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Abstract. — A conditional mean-field approach to strongly chaotic coupled map lattices is
presented. It focusses on the time evolution of the one-body probability distribution function
p(X) of instantaneous site values. The local environment of a site is modelled in terms of an
effective number of independent neighbours, while keeping the Perron-Frobenius operator to
account for the action of the local map. This approximation is shown to produce distributions
p(X) in agreement with empirical observations of non-trivial collective behaviour, and captures
the essence of their dynamics.

Coupled map lattices (CMLs) constitute perhaps the most popular type of spatially ex-
tended dynamical systems for studying the generic properties and elementary mechanisms of
spatiotemporal chaos [1]. These discrete-time, discrete-space models exhibit a rich phenom-
enology, in some instances very reminiscent of far-from-equilibrium physical situations. Yet,
even for these “simple” systems, analytical methods [2], [3] for tackling their chaotic regimes
are scarce and generally restricted to cases of limited physical relevance, such as very weak
coupling coefficients and/or expanding piecewise linear maps. Unsurprisingly, simple mean-
field approximations are also of limited use, since they neglect one of the essential features of
spatiotemporal chaos, spatial correlations.

The situation is probably at its worst when spatiotemporal chaos takes the form of non-
trivial collective behaviour (NTCB). This generic phenomenon of high-dimensional systems is
characterized by the emergence of a temporal evolution of spatially averaged quantities out of
local chaotic fluctuations [4]. Since natural extensions of the mean field can only be satisfac-
torily defined in one space dimension, where block probabilities factorize unambiguously [5],
extensions of the simple mean-field approximation are notably difficult to derive for NTCB,
which appears in space dimensions d > 2. Cluster-type expansions can be defined, but their
practical implementation rapidly becomes intractable [6].

In this letter, a new type of approximation is introduced and shown to account remarkably
well for the simple NTCB regimes of usual CMLs. More specifically, we consider real variables
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Fig. 1. — Non-trivial collective behaviour in democratically coupled logistic maps on a two-dimensional
lattice of size L = 1024 with periodic boundary conditions (¢ = 0.2). Left: bifurcation diagram of
the instantaneous spatial average M" (filled circles) and bifurcation diagram of the single logistic map
(small dots). Middle: asymptotic single-site pdf p(X) in the stationary regime at u = 2 (solid line)
and its iterate by the PFO Pgs (dashed line). Right: same as middle panel, but in the collective
period-2 regime at p = 1.6; up to statistical fluctuations, the two solid-line pdfs are iterates of each
other during the CML evolution. The left dashed-line pdf is the iterate of the right solid-line pdf
under the action of Ps (and vice-versa).

X; at the nodes of d-dimensional hypercubic lattices updated synchronously via

X =5 (xY) (1)

2

t+1 t+1
X =(1-2dg)X; "% +9) X;77, (2)
JEV:

where S is a chaotic map, g is the (diffusive) coupling strength, and V; denotes the set of the
2d nearest neighbours of site 7.

Although our method is very general, for clarity’s sake, it is applied only to lattices of logistic
maps S(X) =1— puX?, with X € [-1,1] and p € [0,2] in the following. In the band regime
of the logistic map [7], pt > poo =~ 1.41..., and for strong enough coupling (e.g. “democratic”
coupling g = 1/(2d + 1)), the above CML exhibits NTCB [4]. Figure 1 (left) illustrates the
d = 2, g = 0.2 case by showing the bifurcation diagram of the instantaneous spatial average
M?' = (X)? superimposed on that of the (uncoupled) logistic map. In this case, only periodic
collective motion is observed. These regimes are reached from almost every initial condition.
All sites evolve chaotically, and their instantaneous distributions p(X) are wide, smooth, and
follow the same collective behaviour (fig. 1, middle and right).

Under the simplest mean-field approximation, the spatial average M? is governed just by
the local map S: M!'*! = S(M?). While this obviously fails to account for the collective
motion, a similarity can nevertheless be seen, in this simple example, between the NTCB
of the CML and the band structure of the uncoupled map: varying p from 2 to peo, and
neglecting the periodicity windows, the logistic map exhibits banded chaos, with an increasing
number of bands (1, 2, 4, 8, ...). In this work, we start from this naive remark and present
an approximation of the CML (1-2) in terms of the evolution of a ensemble of variables with
an appropriate modelling of the coupling.

Let us first consider the case of uncoupled variables evolving under the action of the map
S. When the number of such variables tends to infinity, this problem reduces to the evolution
of a probability distribution function (pdf):

P = [ 08 - SO0 AX = Ps [p1] ®
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Fig. 2. — Asymptotic pdfs for the single logistic map (solid line) superimposed on the instantaneous
distributions p(X) produced by the CML of fig. 1 (dashed line). Left: u = 2. Right: u = 1.6.

where Pg is the Perron-Frobenius operator (PFO) associated to the map S.

In a banded chaos regime with ¢ bands {B;}{_,, there exists a Pg-invariant family F =
{ pi};z:l of disjoint distributions p’ of support B;. At long times, p’ is a convex linear
combination Y A;p; of these pure states, and the action of the PFO on this decomposition
is a permutation of the weights \;: Pg is said to be asymptotically periodic [8]. In the case
of the logistic map, these pure states are not known exactly, except for y = 2. Numerical
simulations reveal a very intricate structure with sharp peaks, in contrast to the smooth
distributions of the CML (fig. 2).

In spite of this striking —and general— discrepancy, the PFO of the uncoupled map is
essential to understanding the dynamics of the CML. After all, eq. (1) does correspond to the
action of Pg on p(X). And indeed, in the collective period-2 regime of our example, the PFO
roughly transforms the two asymptotic distributions into one another (fig. 1, right), while the
spatial correlations bring the corrections necessary to produce the regular cycle, and do not
let the system evolve toward the uncoupled asymptotic distribution of fig. 2 (note that, in this
case, the uncoupled map is still in a one-band regime). In other words, the periodicity of the
CML is already contained in the local map, at least in its global features.

In the following, we numerically implement —without attempting to model— the action of
the PFO on p(X), and we focus on the spatial structure of the “typical” neighbourhood of a
site. The object that evolves under our approximation is the pdf p(X) of an infinite CML. In
order to close equation (2) at first order, we must estimate the distribution of the local average
at the site 4, M; = (1/2d)}_;., X, which depends on X;.

Consider a “central” site with value X. Adopting a conditional approach, we want to
estimate m = m|x, the typical value of the local average around this site, and y = y|x, the
typical value taken by any of its neighbours. Due to invariance under lattice symmetries, the
stochastic variables verify (m|X) = (y|X), where the notation (.|X) indicates the conditional
average taken for a fixed value of X.

Two limit cases can be considered: if all sites are synchronized, y|x = X; if they are
uncorrelated, y|x = x, where x denotes a random variable independent of X and distributed
according to p. In intermediate cases, the typical value y|x depends on p and X. This is the
situation of interest in chaotic CMLs, since two-point correlations usually decay fast but are
not zero. In particular, correlations are strong at very short distances, indicating the relative
smoothness of the system’s spatial profile. The corresponding “shoulder” of the two-point
correlation function at small distances can be interpreted as the existence of a certain degree of
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synchronization between nearby sites. Our central assumption is to approximate this situation
by linearly interpolating between complete synchronization and complete independence of
neighbouring sites. We thus write

Yx=aX+(1-0a)X, (4)

where a € [0,1] and X and X are independent random variables distributed according to
p. The local mean field then reads: (m|X) = (y|X) = aM + (1 — a)X, a relation well
verified by numerical simulations of CMLs such as those described above. This shows that
(1—«) expresses the “screening” of the mean field M due to local correlations. Indeed, (1 — )
is nothing but the correlation coefficient between neighbours since, letting X vary, we have
<mX>C = <yX>c =(1-a) <X2>C, where the subscript “c” denotes cumulants. Consequently,
(1 — @) is a macroscopic quantity which accounts for the mutual dependence of sites at short
range and is invariant under linear transformations of the lattice variables.

Next, we want to express m|x in terms of y|x. However, the fluctuations of the local average
{m?). do not depend solely on the correlations between the neighbours and the central site,
as the neighbours are themselves correlated with one another. If two neighbours (of the same
central site) are represented by variables y|x = o X + (1 —a) X and ¢/|x = o X'+ (1—a) X,
with X and X' independent, their conditional correlation (yy’|X). vanishes, even though
(yy")e = (1 — a)?(X?). # 0: y and ¢’ are correlated; but their dependence comes out through
X only: they are independent in a Bayesian sense. To account for the correlations between
neighbours of a common central site, we write m as a sum of N effective Bayes-independent
variables y;|x:

LN
mlx = NZ Yilx

Jj=1

where the number NV is not necessarily equal to the actual number of neighbours in the lattice.
As a matter of fact, extending the notion of a sum of independent variables, it is even possible to
deal with non-integer N’s. This allows the modelling of the coupling in terms of synchronized
and independent neighbours in arbitrary proportions. This amounts to considering the system
as living on a tree structure of connectivity N. Equation (2) is then “replaced” by

N
X =(1-NpX; 7 +3)_X;"?, (5)

j=1

where § = 2dag/N and the N effective independent neighbours X ; are distributed according
to p.

At this stage, our approximation involves two free parameters, « and N. They express the
local structure of correlations in the CML and are related to the cumulants (Xm)., (X?).,
and (m?).:

(Xm)e = (1 - a){X?)c, (6)
(m?)e = [(1 - a)* + a®/N}(X?)... (7)

A priori, in NTCB regimes, these quantities evolve in time. In fact, « and N being ratios of
second-order cumulants, they are relatively independent of the underlying collective motion
(this is also true for the mutual information between neighbouring sites [9]), at least in simple
cases such as the lattices of coupled logistic maps described above (see fig. 3 (left), which shows
the numerical values of & and N as defined by eqgs. (6) and (7)). These observations lead us
to our final assumption of geometrical stationarity: o and N are taken as fixed parameters.
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Fig. 3. — Left: a and N measured on the CML of fig. 1 at all timesteps in the asymptotic regime
for different values of the parameter u (small symbols), and best-fit values for the approximation,
i.e. values of a and N for which the distance between the empirical pdfs and those produced by
the approximation scheme is minimal (squares). Middle: asymptotic pdf p(X) produced by the
approximation for p = 2 and best-fit values of o and N (solid line); same for the original CML
(dashed line). Right: same but for the collective period-2 regime at u = 1.6.

The dynamical evolution of p(X) within our approximation is now complete: eq. (1) is
replaced by the action of the PFO of the local map (eq. (3)), and eq. (2) by the action of a
complex convolution operator Az n (see eq. (5)):

cpt E)p”% AN

The convolution operator Aj y is defined by

(8)

25,31 (X) = [ 5) b (X' - “Ng Ng)X ) e

where py is the distribution of the average (1/N )Ejvzlf( ; over the N effective independent
neighbours X ; distributed according to p:

o) = [(TI, pE% )6 (v - 5300 %) )

The computation of this convolution integral can be performed for non-integer N wia Fourier
transform.

We will now describe the results of our approximation as applied to the two-dimensional
lattice of democratically coupled logistic maps used throughout the text. First, we note that,
for realistic values of o and N, egs. (3), (8) and (9) usually converge rapidly to the same
attractor for various initial distributions.

For p = 2, the CML is in a stationary state (fig. 1). For a large range of parameters including
the numerically observed values of o and N (approximately N € [1,4] and « € [0.15,0.32]),
p'(X) converges, under the approximation, to a stationary pdf strikingly similar to the original
one. For u = 1.6, the approximation easily captures the collective motion, again for a rather
large range of parameter values (N € [1, 3] and « € [0.21,0.26]). In both cases, the agreement
between the empirical and approximated pdfs is excellent and the results are remarkably
robust, see fig. 3, middle and right, where the parameter values yielding the best agreement
were used.

Similarly good results were obtained for the same CML and d = 3, as well as for coupled tent
maps. However, it is more difficult, and sometimes impossible, to capture the larger-period
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cycles of the CML and the more complex collective evolutions observed for d > 3. We believe
that this is due to the non-stationarity of  and N in these cases. This indicates the direction
towards which the present work should be extended: the dynamics of the effective parameters
a and N should be self-consistently incorporated. We are currently working on various schemes
toward this end, as well as on an extension to cellular automata.

At the present stage, the two parameters o and N have to be chosen somewhat arbitrarily,
but their physical significance is clear: o measures correlations between neighbouring sites,
while N can be seen as the mean effective number of Bayes-independent neighbours of a
given site. This approximation yields robust and reliable results, reproducing the dynamics of
non-trivial distributions. The basic ideas underlying our approach shed some light on “fully
developed”spatiotemporal chaos and, in particular, on the macroscopic motion displayed by
synchronously updated systems in the strong-coupling limit. They confirm [10], [6] the local
origin of the non-trivial collective behaviour observed in CMLs, and detail the “regularizing”
role of the coupling. In some sense, the geometry can be seen to correct the action of the
Perron-Frobenius operator on one-site pdfs so as to make them drift towards a new operating
point associated with the collective regime.
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