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Nonperturbative Renormalization Group for Chaotic Coupled Map Lattices
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A nonperturbative renormalization group is derived for chaotic coupled map lattices (CMLs) with
diffusive coupling, leading to a natural space-continuous limit of these systems. We show that, under
very general conditions, the universal properties of the local map are translated to the spatiotemporal
level, demonstrating the self-similarity of the bifurcation diagrams of strongly coupled CMLs and the
accompanying divergence of length scales. [S0031-9007(98)06460-6]
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The use of renormalization group (RG) ideas to unveilapply to large classes of solutions in all dimensions. They
the universal features of the cascades of bifurcationare demonstrated exactly for coupled tent maps, while
of nonlinear dynamical systems with few degrees ofthey are valid asymptotically for more general local func-
freedom has played a major role in our understanding ofions such as the logistic map.

(temporally) chaotic systems [1]. Simple maps of the real For simplicity, we consider real variabl&slying at the
interval such as the logistic map have been the models afodes of ai-dimensional hypercubic lattic€ . They are
choice on which most theoretical advances were made [2updated synchronously at discrete time steps by

4]. No similarly general framework is available, however, X = A, 08, (X") (1)

for spatiotemporal chaowhen the basic equations cannot 8 m ’
be legitimately reduced to the interaction of a few modeswhereX’ = (X%);c represents the state of the lattice at
This holds even for simple models such as coupledime, S, transforms each variable by the local mgp,
map lattices (CMLs), i.e., discrete-time discrete-spac@ndA, is the diffusive coupling operator

dynamical systems in which maps, arranged at the nodes

of a lattice, interact locally [5]. Literature dealing with [A,(X)] = (1 —2d9)X; + g D Xitz, (2)
the question of the extension of single-map RG to CMLs eV

does exist [6], but it is rgstrlctgd to pert_urbatlye treatment%th ¢ the coupling strength and/’ the set of the2d
around the accumulation points of bifurcation cascades . .= . X
of the local map. Moreover, it usually considers thenearest _nelghbors O.f si2 Without loss of generality,
small coupling limit and small deviations from spatially we consider the family of local maps

homogeneous solutions in one or two space dimensionsS, (X) = 1 — wlXx|tte

One notable exception is the numerical work of van de .

Water and Bohr [7], who showed numerically that many with p €[0,2] and &>0, (3)
guantities of interest do exhibit scaling properties relatedvhich leave thd —1, 1] interval invariant and, in particu-

to those of the local map, even for rather large values ofar, the tent £ = 0) and the logistic £ = 1) maps.

the coupling. We first present the collective behavior observed for

In this Letter, we introduce a nonperturbative renor-strongly coupled, chaotic CMLs, and their self-similar
malization group approach to CMLs with linear diffusive bifurcation diagrams, and then define the strong coupling
coupling which translates to the spatiotemporal level thdimit to which our study is especially relevant.
universal features of the local maps involved. We show In the “chaotic region” of the local mapu(>
that, under broad conditions, the bifurcation diagrams ofvith w.. = 1 for the tent map, angk.. = 1.401... for
CMLs present the same self-similarity as that of their localthe logistic map), and with the strong, “democratic,”
maps, with the same coupling-independent accumulatioaqual-weight couplingg = 1/(2d + 1), the CMLs de-
point, around which length scales diverge with a univerfined above are extensively chaotic (e.g., their Lyapunov
sal scaling related to the diffusive coupling. Our work dimension is proportional to their size). Almost all ini-
also leads to a definition of a “natural” continuous-spacdial conditions flow to one of a few attractors which pos-
limit for CMLs which can be seen as a good starting pointsess a well-defined infinite-size, infinite-time limit and
for analytical approaches of spatiotemporal chaos. Wean be characterized by the evolution of spatial averages.
believe that these results are relevant to general reactiofihe corresponding dynamics has been termed nontrivial
diffusion systems. Our findings extend the scope of preeollective behavior (NTCB) [8] to emphasize the emer-
vious studies [6,7]. They are valid in chaotic regimes, arggence of a macroscopic evolution in the presence of mi-
not restricted to the vicinity of accumulation points, andcroscopic chaos. Figure 1 shows the bifurcation diagram
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NTCB observed, because prohibitively large lattices, as
well as an increasing numerical resolution, are then re-
quired. If the periods observed are clearly rather large (at
least eight in Fig. 1), the uniqueness of attractors pear
cannot be ascertained, and no evidence of an infinite cas-
cade of phase transitions is available. The RG approach
below clarifies these points.

The NTCB described above is observed for=
o S : 1/(2d + 1). As a matter of fact, it can be observed for
L0 15 u 20 14 17 p 20 all g values beyond a well-defined threshold, as argued

below. Consider a CML with a local mag, in a

FIG. 1. Democratically couplecg(= 0.2) tent (a) and logistic  two-band chaos regime and the coarse-grained patterns

(b) maps on ad = 2 lattice of linear sizeL = 2048 with idar i i Ha i
periodic boundary conditions: Bifurcation diagram &f = formed by considering only in which band each site lies

(X)" (filled circles) superimposed on that of the local mgp at large, even, time steps. For weak (and zero) coupling,

(small dots). The ue, 1] ® I} and[u., a2] ® I2, regions there exist “frozen” patterns of this type corresponding to
are shown. For coupled tent maps, these regions transformetifferent chaotic attractors or ergodic components, each

by the RG coincide with the bifurcation diagrams &f S,  with a finite basin of attraction [10]. Recent work [11]
a}nd A‘; °S,, them_se_lves indistinguishable fr_om the whole shows that there exists, at a givem, a limit value
figure.” For the logistic maps, the agreement is poorer at SUCEe(M) beyond which no frozen pattern exists (excluding
orders due to the inexactness of the RG Sgr : . . L

configurations whose basin of attraction is of the measure

of zero in phase space). ltis in this strong-coupling limit
of the simplest spatial averaghl, = (X)’,ford = 2lat- g = g.(u) that NTCB is observed. Generallyg.(u)
tices of coupled tent and logistic maps. Decreagingt  decreases weakly witle [11], but, again, it is difficult
fixed g, periodic NTCB of period, 2,4, 8, ...is observed. to estimate neau... On the other hand, it is convenient
These collective period-doubling bifurcations are, in factto defineg; = max,[g.(x)], and to consider values @f
Ising-like phase transitions [9]. The instantaneous distriaboveg?. For thed = 2 lattices of tent and logistic maps
bution p’(X) of site values, smooth and well defined in the considered above;: = 0.10 [11].
infinite-size limit, follows the same collective behavior. We now briefly review how RG is defined for single
Only periodic collective motion has been observed formaps, before considering the case of CMLs. For clarity’s
d = 2 and3 (Fig. 2b), while more complex NTCB (e.g., sake, we use the tent map, for which the RG can be
quasiperiodic) exists fod > 3. The bifurcation dia- performed exactly. The invariant interval 8f, is 12 =
gram of M’ is reminiscent of the self-similar band struc- [1 — u, 1] for all u = @y = 2. The second iterate of
ture of the local map, but the critical poins; of the  the map, restricted té!, the “central” band (containing
phase transitions differ from the band-splitting poifts X = 0) of the two-band region af,, is written
of S, (Fig. 1). Approachingu., however, it rapidly be-

comes numerically impossible to resolve the particular S,ZL|1; =h,' o Squwlie,, © by, (4)
with #,(X) = X/(1 — u) and g(u) = u?. Whenever

@ ®) q(n) = o, this relation may be interpreted in terms of
¢ ey , ' ' an equivalent variabl&; = h,(X) € Ig(m governed by
P 17 21 the mapS, ). Therefore, for allu = a; = ¢~ (o) —

here, i, = v/2—the invariant intervals oSfL are I}L =
h;l(_lg(m) and’), = Su(I)). Relation (4) is easily gen-
eralized to any iterate of,. It insures thatS, dis-
plays a self-similar cascade of band-splitting poipts,
below which regimes with more thag” bands are
o m < b observed. When — o, &, converges tqu. and the in-

X tervals shrink to zero with the so-called Feigenbaum con-

FIG. 2. Asymptotic (larger) single-site distributionsp’ for ~ Stantsé anda depending only or. _
democratically coupled tent mapsi & 2, L = 2048). (a) For more general maps: (> 0), the RG equation (4)
Stationary states gt = 2 for 1 = m = 32. Form > 1, the holds for some functiony and some continuous bijec-
distributions cannot be separated on this graph; they converggon h, which cannot be derived exactly. Several ap-
to a universal distribution of the continuous limit. Inset: log-log proximations can be made. For example, expandif;lg

plot of the distanc®? = [dX (p,, — p3)* vsm. (b) Period- s
2 collective cycle ajw = @ for m = 1; the distribution in the aroundX = 0 is the so-called one-parameter centered ap-

rectangle (even time steps) is transformed exactly by the R@roximation of the RG. Higher-order, noncentered, mul-
onto that form = 2 at u = 2 (a). tiparameter approximations are also possible [4]. They
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all provide estimates of the poini{g,, which converge Eq. (6) holds as an approximation of the RG for CMLs
whenn — « toward an effective accumulation point with exact for coupled tent maps.
Feigenbaum exponents close to the actual ones. RG equation (6) has been derived for the restriction
Let us now apply the same ideas to the CML definecf the evolution operator td!, andI' and foru =
above, and derive an expression for the second iteraipanded states of the order of 1A priori, banded states
(Ag ©S,)? of the evolution operator. Take = i, to  are only some of the many possible chaotic attractors of
insure that the local map has at least two bands. II;Iet our CML for u > u.. Suppose, however, thgt= g
(I},) denote the set of lattice configurations for whichso that we are in the NTCB regime. If, furthermore,
all variablesX; € 1! (1,1:)- Since A, keeps all such # = p1, almost all initial conditions eventuf'sllly belong to
intervals invariant,I}L and I}L' are not only exchanged I_M [lt?]’ gng E_q. (6]2 Cﬁn b(_e gpr;llgi/”(_)n_ce. for_ a;llys
by the action ofS,, but also byA, o S,, and are thus "ﬁl' tfeAze awo; 0 t, S Or'g'ni _'ﬁ equwa:je_nt to
invariant under(A, o S,)% they constitute generalized N8t OfA% © Su for u' = ‘I(z'“) = 2. Without studying
bands in the phase space of the CML. For ang u,, the collective behavior oﬂg oS, itself, it is already

the operatofA,, o S,,)? restricted on the central barid, clear that if Ay oS,/ brings all sites into the same
can thus be written band, a second application &f, at each time step must

“synchronize” the sites even mor&?2 is a “stronger”

(Ag o SM)2|1L = A; oS,y oAy oS, coupling thanA,. All generalized CMLs withm = 1

) ] . are in the strong-coupling regime whenegek g.. We

We now consider again tent maps, while the generatan write, symbolicallyg’(m + 1) = g’(m). Therefore,
case will be discussed later. In this caSglyv is linear,  since u/ < &, when u = fi,, then A2 o S, reaches

since for allX € I}L', S,(X) =1— uX. Therefore, it a banded state of the order df corresponding to a

commutes withA, and we have banded state of the order @f for A, oS,. Iterating
5 5 5 this argument allows us to apply (6) recursively. This
(Ag ©8,) l, = A oSyl () implies that the strongly coupled CMA, o S, reaches

2l banded state of the order affrom almost all initial
conditions wheneveu = &,. In particular, collective
cycles of an arbitrarily large period must be reacheduor
(Ag 08, ) = h;l o Ai, o Sq(’u)llo( ohy,. sufficiently close tqu.. andg = gZ. The actual collective
. " dynamics exhibited though, depends on the behavior of
This equation involves a CML in which the coupling op- the generalized CMIAY o S,.
erator is applied twice. It is easily extended to generalized We have performed numerical simulations&f o S,
CML of the form A% o S, where the coupling step is ap- for increasingn, for d = 2 and 3 lattices of coupled tent
plied m times, yielding and logistic maps. In all cases, the asymptotic behavior
m 5 0 o observed form > 1 is qualitatively the same as far =
(AY ©Su) |1L =h, oA oSy ohy, (6) (Figs. 2a and 3a). Quantitative agreement is also very
good, as one finds a fast convergence witlto a well-
defined limit (insets of Figs. 2a and 3a). An immediate

Using the RG equation (4) and the linearity of the operato
h, induced by, on lattice configurations, we write

which constitutes a RG equation for CMLs in the, u)
parameter space.

Whenu = @, the local map hag” bands. If all the
sites are, for example, taken insiqg the central band of
ordern, then they lie at all times in one of ti#¥ bands. @ ®
In the following, we call this situation danded state of | )
ordern [12]. We can thus write, generalizing (5) P \ P . \

(A% 08, |, = A2 082y, . Y]
This allows one to generalize (6) to banded states of
ordern.

More general mapse(> 0) are not linear onl}L', but
they are invertible on this interval (the critical poikit= a o 1 a o
0 is in the other band). They can be approximated by a
nonvanishing tangent and the calculations above can B&G. 3. (a) Same as Fig. 2 for coupled logistic maps. The
repeated. For states of increasing periodiciy< f,), convergence is to a nonuniversal distribution, because the

H t
the restrictions ofS,, on each of its2” bands but the iGZ flc_zr fr% nISSfO?rOntegxbailCtthe(It:\)’)(}}(?gnm;al() tia”dgf%, (8;”{7) d-za"t
central band/;, S 0, are better and better approximated \rcg)’ Convergence to a universal distribution representative

by tangents, since the diameters of these intervals shrind¢ the continuous limit. Inset of (b): log-log plot ab? =
with increasingn. Finally, sinceh, is generally linear, [dX (p» — p3)?* vs2".
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consequence of this observation is the qualitative bandnent of the critical exponents for the first three period-
by-band self-similarity of the bifurcation diagram of thesedoubling phase transitions af = 2 lattices of coupled
CMLs, parallel to that of their local mag,. Quantitative logistic maps [9].
agreement improves rapidly with decreasipg and is Some of the conclusions reached in the present work
already excellent at relatively small orders. are identical to those reached in [6], but they are neither
In fact, statistical properties of CMLs are not expectedrestricted to the weak coupling limit, nor to weakly
to depend strongly on the coupling operator, providednhomogeneous solutions. They explain the numerical
it remains local [6]. It is a classic calculation to show observations of [7], where banded states were studied
that A;{l converges, for largen, to A} = exp(%W), at rather large couplingg(= 0.1) for d = 2 lattices of
a coupling operator with Gaussian weights where= logistic maps. We believe our work is also relevant to
2 /gmll¢|| is the typical coupling range witheé|| the lat- the globally coupled case and provides the framework
tice mesh size (usually set tb). For an infinite lat- for a rigorous RG approach of systems of coupled maps.
tice, ||¢|| plays no role whileA determines the size of Finally, we would like to suggest that the continuous-
the smallest structures. To be meaningful, the large space limit defined above constitutes an interesting system
limit must therefore be taken at fixed = Ay and, con- by itself, perhaps more tractable than CMLs for studying
sequently]|é]| — 0. This constitutes the correct continu- NTCB and spatiotemporal chaos. Since tigen= 0, this
ous limit of CMLs, i.e., a “field map” where the fielN; limit is not continuously related to the weak coupling
with 7 € RY evolves under the operatdrj’o oS,. The regimes. This may explain the difficulties encountered
asymptotic state is then unique, sintés the unit length, When trying to extend weak coupling results to account
and one can observe only the strong-coupling regime. Ifor truly collective, strong-coupling behavior [15].
other words, lim),—.. gZ(m) = 0. In the continuous limit,
RG relation (6) reads

<] 2 —1 o
(A% ©Su)” =h, oAy 508;pu ohy, (8)
[1] See, e.g.Universality in Chaosgedited by P. Cvitanovic
which implies that length scales are renormalized by a[z] l(\'/?%an;e‘?i’ggﬁgaicr’:t?:81;5:9%5;5%635 (197821 669
factor of 8 = +/2, independently of the local map [14]. Pl ; P . ' A
Space-independent quantities such jds on the other (1979); Physica (AmsterdamD, 16 (1983); P. Coullet

. . and J. Tresser, J. Phys.5225 (1978).
hand, scale with the Feigenbaum constants of the IO'[3] P. Collet and J. P. Eckmantiterated Maps of the Interval

cal map. . . _ as Dynamical Systen(8irkhéauser, Boston, 1980).

RG relation (8) is approximate only insofar as the RG [4] B. Derrida, A. Gervois, and Y. Pomeau, J. Phys.13
of S, is approximate. It does not predict the behavior of 269 (1979).
the continuous CML on the interv@li;, o], but implies [5] See, e.g.,Theory and Applications of Coupled Map
that, whatever this behavior may be, it is reproduced Lattices,edited by K. Kaneko (Wiley, New York, 1993).
on intervals[i,+1, it,] With an added2” periodicity [6] For a review, see S.P. Kuznetsov in [5] and references
and a rescaling of lengths hg”. This proves that the therein, in particular, S.P. Kuznetsov and A.S. Pikovsky,
cascades of phase transitions are infinite and that ever)fﬂ \lljvh}f;a d(:;r?/\sligaanr%g'?’ giﬁr(lgﬁggiwm (1003)

- L S - } . , .
.lecal pomtun obser_ved 'r['“”“’.'u"] has Counte_rparts [8] H. Chaté and P. Manneville, Prog. Theor. Phg3, 1
in the higher-orden intervals which converge with the

1992); Europhys. Lettl7, 291 (1992); H. Chaté and
exponents. Moreover, they must all share the same g LOS)Son Phpys>ilca (Amsterdarfli)g}D 51) (1997).

critical properties, since the characteristic divergence of(g] p. Marcqg, Ph.D. thesis, Université P. & M. Curie, 1996;

the correlation length scales in the same wajuin— u$| P. Marcg, H. Chaté, and P. Manneville (to be published).
for all n. Again, all the properties of the continuous limit [10] For ¢ = 0 (no coupling), there areN = 2V/2 such

are, of course, only exact for tent maps; for more general  frozen patterns. For smalf > 0, N is smaller, but

maps, they are quantitatively valid in the— o limit, in N ~ expiN), with N being the number of sites in the
parallel to the status of the RG f6y, itself. lattice. Forg > g.(n), NN is small andindependenbf
RG relation (6) implies that all CMLa” o S, con- N [11].

; ; P 11] A. Lemdtre and H. Chaté (to be published).
verge to their continuous limit ag — u. and/orm — [ ) )
. The results derived above are expected to apply in thig-2] The actual period could be larger thahand/or combined
limit, which, in practice, is reached very fast (Figs. 2 and with & quasiperiodic cycle, .
iy [13] In fact, this usually happens f@r = g:.
3). However, one can argue further that the critical prop

. . . MT14] This explains, incidentally, why the numerical determina-
erties of the phase transition points, where the correlation ~ tion of the collective behavior is difficult in this region.

length diverges, are not expected to depend on the detailgs] see, e.g., J. Bricmont and A. Kupiainen, Commun. Math.
of the coupling, and thus should all be the samedoy Phys. 178 703 (1996); Physica (Amsterdam)03D, 18
p andm. This is in agreement with the direct measure- (1997).
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