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Cluster Expansion for Collective Behavior in Discrete-Space Dynamical Systems

Anaél Lemétre, Hugues Chaté, and Paul Manneville
LadHyX, Laboratoire d’'Hydrodynamique, Ecole Polytechnique, 91128 Palaiseau, France
Commissariat a 'Energie Atomique, Service de Physique de I'Etat Condensé, Centre d’Etudes de Saclay,

91191 Gif-sur-Yvette, France
(Received 17 October 1995

We introduce an approximation scheme for determining the evolution of spatially averaged quantities
in large classes of extensively chaotic dynamical systems. The case of lattices of diffusively coupled
logistic maps is presented. Results in two space dimensions show that the scheme succeeds in
reproducing the nontrivial collective behavior observed in this system. [S0031-9007(96)00709-0]

PACS numbers: 05.45.+b, 02.60.-x, 05.70.Ln, 82.20.—w

When studying spatiotemporal chaos in out-of-reads
equilibrium systems, it is generally difficult to estimate
even the simplest statistical quantifiers, such as spatial xitl— - # Z X2 (1)
averages, from the (local) evolution rule at the origin ! 2d +1 e 7
of the observed phenomena. This task is made harder '

for systems exhibiting nontrivial collective behavior, i.e., whereX; € [—1,1], u € [0,2], subscripts denote space,
extensively chaotic regimes in which spatially averagedind V; is the neighborhood of sité (including itself).
quantities evolve in time—most often regularly—in These CML are known to exhibit strict synchronization for
sharp contrast with equilibriumlike situations [1]. In , < ;. =~ 1.401: all sites in the lattice eventually take on
this Letter, we introduce a general scheme to attack thifhe same value and follow the periad-cycle of the (un-
problem for discrete-space dynamical systems and detaloypled) logistic map. This is a “trivial” collective behav-
its implementation and significance in the case of coupleghr. For . > u.. and space dimensiafh = 2, CML (1)
map lattices (CML). S displays nontrivial collective behavior, in which the sites
Spatiotemporal chaos refers to physical situations morgre not synchronized: in spite of strong, local, chaotic fluc-
complex than (temporal) chaos but simpler than, sayyations, spatially averaged quantities are not statistically
fully developed turbulence. This intermediate situationstationary in time, even in the “thermodynamic” limit. In
is mainly due to the existence of basic scales arisinggeneral, the collective motion it directly related to the
for example, from a symmetry-breaking instability, as inpehavior of the local map. A striking example for CML
Rayleigh-Bénard convection or Taylor-Couette flow [2]. (1) is the collective quasiperiodic cycle reporteddor= 5
Discrete-space systems are of particular interestin this coRmd ,, ~ 1.71 [1], which cannot be accounted for by a
text because they can be thought ofeagriori incorpo- single-variable iteration such as the local map. &or 2
rating these basic scales. Even when chaos is extensivgndq = 3, CML (1) exhibits periodic collective behavior,
i.e., when quantities measuring the degree of chaos in thgt the period of these cycles do not correspond to that
system are proportional to the system size [3], there is ngf the banded-chaos regimes exhibited by the logistic map
general method [4] to estimate statistical properties despitgy ,, > .. (see below). Predicting the collective motion
“thermodynamic” limit. In any case, conventional mean-which is addressed here.
field theory is unable to account for nontrivial collective  Taking spatial averages, the evolution rule (1) yields an
behavior [1]. Our approach relies on an exact treatmenhfinite hierarchy of equations,
of local correlations, applies priori to many infinite-size,
discrete-space dynamical systems in any space dimension X)) =1 — w(X?,
d, and provides the dynamical evolution of spatially av- ’ 5
eraged quantities. Related to BBGKY-type cluster ex- (y2y+i _ | _ 5,y 4 < M > S K,
pansions [5], it allows for a self-consistent calculation of 2d + 1 =¥ )
the statistical properties of many extensively chaotic sys '
tems including those showing nontrivial collective behav-
ior. Here, we treat only the case of CML whose evolution(X;X7)' ™' = ---
can be put into a polynomial form. For simplicity, we
present preliminary results on hypercubic lattices of lo-where the indicei is retained only for clarity. Even
gistic mapsS(X) = 1 — uX? with “democratic” (equal- though this hierarchy can always be written, here we treat
weight), nearest-neighbor coupling. Their evolution ruleonly the (common) case where the solutions of the CML

Xxpy =
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do not break the symmetries of the lattice and whereTABLE I. Values of single-variable moments and cumulants
consequently, all points share the same statistical progor u = 1.5725 (period 2 collective behavior) for the lattice
erties. Leaving this experimental point of view for a defined in Fig. 1. Data are given for both the original CML

. . numerical simulation) and the result of the approximation for
more theoretical one, the variables of (2) can be takenag " _ 5"~ " Z 3 a4, " 30,

the momentsof a probability distribution function gov-

erned by the Perron-Frobenius operator. Hierarchy (2) x) x* X X (X3
then represents the action of this operator on the subsefL 0.856 0.745 0.012 0.657 —0.0012
of probability densities which describe the ensemble of -0.171  0.091 0.062 —0.027 0.0097
statistically equivalent systems displaying the same coRpprox. 0.881 0.794  0.017 0.730 0
lective behavior [6]. In the following, this point of view —0.165 0.076 0.048 —0.028 0

is adopted, and we discuss our approximation in terms
of moments rather than spatially averaged quantities.

A moment(X;"' ---X;")" is characterized by its geo-
metrical support (iy,...,i,) and the set of weights
(a1,...,a,), a; =1, associated to the points of the

support. Due to the (assumed) statistical equivalence of . .
bP ( ) 9 %oth truncation steps involve cumulants. We thus need to

all points, the symmetry properties of the latti€e(trans- . :
lations and rotations) can be used to classify moments COMPUte moments from cumulants (and vice versa). This

Hierarchy (2) is then rewritten in terms of classes of'® a(_:hieved in practice by making recursive use of the
moments with integer multiplicative factors coming out relation [10]

of the reduction process. Hierarchy (2) is an infinite set N "B iy

of linear equations derived from the nonlinear evolution X' Xy = Z 72;1 Bi

ity densities observed [8]. In practice, a maximum order
amax 1S chosen, and cumulants with higher total order are
set to zero [9].

Hierarchy (2) is given in terms of moments, whereas

= i=1 Xi
rule (1). Each class of moments on the left-hand side is pr=a aliﬁf L B
expressed in terms of classes of wider geometrical support X (X X B (X X
and/or higher total orderr = >}_, ;. Keeping only (3)

a given setC of moments (defined by a set of supports
and weights), the truncated hierarchy can be symboli
cally written Mt = j—"(lf/l’ + ﬁ’), whereM' is the set
of moment values corresponding €@ and N’ is the set
of moment values on the left-hand side corresponding t

moments which are not id’. A closure relation is writ- unique element oD, sharing the same cumulant values

; s rt+1 ; -
ten symbolicallyN GM'"). We now describe a C' overC. The image ofg’ by the (truncated) hierarchy

physically motivated truncation and closure scheme. |Iti . .
twofold: a “geometrical’ truncation—similar to BBGKY %_elongs'thc. The truncation thus also provides a closure
Jia relation (3).

cluster expansion [5]—stopping the growth of support S .
and providing the closure, and an “analytical” truncationin Aght?r%?ehsg?e:%?rgrém:fwl?sn 5 Sigggﬂig{% r;]t,ié):gglsjc-
stopping the increase of the total ordeiof moments. 9 o

In extensively chaotic systems, spatial correlations de§at|sfactory than it looks. Elements )¢ are “general-

cay fast—often exponentially—far enough from critical |z¢d Gaussian” distributions. In particular, they possess
points [7]. In terms of moments, strict decorrelation ista'IS and therefore do not belong 10, the set of proba-

- i . . Ty N
expressed by (possibly complicated) factorization relag'“%hdens'tt.'es V\]f"[t?] thlelr Tupport i t_ [ %["ld]e['—luT]

tions involving moments of smaller geometrical support. er kle S.C lon Ot _ef.og[a rr:ag pgm_s OIU S| " t" ¢
These relations are implicitly and efficiently taken into gquickly diverge 1o infinity. Indeed, impiementations a

account wherncumulantsare considered instead of mo- thI\Sl'vsétigo?/vlear((je;(e)zr:tt]zdrlc\a/;zgﬁr?::igrt rg&:g?:é \@Lﬁ'gs forces
ments. Decorrelation of one subset @f,...,i,) from P

. : i the probability densities produced by the approximation to
the other points of the geometrical support is simply ex long toD;. We look forh’ in D, approximating the

pressed by saying that cumulants with the same suppo . . p ,
vanish. To implement the approximation scheme, a crifunctions g’ produced by the truncation. The “natural

terion is needed to designate the supports for which théolutlon—closely linked o the d§f|n|tlon of cumula_nts
cumulants are to be canceled. A natural choice is to ke’e.getermS of the characteristic function (see below)—is to

_ Let us summarize our approach so far. The two-step
truncation leaves a finite sé€t of nonzero cumulants. Let
us call D¢ the set of all probability densities [9] whose
only nonzero cumulants are inside. The probability
(aiensityf’ describing the system is approximatedgiythe

all cumulants such that the maximal distance between a riodizeg' on/ af?d multiply it by the indicatqr function
two points of their support is less than some threshold dis!’ ©f 7 [1/(X) = 1if X € 1, 1;(X) = 0 otherwise],
tancery,.c. The analytical truncation is also based on cu- h' = P(g") - 1,

mulants. Numerical observations show that the cumulants

decrease when their total orderincreases (see Table I). where P, symbolizes the operator periodizing the densi-
This is related to the unimodal structure of the probabil-ties [P(g(X)) = >,z g(X + gA) whereA = 2 is the
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length of7]. This amounts to “cutting” the tails af’ out- h® € D;. First, the truncated evolution rule is applied,
side of7 and “pasting” each of them at the other end of theyielding g! € D,. The resummation is then performed,
interval (' is the aliased approximation gf appropriate calculating the coefficients; and then the moments of
to fast Fourier transforms). ¥’ is a good approximation h' € D;. The process is iterated,

of £ (the “true” probability density belonging t®;), then ,

its tails outside off are small, and consequently itself  ---h' € D; 5 g'*l € D I prtl e P,

is a good approximation @i’ andf’. In other words, the

coefficientsc; of the multidimensional Fourier series of building a time series of probability densities from which

the densityf’ are approximated by the evolution of various observables can be deduced.
L - . We now present our first results, obtained for the
o — <exr<2”m : X>> _ gt<277_”> d = 2 lattice of democratically coupled logistic maps.
A A ) In this case, the nontrivial collective behavior observed

) o ) ) for u > u. are periodic cycles of periods 1, 2, 4,
whereg' is the characteristic function @f , given by the g ang 16 (Fig. 1). For almost every initial condition,
finite sum instantaneous site values eventually end up all in the

) (ik ;) same “band,” leading to statistically homogeneous spatial
g'(k) = exp‘ Z [ l_[ J : :|<Xf" ...XgnyC], configurations. Droplets of one such state into another
xximy.ecli=ton Qi shrink and disappear. The observed bands have no direct
relationship with those shown by the (chaotic) logistic
map at the sameuw value. Since they are just one-
N N n dimensional projections of the full CML state, they can
XXy =Y G [ [ Ay a)), (4)  (and often do) overlap. Moreover, the global bifurcation
i J=l points are shifted with respect to the band-merging points,
with so that the collective period observed is different from the
number of bands of the local map. This is not the only
a; 2imn;X effect of the coupling: the dynamics of the CML is not
Alnj, aj) = j;XJ ex;(— A )dX' “explained” by simply considering that of the local map,
especially in the strong-coupling case of interest here.
Since A(n;,0) = 0, for every moment or cumulant, the Except at the global bifurcation points where algebraic
only vectorsn involved in (4) are those of dimension decay is observed [7], correlations decay exponentially,
n, wheren is the number of points in the geometrical instantaneous distributions are unimodal, and cumulants
support i = (ny,...,n,)]. Moreover, the Fourier series
are truncated ten,, coefficients in each dimension (€
{=nmax, - - - » Bmax }), SO that only a finite number of; have
to be calculated. We note, to conclude this presentation of
the scheme, that the moments of the funchére D; are
close to those of’, buth’ possesses an infinite number of
(small) nonzero cumulants.
In realistic cases, the calculations are too tedious to _ o5
be done by hand. This is all the more acute as (1) ;Q
we eventually want to apply the approximation to high- v
dimensional CML, and (2) we know that, even though
correlations decay fast, the cutoff distangg, may have 0.0 P
to be chosen large in order to ensure a satisfactory level
of decorrelation. Therefore, we have written a symbolic
manipulation program irc++ to implement the scheme
on a computer. While it is impossible to give a detailed
account of the program here [10], we now describe its |
general structure. A f_irst ,St_ep calculates t_he(éei_‘f .the FIG. 1. Bifurcation diagram ofX)’ vs parametery for a
cumulants kept and—implicitly—the equations giving the ; = 2 square lattice of democratically coupled logistic maps.
self-consistent evolution of densities .. Except for  Black squares: simulation of a lattice of = 1024? sites with
the data defining the CML (local map, lattice, coupling), periodic boundary conditions and random initial conditions.
the only parameters on input arg,y, the cutoff distance, OPen circles: result of the approximation hax = 2, rnax =
. 3, and n,,, = 60. The initial condition corresponds to a
and amax, the maximum total order of the moments O yniform distribution on the intervd0.5,0.5]; 10 iterations are
cumulants retained. Next comes the actual numericadhown after a transient of 50 time steps. Dots: single logistic
simulation of the evolution of an initial probability density map. The dashed line is at..

All the moments oh’ are then given by

1.0 Queen
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decay fast with their total order (see Table I), so that the[1] H. Chaté and P. Manneville, Europhys. Left4, 409
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near bifurcation points is not captured by the approxima-[4] One notable exception is the case of one-dimensional
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lations in these regions; (2) in the regign € [1.7;2], improvement_s of the simple .mean-field.theory. See, e.g.,
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for with amax = 2, is at the origin of the small quantita- 28D, 18 (1987); H.A. Gutowitz, Physica (Amsterdam)
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tive disagreement. The synchronized states observed for
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the apprOX|mat|(_)p at_thl_s S'Fage might appear very Sim-- - ,,mena edited by C. Domb and M. S. Green (Academic
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of the type developed here do not prove the stability of  probability densities, since they may be nonpositive. This
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