ­ 1.401 . . . for
the logistic map), and with the strong, “democratic
equal-weight couplingg ­ 1ys2d 1 1d, the CMLs de-
fined above are extensively chaotic (e.g., their Lyapun
dimension is proportional to their size). Almost all in
tial conditions flow to one of a few attractors which po
sess a well-defined infinite-size, infinite-time limit an
can be characterized by the evolution of spatial avera
The corresponding dynamics has been termed nontr
collective behavior (NTCB) [8] to emphasize the eme
gence of a macroscopic evolution in the presence of
croscopic chaos. Figure 1 shows the bifurcation diagr
© 1998 The American Physical Society
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FIG. 1. Democratically coupled (g ­ 0.2) tent (a) and logistic
(b) maps on ad ­ 2 lattice of linear sizeL ­ 2048 with
periodic boundary conditions: Bifurcation diagram ofMt ­
kXlt (filled circles) superimposed on that of the local mapSm

(small dots). Thefm`, m̄1g ≠ I1
m̄1

and fm`, m̄2g ≠ I2
m̄2

regions
are shown. For coupled tent maps, these regions transform
by the RG coincide with the bifurcation diagrams ofD2

g ± Sm

and D4
g ± Sm, themselves indistinguishable from the whol

figure. For the logistic maps, the agreement is poorer at su
orders due to the inexactness of the RG forSm.

of the simplest spatial average,Mt ; sXdt, for d ­ 2 lat-
tices of coupled tent and logistic maps. Decreasingm at
fixed g, periodic NTCB of period1, 2, 4, 8, . . . is observed.
These collective period-doubling bifurcations are, in fac
Ising-like phase transitions [9]. The instantaneous dist
butionptsXd of site values, smooth and well defined in th
infinite-size limit, follows the same collective behavio
Only periodic collective motion has been observed f
d ­ 2 and3 (Fig. 2b), while more complex NTCB (e.g.
quasiperiodic) exists ford . 3. The bifurcation dia-
gram ofMt is reminiscent of the self-similar band struc
ture of the local map, but the critical pointsmc

n of the
phase transitions differ from the band-splitting pointsm̄n

of Sm (Fig. 1). Approachingm`, however, it rapidly be-
comes numerically impossible to resolve the particu

FIG. 2. Asymptotic (larget) single-site distributionspt for
democratically coupled tent maps (d ­ 2, L ­ 2048). (a)
Stationary states atm ­ 2 for 1 # m # 32. For m . 1, the
distributions cannot be separated on this graph; they conve
to a universal distribution of the continuous limit. Inset: log-lo
plot of the distanceD2 ­

R
dX spm 2 p32d2 vs m. (b) Period-

2 collective cycle atm ­ m̄1 for m ­ 1; the distribution in the
rectangle (even time steps) is transformed exactly by the R
onto that form ­ 2 at m ­ 2 (a).
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NTCB observed, because prohibitively large lattices, a
well as an increasing numerical resolution, are then r
quired. If the periods observed are clearly rather large (
least eight in Fig. 1), the uniqueness of attractors nearm`

cannot be ascertained, and no evidence of an infinite ca
cade of phase transitions is available. The RG approa
below clarifies these points.

The NTCB described above is observed forg ­
1ys2d 1 1d. As a matter of fact, it can be observed for
all g values beyond a well-defined threshold, as argue
below. Consider a CML with a local mapSm in a
two-band chaos regime and the coarse-grained patte
formed by considering only in which band each site lie
at large, even, time steps. For weak (and zero) couplin
there exist “frozen” patterns of this type corresponding t
different chaotic attractors or ergodic components, ea
with a finite basin of attraction [10]. Recent work [11]
shows that there exists, at a givenm, a limit value
gesmd beyond which no frozen pattern exists (excluding
configurations whose basin of attraction is of the measu
of zero in phase space). It is in this strong-coupling limi
g $ gesmd that NTCB is observed. Generally,gesmd
decreases weakly withm [11], but, again, it is difficult
to estimate nearm`. On the other hand, it is convenient
to definegp

e ­ maxmfgesmdg, and to consider values ofg
abovegp

e . For thed ­ 2 lattices of tent and logistic maps
considered above,gp

e . 0.10 [11].
We now briefly review how RG is defined for single

maps, before considering the case of CMLs. For clarity
sake, we use the tent map, for which the RG can b
performed exactly. The invariant interval ofSm is I0

m ­
f1 2 m, 1g for all m # m̄0 ­ 2. The second iterate of
the map, restricted toI1

m, the “central” band (containing
X ­ 0) of the two-band region ofSm is written

S2
mjI1

m
­ h21

m ± SqsmdjI0
qsmd

± hm , (4)

with hmsXd ­ Xys1 2 md and qsmd ­ m2. Whenever
qsmd # m̄0, this relation may be interpreted in terms of
an equivalent variableX1 ­ hmsXd [ I0

qsmd governed by
the mapSqsmd. Therefore, for allm # m̄1 ­ q21sm̄0d—
here,m̄1 ­

p
2—the invariant intervals ofS2

m are I1
m ­

h21
m sI0

qsmdd and I10

m ­ SmsI1
md. Relation (4) is easily gen-

eralized to any iterate ofSm. It insures thatSm dis-
plays a self-similar cascade of band-splitting pointsm̄n,
below which regimes with more than2n bands are
observed. Whenn ! `, m̄n converges tom` and the in-
tervals shrink to zero with the so-called Feigenbaum co
stantsd anda depending only oń .

For more general maps (´ . 0), the RG equation (4)
holds for some functionq and some continuous bijec-
tion hm which cannot be derived exactly. Several ap
proximations can be made. For example, expandingS2

m

aroundX ­ 0 is the so-called one-parameter centered a
proximation of the RG. Higher-order, noncentered, mu
tiparameter approximations are also possible [4]. The
5529
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all provide estimates of the points̄mn, which converge
whenn ! ` toward an effective accumulation point with
Feigenbaum exponents close to the actual ones.

Let us now apply the same ideas to the CML define
above, and derive an expression for the second iter
sDg ± Smd2 of the evolution operator. Takem # m̄1 to
insure that the local map has at least two bands. LetI1

m

(I10

m) denote the set of lattice configurations for whic
all variablesX$r [ I1

m (I10

m ). Since Dg keeps all such
intervals invariant,I1

m and I10

m are not only exchanged
by the action ofSm, but also byDg ± Sm, and are thus
invariant under

°
Dg ± Sm

¢
2: they constitute generalized

bands in the phase space of the CML. For anym # m1,
the operator

°
Dg ± Sm

¢
2 restricted on the central bandI1

m

can thus be written°
Dg ± Sm

¢
2jI1

m
­ Dg ± SmjI10

m
± Dg ± SmjI1

m
.

We now consider again tent maps, while the gener
case will be discussed later. In this case,SmjI10

m
is linear,

since for all X [ I10

m , SmsXd ­ 1 2 mX. Therefore, it
commutes withDg and we have°

Dg ± Sm

¢
2jI1

m
­ D2

g ± S2
mjI1

m
. (5)

Using the RG equation (4) and the linearity of the operat
hm induced byhm on lattice configurations, we write°

Dg ± Sm

¢
2jI1

m
­ h21

m ± D2
g ± SqsmdjI0

qsmd
± hm .

This equation involves a CML in which the coupling op
erator is applied twice. It is easily extended to generaliz
CML of the formDm

g ± Sm where the coupling step is ap-
plied m times, yielding

sDm
g ± Smd2jI1

m
­ h21

m ± D2m
g ± Sqsmd ± hm , (6)

which constitutes a RG equation for CMLs in thesm, md
parameter space.

Whenm # m̄n, the local map has2n bands. If all the
sites are, for example, taken insideIn

m, the central band of
ordern, then they lie at all times in one of the2n bands.
In the following, we call this situation abanded state of
order n [12]. We can thus write, generalizing (5)

sDm
g ± Smd2n

jIn
m

­ D2nm
g ± S2n

m jIn
m

. (7)

This allows one to generalize (6) to banded states
ordern.

More general maps (´ . 0) are not linear onI10

m , but
they are invertible on this interval (the critical pointX ­
0 is in the other band). They can be approximated by
nonvanishing tangent and the calculations above can
repeated. For states of increasing periodicity (m # m̄n),
the restrictions ofSm on each of its2n bands but the
central bandIn

m ] 0, are better and better approximate
by tangents, since the diameters of these intervals shr
with increasingn. Finally, sincehm is generally linear,
5530
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Eq. (6) holds as an approximation of the RG for CMLs
exact for coupled tent maps.

RG equation (6) has been derived for the restrictio
of the evolution operator toI1

m and I10

m and for m # m̄1
(banded states of the order of 1).A priori, banded states
are only some of the many possible chaotic attractors
our CML for m . m`. Suppose, however, thatg $ gp

e
so that we are in the NTCB regime. If, furthermore
m # m̄1, almost all initial conditions eventually belong to
I1

m [13], and Eq. (6) can be applied once: for anym #

m̄1, the behavior of the original CML is equivalent to
that of D2

g ± Sm0 for m0 ­ qsmd # 2. Without studying
the collective behavior ofD2

g ± Sm0 itself, it is already
clear that if Dg ± Sm0 brings all sites into the same
band, a second application ofDg at each time step must
“synchronize” the sites even more:D2

g is a “stronger”
coupling thanDg. All generalized CMLs withm $ 1
are in the strong-coupling regime wheneverg $ gp

e . We
can write, symbolically:gp

esm 1 1d # gp
esmd. Therefore,

since m0 # m̄1 when m # m̄2, then D2
g ± Sm0 reaches

a banded state of the order of1, corresponding to a
banded state of the order of2 for Dg ± Sm. Iterating
this argument allows us to apply (6) recursively. This
implies that the strongly coupled CMLDg ± Sm reaches
a banded state of the order ofn from almost all initial
conditions wheneverm # m̄n. In particular, collective
cycles of an arbitrarily large period must be reached form

sufficiently close tom` andg $ gp
e. The actual collective

dynamics exhibited though, depends on the behavior
the generalized CMLDm

g ± Sm.
We have performed numerical simulations ofDm

g ± Sm

for increasingm, for d ­ 2 and 3 lattices of coupled tent
and logistic maps. In all cases, the asymptotic behavi
observed form . 1 is qualitatively the same as form ­
1 (Figs. 2a and 3a). Quantitative agreement is also ve
good, as one finds a fast convergence withm to a well-
defined limit (insets of Figs. 2a and 3a). An immediat

FIG. 3. (a) Same as Fig. 2 for coupled logistic maps. Th
convergence is to a nonuniversal distribution, because t
RG for Sm is not exact. (b) Central bandsIn

m̄n
of pt at

m ­ m̄n transformed by the RG forn ­ 0, 1, . . . , 5 (period-2n

NTCB). Convergence to a universal distribution representativ
of the continuous limit. Inset of (b): log-log plot ofD2 ­R

dX sp2n 2 p32d2 vs 2n.
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consequence of this observation is the qualitative ban
by-band self-similarity of the bifurcation diagram of thes
CMLs, parallel to that of their local mapSm. Quantitative
agreement improves rapidly with decreasingm, and is
already excellent at relatively small orders.

In fact, statistical properties of CMLs are not expecte
to depend strongly on the coupling operator, provide
it remains local [6]. It is a classic calculation to show
that Dm

g converges, for largem, to D`
l ­ exps l2

2 =2d,
a coupling operator with Gaussian weights wherel ­
2
p

gmk$ek is the typical coupling range withk$ek the lat-
tice mesh size (usually set to1). For an infinite lat-
tice, k$ek plays no role whilel determines the size of
the smallest structures. To be meaningful, the largem
limit must therefore be taken at fixedl ­ l0 and, con-
sequently,k$ek ! 0. This constitutes the correct continu-
ous limit of CMLs, i.e., a “field map” where the fieldX$r

with $r [ Rd evolves under the operatorD`
l0

± Sm. The
asymptotic state is then unique, sincel is the unit length,
and one can observe only the strong-coupling regime.
other words, limm!` gp

esmd ­ 0. In the continuous limit,
RG relation (6) reads

sD`
l0

± Smd2 ­ h21
m ± D`

l0

p
2 ± Sqsmd ± hm , (8)

which implies that length scales are renormalized by
factor of b ­

p
2, independently of the local map [14].

Space-independent quantities such aspt, on the other
hand, scale with the Feigenbaum constants of the l
cal map.

RG relation (8) is approximate only insofar as the RG
of Sm is approximate. It does not predict the behavior o
the continuous CML on the intervalfm̄1, m̄0g, but implies
that, whatever this behavior may be, it is reproduce
on intervals fm̄n11, m̄ng with an added2n periodicity
and a rescaling of lengths bybn. This proves that the
cascades of phase transitions are infinite and that ev
critical point mc

n observed infm̄n11, m̄ng has counterparts
in the higher-orderm intervals which converge with the
exponentd. Moreover, they must all share the sam
critical properties, since the characteristic divergence
the correlation length scales in the same way injm 2 mc

nj
for all n. Again, all the properties of the continuous limit
are, of course, only exact for tent maps; for more gener
maps, they are quantitatively valid in then ! ` limit, in
parallel to the status of the RG forSm itself.

RG relation (6) implies that all CMLsDm
g ± Sm con-

verge to their continuous limit asm ! m` and/orm !
`. The results derived above are expected to apply in th
limit, which, in practice, is reached very fast (Figs. 2 an
3). However, one can argue further that the critical prop
erties of the phase transition points, where the correlati
length diverges, are not expected to depend on the deta
of the coupling, and thus should all be the same forany
m andm. This is in agreement with the direct measure
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ment of the critical exponents for the first three perio
doubling phase transitions ofd ­ 2 lattices of coupled
logistic maps [9].

Some of the conclusions reached in the present w
are identical to those reached in [6], but they are neith
restricted to the weak coupling limit, nor to weakl
inhomogeneous solutions. They explain the numeric
observations of [7], where banded states were stud
at rather large coupling (g . 0.1) for d ­ 2 lattices of
logistic maps. We believe our work is also relevant
the globally coupled case and provides the framewo
for a rigorous RG approach of systems of coupled ma
Finally, we would like to suggest that the continuou
space limit defined above constitutes an interesting sys
by itself, perhaps more tractable than CMLs for studyin
NTCB and spatiotemporal chaos. Since thenge ­ 0, this
limit is not continuously related to the weak couplin
regimes. This may explain the difficulties encountere
when trying to extend weak coupling results to accou
for truly collective, strong-coupling behavior [15].
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