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a  b  s  t  r  a  c  t

Silicon  nanowire  field-effect  transistors  (SiNW  FETs)  have  emerged  as  good  candidates  for  ultra-sensitive
electrical  detection  of  biological  species,  presenting  a label-free  alternative  to  colorimetry  and  flu-
orescence  techniques.  Here,  a top-down  approach  has  been  used  to  fabricate  the  SiNW  FETs  using
silicon-on-insulator  (SOI)  substrates.  As  in  previous  work,  a  change  of  the transistor  conductance  accord-
ing to  the  pH  of  the solution  is  observed  on  a large  pH  interval  [3–10.5],  even  for  small  variations  of  0.1 pH
units. The  influence  of  several  physico-chemical  parameters  such  as  gate  voltage  and  buffer  salinity,  usu-
ally not  adequately  taken  into  account  in  previous  papers,  is  discussed  to  achieve  a  better  understanding
of  the  detection  phenomena.

© 2012 Published by Elsevier B.V.

1. Introduction22

The interest for nanosystems resulting from the combina-23

tion of solid-state nanotechnology and biology has been rapidly24

increasing in recent years. This alliance opens new perspectives,25

particularly in the field of chemical and biological sensing. Some26

interesting devices for this application are transistors based on one-27

dimensional nanostructures such as silicon nanowires (SiNWs). In28

contrast with standard fluorescence techniques, field-effect devices29

can achieve direct and label-free electrical readout of the presence30

or absence of a molecule. They also have a high potential for inte-31

gration into miniaturized systems. Moreover, the use of nanowires32

instead of planar channels in field-effect devices is expected to33

enhance sensitivity, due to their high surface/volume ratio [1].34

A standard field-effect transistor (FET) consists of three termi-35

nals: the source, drain, and gate. The current flow between the36

source and drain is controlled by the voltage applied to the gate37

electrode. In 1972, Bergveld introduced the first ion sensitive field-38

effect transistor and showed that the FET channel conductance39

can be modulated by the change of charge at the silicon–solution40

interface, in the case of a pH detection [2].  In continuity with41

this work, several groups reported the monitoring of biological42

∗ Corresponding author. Tel.: +33 169415883.Q3
E-mail address: Paolo.Bondavalli@thalesgroup.com (P. Bondavalli).

reactions by modifying the gate terminal with molecular recep- 43

tors or ion-selective membranes for the analyte of interest (e.g. 44

penicillin [3],  DNA [4]). 45

More recently similar experiments with devices based on SiNWs 46

were reported. After demonstrating a pH detection [5], a wide range 47

of biological entities (proteins [6],  virus [7],  nucleid acids [8])  were 48

monitored with extremely low detection limits. The transistors in 49

these articles were based on one single silicon nanowire, fabricated 50

by a “bottom-up” approach [9].  Indeed, the device fabrication con- 51

sisted of a sequence of steps that began with nanowire synthesis 52

by chemical vapour deposition (CVD) growth. The nanowires were 53

then harvested and dispersed in ethanol. A drop of this nanowire 54

solution was  further deposited on the substrate, followed by the 55

definition of metallic contacts by optical or e-beam lithography. 56

Due to the use of randomly positioned nanowires, this process leads 57

to the fabrication of a limited number of functional devices. This 58

highlights the severe integration issues which hinder widespread 59

application in commercial products. To overcome this problem, 60

an alternative way  has been proposed, called the “top-down” 61

approach [10], which consists in patterning and etching nanowires 62

in a silicon layer, using micro and nanolithography techniques, 63

the latter benefiting from the batch manufacturing capabilities of 64

planar microelectronics. Indeed, this approach allows the fabrica- 65

tion of SiNWs on a large area with high density and uniformity. 66

Therefore, we  have focused our efforts on the realization and 67

characterization of SiNW-based transistors using this approach 68
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Fig. 1. Overall and detailed views of the top-down fabricated device, with microfluidics and close-ups of the SiNWs. (a) Overall view of the fabricated chip containing 56
transistors. The transistor position is highlighted by the circle. The drain and sources electrode leads spread to the borders of the chip in order to contact the transistors in an
easier  way. (b) Microfluidic channel integrated on the chip. The PDMS channel is positioned on a series of 14 transistors and has been fixed after exposition to an O2 plasma.
(c)  SiNW-based transistor. As shown by this enlarged view, the transistors are composed of quite a few SiNWs. (d) SiNWs fabricated in parallel (transistor channel). (e) detail
of  SiNWs section. The SiNWs width is 150 nm.

Fig. 2. The experimental set-up for pH testings, using four different pH values. The PDMS switch board with its four entries (E1, E2, E3 and E4) allows a 4-way selection of
different chemical solutions at a constant flow rate and solution mixing.
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which appears to be more suitable for an industrial application.69

We  have chosen to fabricate a large number of parallel nanowires70

in order to improve the potential for sensing a larger part of all71

the bio-molecules in the solutions (by enhancing the sensitive sur-72

faces). Moreover, if a defect appears during fabrication in one or73

a few nanowires, this will have a small impact on the transistor74

response.75

Although the monitoring of several biological interactions has76

been previously reported [5–8], the optimal working conditions of77

the sensor are far from being clearly identified. In this paper, we78

present an in-depth study of the main parameters which have to79

be taken into account and to be tested before monitoring a biolog-80

ical reaction, in order to achieve suitable results. We  consider the81

case of a pH level detection and study the performance of SiNW-82

based sensors, particularly the stability and reproducibility of the83

measurements over a large pH interval. Moreover, the influence84

of the choice of the gate voltage and of the ionic strength of the85

solution are investigated.86

2. Sample preparation and experimental set-up87

2.1. Sample preparation88

The SiNW-based sensors were fabricated using silicon-on-89

insulator (SOI) substrates (6′ ′ purchased from SOITEC, France). The90

SOI wafers had a 100 nm-thick silicon layer on a 200 nm-thick91

buried oxide layer. They were uniformly doped by ion implanta-92

tion with boron, to a concentration of 1018 cm3. Ion implantation93

was followed by activation at 900 ◦C in a N2 atmosphere for 1 h.94

The SiNWs were defined using e-beam lithography and reac-95

tive ion etching (RIE). Next the source and drain electrodes were96

patterned using optical lithography. A 150 nm-thick layer of alu-97

minium was then deposited by electron gun evaporation before98

the photoresist lift-off. Finally, to eliminate any possible inter-99

ference from the electronic leads during sensor tests, the areas100

outside the SiNWs regions were covered with a 30 nm-thick SiO2101

layer. For this purpose, a photoresist mask was  defined over the102

nanowire regions and lifted-off after the deposition of silicon103

oxide.104

We  have designed and fabricated 1 cm2 chips containing 56105

transistors (Fig. 1). The transistor channel was composed of 70 par-106

allel nanowires, 150 nm wide, 100 nm high and 10 �m long. This107

top-down nanofabrication process allowed us to fabricate an array108

of perfectly aligned nanowires, through a reproducible process,109

which is completely suitable for industrial applications.110

2.2. Experimental set-up111

Electrical device characterizations were performed using two112

Keithley 2636 source meters. All the measurements were done113

at room temperature. A 400 �m-wide microfluidic channel was114

fabricated using PDMS on an SU8 mold and bonded on the chip115

(Fig. 1). A microfluidic switch board, also made of PDMS was  placed116

upstream, allowing a 4-way selection of different chemical solu-117

tions at a constant flow rate (Fig. 2).118

The flow in the fluidic system could be controlled using peri-119

staltic pumps or syringe-pumps. Indeed, we have performed120

measurements using successively each of these devices (Fig. 3).121

We  observe that the flow fluctuation strongly affects the tran-122

sistor conductance in the case of the peristaltic pump (Fig. 3a).123

A few works have quantified the impact of fluidic and ionic124

transport on the conductance level of silicon nanowire sensors125

configured as field effect transistors. Considering the work of126

Kim et al. [11], we suggest that the flow velocity sensing is127

a consequence of the variation of the streaming potential as128

Fig. 3. Comparison of the stability of pH measurements using two different flow
injection systems: (a) Using peristaltic pumps, drain current Id varies with the flow
rate  at a constant pH value (pH 7). (b) Using syringe-pumps, the flow has no effect
on the drain current level, even after pH variations from 6 to 8 and 8 to 6.

a function of the flow velocity. This streaming potential [12] 129

is generated by the movement of counterions inside the elec- 130

trical double layer (EDL) of the silica substrate. By changing 131

the surface potential, the streaming potential acts in the same 132

way as the charged analytes and affects the conductance of the 133

transistor. 134

To minimize this effect, we  have used syringe pumps. These lat- 135

ter have the advantage of providing lower flow rates and because 136

of their working principle they generate less flow fluctuations than 137

peristaltic pumps. Indeed the results obtained with the syringe 138

pumps (Fig. 3b) exhibit a very stable signal for a constant pH. This 139

figure also demonstrates that the level of current remains the same 140

for different flow velocities, even after a pH variation from 6 to 8, 141

and then from 8 to 6. 142

Considering these results, we have decided to use syringe pumps 143

in our following experiments in order to sidestep the effect of the 144

flow on the SiNWs response. 145
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Fig. 4. Comparison of the transistor transfer characteristics for two  different gate configurations (the characterized transistor has 70, 150 nm-wide, SiNWs). (a) SiNW-based
transistor in the “dry configuration”. In this case the gate is the substrate (back-gate). (b) SiNW-based transistor in the “wet configuration”. In this case the gate voltage is
applied to the electrolyte through a reference electrode. This configuration can be assimilated to a top-gate configuration. (c) Transistor characterizations Id (Vg) using the
two  configurations, for Vd = 1 V.

3. Results and discussion146

3.1. pH measurements147

Preliminary measurements were performed using an Ag/AgCl148

reference electrode with a 20 mM phosphate buffer solution (Ph149

7.4) as the electrolyte. The first characteristic that we evaluated150

was the change of the transistor sub-threshold slope using a SiNW-151

based transistor before (“dry configuration”) and after soaking it152

into water (“wet configuration”), using respectively the back-gate153

configuration (the substrate as the gate) or the reference electrode154

(see Fig. 4). The results show that the sub-threshold slope is around155

4 times larger in the wet configuration compared with the dry con-156

figuration. The expression of the sub-threshold slope for the dry157

configuration is:158

S = kT

q
ln (10)

(
1 + Cd + Cit

Cox

)
159

where Cd is the capacitance associated to the depletion zone of the160

semiconductor, Cox the gate oxyde capacitance, Cit the capacitance161

associated to interface states, q the elementary charge, T the 162

temperature and k the Boltzmann constant [13]. In the wet  config- 163

uration we have to take into account the double layer capacitance 164

Cdl. Hence the term Cox at the denominator is replaced by a com- 165

bination of Cdl and Cox, which gives a higher term than Cox [14]. 166

Therefore the sub-threshold slope obtained for dry configuration is 167

higher than the slope obtained for wet configuration. 168

Transistors are preferentially operated in the sub-threshold 169

regime. Devices with steeper sub-threshold slopes exhibit large 170

signal variations for small gates changes and therefore for small 171

pH variations (molecular gating effect). 172

The next measurements have consisted of exposing the SiNW- 173

based transistors to solutions with different pH values. Four 174

different pH buffer solutions (3, 5, 7, 10.5) were prepared from 175

a 5 mM acetate phosphate buffer solution and were put in con- 176

tact successively with the nanowire device. The conductance was 177

measured versus time and the values are reported in Fig. 5. The 178

conductance increases stepwise with discrete changes in pH and is 179

steady for a given pH value. The SiNW sensors showed a large opera- 180

tion range for pH detection (pH 3–10.5) with an average sensitivity 181
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Fig. 5. (a) Transistor current variation as a function of the pH variation in time
(between 10.5 and 3). (b) Detail of the top picture: pH monitoring for small variations
of  pH values between 5.5 and 3 with increments smaller than 0.2 unit.

of 5nS/pH unit (Fig. 5a). As expected, the conductance decreases182

when the pH decreases. Indeed we use p-doped nanowires and183

we operate the transistor in accumulation mode. When the pH184

decreases, silanol groups are protonated [15] and the positive sur-185

face charge increase tends to deplete the channel and decreases the186

conductance.187

To realize solutions with intermediate values of pH, we  mixed188

the starting solutions with pH value of 3/5, 5/7, 7/10.5 using the189

PDMS switch board, while keeping the proportions respectively at190

2:1, 1:1, and 1:2. This method allowed us to achieve steps of 0.1 unit191

for the pH value. In Fig. 5b, we can clearly observe that our device is192

able to detect a variation of 0.1 units of pH. This result demonstrates193

the high sensitivity of our device.194

Some other very important parameters are the measurement195

reversibility and the signal stability. In order to investigate these196

two points, we have performed measurements changing the value197

of pH from 10.5 to 3 and from 3 to 10.5 without stopping the session198

(Fig. 6). We  have observed that our device response is stable over a199

long time interval (∼200 s), after each pH step. Even if it is difficult200

Fig. 6. Reversible pH monitoring on a large range of pH values: Id recorded versus
time for pH values from 10.5 to 3 (5 mM acetate phosphate buffer solutions). The
inset shows the protonation mechanism of the silanol groups which is at the base
of  the change of the detected signal.

to compare rigorously our signal stability to others works consid- 201

ering the numerous parameters that have to be taken into account 202

(time interval after each pH change, level of current, method of elec- 203

trical measurements, . . .), the signal can be favourably compared, 204

qualitatively, to state-of-the-art works [16]. 205

Moreover, after reaching 3 pH units, increasing the pH we obtain 206

reproducible results: the current value steps are nearly the same 207

for the same values of pH in the two directions (the relative change 208

of the current for each step in the second ramp, compared to the 209

first one, is around 15% which is comparable to the results obtained 210

by Stern et al. [16]). 211

3.2. Sensitivity as a function of back-gate voltage 212

In this section we  want to highlight the importance of the choice 213

of the gate voltage value. The p-doped Si substrate was used as the 214

gate. Conductance was recorded versus time, for a succession of pH 215

changes from 6 to 8, and the results are reported in Fig. 7(a–c). The 216

sensitivity S is defined as the ratio of variation of conductance from 217

pH 6 to 8 to the conductance for pH 6. Beyond the subthreshold 218

regime (Vg < −1.25 V), the sensitivity is low. In the subthreshold 219

regime, sensitivity increases with Vg, reaching a maximum around 220

Vg ≈ −0.5 V. As it has been previously reported with a “bottom-up” 221

NW-based device [17], this maximum corresponds mathematically 222

to the maximal slope of the Id(Vg) characteristic and physically to 223

the strongest gate coupling. 224

To go further and to clearly demonstrate the influence of the 225

gate voltage on sensitivity, we  have performed similar measure- 226

ments for Vg = +0.5 V (Fig. 7b). Considering its slightly ambipolar 227

behavior, our transistor was in the inversion mode regime for this 228

gate value. As expected, the pH variations became opposite to those 229

in previous measurements. This shows that gate tuning allows us 230

to choose the optimal working point of the sensor, providing sig- 231

nificant enhancement of the sensitivity. 232

3.3. Influence of buffer salt concentration 233

Electrolyte solutions with ionic compounds such as sodium 234

chloride (NaCl) are commonly used for biochemical sensing. 235

The concentration of these buffer salts determines the ionic 236

strength, which is a critical parameter for molecular binding and 237
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Fig. 7. Influence of the gate voltage on the sensitivity of the SiNW sensor. The characterized transistor has seventy 150 nm-wide nanowires. 20 mM phosphate buffer solutions
(pH  6 or 8) flow into the microfluidic system at a 8 �L/min flow rate thanks to syringe pumps. (a) Conductance variations for different gate voltages, (b) behaviour in the
inversion regime, (c) Id = f(Vg) curve for Vd = 1 V and transistor sensitivity versus gate voltage.

detection/monitoring. Indeed, for DNA detection, a minimum salt238

concentration is required for hybridization [18]. However, because239

of Debye screening considerations, it is often necessary to decrease240

the salt concentration. Consequently one may  use a sequential pro-241

tocol: hybridization at high ionic strength, followed by detection242

at lower ionic strength. This method imposes to change buffer salts 243

concentrations during the measurements, motivating us to study 244

the impact of a variation of salt concentration on the conductance. 245

In our experiments, solutions were prepared from 20 mM phos- 246

phate buffer solution (pH 7). NaCl was added with different 247

Fig. 8. Influence of the ionic strength on the sensitivity of the SiNW sensor. The characterized transistor has seventy 150 nm-wide nanowires. 20 mM phosphate buffer
solutions with different NaCl concentrations are used. The black arrows correspond to the activation of the syringe pumps for solution change (8 �L/min flow rate). (a)
[NaCl] = 1 mM,  (b) [NaCl] = 10 mM,  (c) [NaCl] = 100 mM.
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concentrations (1 mM,  10 mM and 100 mM).  The conductance was248

recorded versus time while the sensor was successively exposed to249

a salt-free solution and to a salted solution. Results are reported in250

Fig. 8, where the arrows correspond to the activation of the syringe251

pumps for solution change.252

For a 1 mM NaCl concentration, the conductance does not253

increase after salt injection. Conversely, for 10 mM and 100 mM254

NaCl solutions, the conductance decreases respectively of about255

tens of nS and about hundreds of nS after the solution change. These256

results are in good agreement with previous reports [19]. The sen-257

sitivity of SiNWs to Na+ ions can be explained by their selective258

adsorption on the surface of the SiNWs. Considering the point of259

zero charge of SiO2, the surface charge on the SiNW is negative for260

pH 7. In the electrolyte, positive counterions such as Na+ are elec-261

trostatically attracted by this negatively charged silicon surface and262

form Si O Na groups [20]. This positive surface charge variation263

tends to deplete p-doped nanowires FET thus decreasing the con-264

ductance. As a result, we can conclude that a variation of the buffer265

salt concentrations affects significantly the conductance of the sen-266

sor. Indeed, this parameter, often disregarded in scientific works on267

biosensing, has to be taken into account carefully in order to obtain268

valuable results.269

4. Conclusion270

In conclusion, the operation of a SiNW-based transistor is271

demonstrated for pH monitoring and the influence of several key272

experimental parameters has been analyzed. We  used a “top-273

down” approach to fabricate our SiNW-based transistors. They274

display a stable and reversible variation of the conductance for275

a large pH range, with a lowest detection limit of 5nS/pH unit. A276

minimal detection threshold of 0.1 unit of pH is achieved.277

The influence of several parameters is evaluated. We  highlighted278

the importance of the choice of the gate voltage, which allowed279

us to tune the sensitivity of the sensor. The ionic strength of the280

solution was also investigated and we have found that the presence281

of Na+ ions can affect the sensitivity of the measurements when282

concentration is above 10 mM.  These effects have to be taken into283

account so that a biological reaction can be correctly monitored.284
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