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This paper investigates the stability of a columnar vortex in an inviscid stratified fluid. By means of
a WKBJ analysis for large axial wave number, we demonstrate that the normal modes can be stable
or unstable owing to the emission of internal waves from the vortex. This phenomenon is shown to
be analogous to the radioactive decay of nuclei in quantum mechanics. The destabilized character
of the wave emission is shown to be associated with the presence of a critical point in the radial
structure of the normal mode. The theoretical predictions for the frequency and growth rate of the
normal modes are shown to be in good agreement with numerical results for two examples. © 2009
American Institute of Physics. #doi:10.1063/1.3241995$

I. INTRODUCTION

Inertia-gravity waves are ubiquitous in the rotating
stratified flows encountered in geophysics. The spontaneous
emission of internal gravity waves from vortices has been
predicted for shallow water flows1 and for strongly stratified
rotating fluids.2 A similar emission of acoustic waves from
vortices is observed in compressible fluids3 or superfluids.4

This radiative instability has been interpreted in terms of
negative energy waves by Kop’ev and Leont’ev.5 In the
physics of the atmosphere, this phenomenon has been asso-
ciated with wave “over-reflection” at a critical level.6

Here, we derive a new and general criterion for the oc-
currence of the radiative instability in the case of a columnar
vortex in a stratified fluid. Our analysis is based on a WKBJ
approach for large axial wave number. This approach was
also used for the description of a similar instability in the
context of accretion disks7 and shallow water flows.1,8,9

Here, it will allow us to capture the main characteristics of
the eigenmodes and to understand how the radiation of inter-
nal waves can be destabilizing.

II. FORMULATION OF THE PROBLEM

We consider an inviscid, incompressible, and stably
stratified fluid with constant Brunt–Väisälä frequency N. Un-
der these hypotheses, any vertical axisymmetric vortex with
velocity components U!r"= #0,V!r" ,0$ in cylindrical coordi-
nates !r ,! ,z" is steady. We subject this basic flow to infini-
tesimal three-dimensional perturbations of velocity ũ
= !ũ , ṽ , w̃", pressure p̃, and density "̃ written in the form

!ũ, p̃, "̃"!r,!,z,t" = !u,p,""!r"eikz+im!−i#t, !1"

where k and m are axial and azimuthal wave numbers and #
is the frequency. Under the Boussinesq approximation
!which consists of neglecting density variations everywhere
except in the buoyancy force", the linearized equations for
these perturbations can be simplified10 to a single equation
for the amplitude $!r"=r1/2G−1/2u!r",
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where %!r"=#−m'!r" is the Lagrangian frequency,
G!r"=m2 /r2+k2%2 / !%2−N2", and where '!r"=V /r and
&!r"=V!+V /r are the angular velocity and the axial vorticity
of the vortex. The boundary conditions are that $ vanishes at
the vortex center and corresponds to an outgoing wave at
infinity. These conditions applied to the solutions of Eq. !2"
define the eigenvalue problem for # !k and m being fixed".

III. WKBJ ANALYSIS

In Le Dizès and Lacaze,11 Billant and Gallaire,10 and
Le Dizès,12 it was shown that a good approximation of the
dispersion relation and of the eigenmodes can be obtained by
a WKBJ asymptotic analysis for large axial wave number
similar to the semiclassical analysis of bounded states in
quantum mechanics. For large k, WKBJ approximation of
solution to Eq. !2" can be obtained in the following form:

$!r" ) Q!r"%A exp&i*r

(dy' + B exp&− i*r

(dy'( ,

!3"

where A and B are constants and the functions ( and Q are
given by

(!r" = k+%2 − 2&'

N2 − %2 , !4a"

Q!r" = & N2 − %2

%2 − 2&'
'1/4

. !4b"

The square root in ( is chosen such that Re!(")0. The
WKBJ approximation !3" breaks down near the so-called
turning points where (=0. However, the different WKBJ
approximations on each side of a turning point can be
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matched, thanks to standard connection formulas.13,14 Using
this approach, it is thus possible to construct a global WKBJ
approximation of the solution over all the integration do-
main. Enforcing the boundary conditions then yields the dis-
persion relation.

When the fluid is not stratified !N=0" and the vortex
centrifugally stable !i.e., 2&'*0 for all r", Le Dizès and
Lacaze11 showed that eigenmodes can be constructed when
there is a finite interval where (2 is positive. Inside this
interval, the WKBJ approximations have an oscillatory be-
havior while outside they are decaying or growing exponen-
tially. The eigenmodes are called “core” modes when this
interval is located between the vortex center and a turning
point r2 and “ring” modes when it is delimited by two turn-
ing points r1 !with r1)0" and r2. As readily seen from Eq.
!4a", the interval where (2 is positive !i.e., where the WKBJ
approximations are oscillatory" for N=0 is necessarily lo-
cated in a region where the vorticity & is nonzero, i.e., inside
the vortex core.11 This feature simply reflects the fact that
inertial waves are confined to the vortex core. A further con-
dition for the existence of an interval of positive (2 is that
the frequency belongs to the range #−!r"+#+#+!r", where

#,!r" = m'!r" , +2'!r"&!r" . !5"

In contrast, when the fluid is stratified, the regions of
positive (2 are not restricted to the vortex core but can be
located everywhere in the fluid. Physically, this is directly
related to the fact that two types of waves, inertial waves and
internal waves, can exist for a columnar vortex in a stratified
fluid. The description of the eigenmodes by a WKBJ ap-
proach is therefore expected to be more complex than in the
homogeneous case. But, as it will be seen below, the same
approach can be used as long as we consider near neutral
eigenmodes.

As a first step, we focus here on the strongly stratified
case, i.e., the Brunt–Väisälä frequency N is assumed large
compared to ' and #. This hypothesis implies that the de-
nominator of (2 in Eq. !4a" is N2−%2,N2, i.e., everywhere
positive, and that there is no critical point where %2=N2. The
sign of (2 is then reversed compared to the nonstratified
case: (2 is negative when #−!r"+#+#+!r" and positive
otherwise.

Figure 1 shows the functions #+!r" and #−!r" for two
typical examples:

!1" a hollow vortex: '!r"=r2e−!r − 1"2
for the azimuthal wave

number m=0 and
!2" a Lamb–Oseen vortex: '!r"= !1−e−r2

" /r2 for m=1.

Note that these angular velocity profiles are dimension-
less. The corresponding dimensional angular velocity is '̂
='0' and the dimensional radius is r̂=Rr, where '0 and R
are a typical angular velocity and radius of the vortex. In the
following, all the other variables are nondimensionalized ac-
cordingly but the same notation is kept. In particular, this
means that k corresponds now to the dimensional wave num-
ber scaled by the vortex radius and N is now the Brunt–
Väisälä frequency divided by '0, i.e., the inverse of a Froude
number.

In each plot of Fig. 1, a particular frequency # has been
indicated by a thin straight line. The comparison of this fre-
quency with #, gives directly the sign of (2. For case !1"
#Fig. 1!a"$, we see that (2 is positive in the interval between
the vortex center and the turning point r2 !region II" and
beyond the turning point r3 !region IV". Conversely, (2 is
negative for r2+r+r3 !region III". This configuration occurs
for any frequency in the range of −4+#+4. Case !2" is
similar #Fig. 1!b"$: (2)0 is positive in the interval r1+r
+r2 !region II" and r)r3 !region IV". Conversely, (2 is
negative for 0+r+r1 !region I" and for r2+r+r3 !region
III,". This configuration is observed for any frequency in
the range 0+#+0.126. Case !2" has also another property:
there is a critical point rc between r2 and r3 #indicated by the
dashed curve in Fig. 1!b"$. This point, defined by %!rc"=0, is
a singularity of the equation !2" for that case. The determi-
nation of the solution near this point therefore needs a spe-
cial treatment. We shall see that the presence of the critical
point implies that different WKBJ approximations are ob-
tained in the region !III-" between r2 and rc and in the
region !III+" between rc and r3.

In cases !1" and !2", there are two intervals of positive
(2: a finite domain in the vicinity of the vortex core !region
II" and an infinite domain extending to +. !region IV". The
goal of the present paper is to show that eigenmodes can be
constructed when this situation is encountered. We shall also
see the subtle role of the critical point which can make the
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FIG. 1. Variation in the functions #+ and #− for !a" case !1" and !b" case !2".
The different regions and turning points ri discussed in the text are indicated
for a given frequency # represented by the thin horizontal line. In !b", the
critical point rc has also been indicated.
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eigenmode unstable. Although the two examples chosen
above are specific, they are typical of the situations that can
occur for any azimuthal wave number m for most vortex
profiles in strongly stratified fluids. These two cases are
closely related to the core modes and ring modes considered
by Le Dizès and Lacaze11 except that there is an additional
outer region of positive (2 !region IV" where waves can
radiate away and a critical point in one of the two cases. For
that reason, we shall call them “radiative core modes without
critical point” and “radiative ring modes with critical point.”
As will be explained later, the problem without critical point
is in fact analogous to the radioactive decay of bounded
states in quantum mechanics: region !II" can be seen as a
potential well whereas region !III" plays the role of a poten-
tial barrier.

We note that the radiation of waves imposes an imagi-
nary part to the frequency so that (2 is in fact complex and
not purely real as assumed in the discussion above. However,
the imaginary part of the frequency will be found to be much
smaller than its real part so that the imaginary part of (2 is
always very small. Hence, it is valid to assume (2 purely real
as a first approximation in order to determine the structure of
the modes and to consider the imaginary part as a higher
order correction. Similarly, throughout the asymptotic analy-
ses, we shall implicitly assume that the eigenfrequencies are
real at leading order and that complex corrections are ob-
tained at higher orders.

We now consider in details the two cases !1" and !2".

IV. RADIATIVE CORE MODES WITHOUT CRITICAL
POINT

For the case !1" illustrated in Fig. 1!a", the condition that
the solution remains bounded at the origin imposes that $ is
given at leading order by !see Le Dizès and Lacaze11 for
details"

$II!r" ) Q!r"%exp&i*
r1

r

(dy' + R exp&− i*
r1

r

(dy'( ,

!6"

with R= ieim/ and r1=0. In region !IV", the boundary condi-
tions impose that $ is a wave propagating toward infinity.
Since ##()0 for r=., this means that only the wave of
radial wave number +(!r" should be retained in the general
expression !3",24 i.e.,

$IV!r" ) AQ!r"exp&i*
r3

r

(dy' , !7"

where A is a constant. The reversible single-turning-point
connection formula14 applied at the turning point r3 implies
that $ in the “potential barrier” !region III" is given by

$III!r" ) A-Q!r"-%exp&*
r

r3

-(-dy − i
/

4 '
+

1
2

exp&− *
r

r3

-(-dy + i
/

4 '( . !8"

The connection formula at the turning point r2 gives then

another WKBJ approximation inside region !II" !Ref. 14",

$II!!r" ) AeW23Q!r"%&1 +
e−2W23

4 'exp&i*
r2

r

(dy'
− i&1 −

e−2W23

4 'exp&− i*
r2

r

(dy'( , !9"

with

Wlm = *
rl

rm

-(!r"-dr . !10"

Equation !9" shows that the amplitude of the wave reflected
at r2 #second term in the right-hand side !rhs"$ is smaller than
the incident wave !first term in the rhs". This expression is
compatible with Eq. !6" only if

− ie2iW12&1 −
e−2W23

4
' = R&1 +

e−2W23

4
' . !11"

When the potential barrier is large, i.e., when 0
=exp!−2W23"11, this condition can be expanded with the
small parameter 0. Writing the frequency in the form #
=#0+2#+¯ with 2#=O!0" leads at leading order in 0 to
the same discretization rule as for nonradiative core modes
!Le Dizès and Lacaze11",

*
0

r2

(!r"dr =
-m-/

2
+ n/ , !12"

where n is a non-negative integer. This relation gives the
leading order frequency #0. The next order in 0 yields the
frequency correction due to the wave emission through the
potential barrier

2# = −
i

4
exp!− 2W23"
.r1

r2#(/##dr
. !13"

It is worth mentioning that Eq. !13" is based on the use
of reversible connection formula14 which amounts to keep
the decreasing exponential even in the presence of an in-
creasing exponential. As discussed by Shepard,14 even if
there is a long-standing controversy, this generally leads to
meaningful and reliable results. In the present case, it gives
the leading frequency correction due to the sole wave
emission.

V. RADIATIVE RING MODES WITH CRITICAL POINT

Case !2" which leads to radiative ring modes is similar to
the one considered above except that there exists an addi-
tional region !I" in the vicinity of the vortex axis and a criti-
cal point within the region !III" #Fig. 1!b"$. Near the origin,
the solution of Eq. !2" which remains finite for r=0 is the
Bessel function Im, which behaves like Im!x")ex /+2/x for
large x. This implies that the WKBJ approximation in region
!I" is
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$I!r" ) B-Q!r"-exp&*
0

r

-(-dy' , !14"

where B is a constant. The connection formula at the turning
point r1 leads to a solution in region !II" of the same form as
Eq. !6" but with R= i. The solutions in regions !III+" and !IV"
are identical to Eqs. !8" and !7". However, owing to the pres-
ence of the critical point rc, an expression different from Eq.
!8" has to be used in region !III-". This expression has been
obtained in the Appendix. It leads to a new expression in
region !II" which replaces Eq. !9",

$II!!r" ) AeW23Q!r"%&32 −
ae−2Wc3

2
−

ae−2W2c

2

+ 31
e−2W23

4 'exp&i*
r2

r

(dy' − i&32 −
ae−2Wc3

2

+
ae−2W2c

2
− 31

e−2W23

4 'exp&− i*
r2

r

(dy'( ,

!15"

where Wlm has been defined in Eq. !10", a=/ / !2-(c-k" with
(c being the value of ( at rc and 3i are constants such that
3i=1+O!1 /k". A slightly different compatibility condition is
then obtained,

− ie2iW12&32 −
ae−2Wc3

2
+

ae−2W2c

2
− 31

e−2W23

4
'

= R&32 −
ae−2Wc3

2
−

ae−2W2c

2
+ 31

e−2W23

4
' . !16"

Since e−2W23 ,a ,e−2Wc3 ,e−2W2c are a priori all small and
3i,1, we deduce at leading order the same discretization
rule as for nonradiative ring modes,11

*
r1

r2

(!r"dr = &n +
1
2
'/ , !17"

showing that the critical point has no effect at leading order.
However, the frequency correction at next order contains a
term generated by the critical point

2# = −
i

4
e−2W23 − 2ae−2W2c

.r1

r2#(/##dr
. !18"

Note that Eq. !13" is recovered if a=0. A priori, Eq. !18"
applies when the three points r2, rc, and r3 are far from each
other. For case !2", we shall see in Sec. VII that a better
estimate can be obtained by considering that three points r2,
rc, and r3 are merged to a single point.

VI. ANALOGY WITH THE RADIOACTIVE DECAY
IN QUANTUM MECHANICS

The above formulas !17" and !13" have exact analogs in
quantum mechanics in the case of the radioactive decay of
bounded states. In that case, the governing equation is the
Schrödinger equation for the wave function amplitude $ of a
particle of mass m and energy E,

42

2m

#2$

#r2 + #E − V!r"$$ = 0, !19"

where 4 is the Planck’s constant and V!r" is the potential.
WKBJ analyses performed in the semiclassical limit 4→0
for a potential V with the typical shape displayed in Fig. 2
show that the energy levels of the “bounded states” !i.e., with
E1+E+E2" are given by the well-known Bohr–Sommerfeld
quantization rule.15 This relation is identical to Eq. !17" ex-
cept that ( is given by

(!r" =
+2m

4
+E − V!r" .

As the Schrödinger equation does not possess critical points,
the decay rate due to the radioactivity across the potential
barrier is given by Eq. !13" with # replaced by E. This for-
mula was first obtained by Gamow16 to explain the alpha
emission by atoms. A more recent account can also be found
in Shepard.14

VII. DOUBLE-TURNING-POINT ANALYSIS

Formulas !17" and !18" obtained above for case !2" as-
sume that the three points r2, rc, and r3 are well separated.
When # /m)1 / log!k /N", the three points become separated
by a distance of order log!k /N" /+k /N and formulas !17" and
!18" break down. In this section, we are going to show that a
better estimate can be obtained by assuming that the three
points are merged at leading order. This occurs when
#11 / log!k /N". In this case, the three points are located at
rt=+m /# where the vorticity is o!N /k", and Eq. !2" reduces
at leading order in k /N near rt to

#2$

# r̃2 + %4r̃2 −
2

r̃2($ = 0 + O& N1/2

k1/2#1/4' , !20"

with r̃=+5!r−rt" and 5= -k%!!rt" / !2N"-. As seen from the
neglected order, this equation also requires # not to be too
small: #6 !N /k"2. The solution which matches the outgoing
wave !7" in region !IV" for r̃→+. is $!r̃"=Br̃1/2H3/4

!1" !r̃2",
where B=A+/ke5i//8 / !251/4" and H3/4

!1" is the Hankel function
of the first kind. From the behavior of the Hankel function
H3/4

!1" !z" for -z-→. with arg!z"=2/, one can deduce the valid
WKBJ approximation in region !II",
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FIG. 2. Typical potential exhibiting bounded states and radioactive decay.
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$II! ) AQ!r"%+2 exp&i*
r2

r

(dy' + i exp&− i*
r2

r

(dy'( .

!21"

By comparing Eqs. !21" and !6" we deduce a modified rela-
tion for case !2",

*
r1

r2

(!r"dr = n/ −
i ln!2"

4
, !22"

which is valid for # satisfying !N /k"21#11 / log!k /N".
When #=0, region !II" extends to infinity !i.e., rt=.".

Then, the solution of Eq. !2" can be found analytically for
r61 in the form

$ =
A

r3/2G1/2Jm! & k-m-
Nr

' , !23"

where A is a constant, Jm the Bessel function of the first kind
and where only the solution which decays as r→. has been
retained. Assuming k61 in Eq. !23" gives the valid WKBJ
approximation in region !II",

$II! ) BQ!r"%exp&i*
.

r

(dy'
+ i exp&− i-m-/ − i*

.

r

(dy'( , !24"

where B is a constant. Matching Eqs. !24" and !6" gives the
discretization rule

*
r1

.

(!r"dr =
-m-/

2
+ n/ , !25"

which is valid only for #=0.

VIII. NUMERICAL COMPARISON

The above formulas are tested for N=5 in Fig. 3 for case
!1" and in Fig. 4 for case !2". The numerical results, which
are shown by open circles, have been obtained by a shooting
method. The critical points, when they are present as in case
!2", are avoided by deforming the integration contour in the
complex plane. In case !1", the integration contour also ends
in the complex plane !along a line r=sei7 with typically
7=/ /10" such that the damped eigenmodes remain bounded
at infinity. This trick strongly speeds up the numerical algo-
rithm without modifying the eigenvalues.

As for normal modes without wave emission,11 the real
part of the frequency is very well predicted by the discreti-
zation formula !12" for case !1" #solid lines in Fig. 3!a"$.
Surprisingly, the branches continue up to #=N=5, i.e.,
above the maximum of #+. This corresponds to modes
“above the potential barrier.” It turns out that the frequency
and damping rate of such modes can be obtained by applying
formula !12" in the complex plane !see the dashed lines in
Fig. 3" as explained in Le Dizès and Lacaze.11

For case !2", we have tested formulas !17" and !18" ob-
tained for distant turning points and formula !22" obtained
for a double-turning point. We have observed that the first

formulas !17" and !18" do not provide good predictions of
the numerical results for the axial wave numbers that we
have considered. By contrast, the formula !22" predicts well
the frequency of the modes for k /N+60 #solid lines in Fig.
4!a"$ except the first branch which becomes damped around
k /N=6 and is not captured by the large-k asymptotic analy-
sis. In fact, this branch is specific since it derives from a
displacement mode for k→0. We can also notice in Fig. 4!a"
that the frequency predicted by Eq. !22" departs from the
numerical results around #=0. This is not surprising as Eq.
!22" is only valid for #6 !N /k"2. The specific formula !25"
for #=0 is indicated by black squares and can be seen to be
in very good agreement with the numerical results except for
the first branch. In practice, a very good agreement for all the
frequency can be obtained by using the empirical formula

*
r1

r2

(!r"dr =
-m-/

2
+ n/ , !26"

together with the frequency correction

2# = − % -m-/
2

+
i ln!2"

4
(/*

r1

r2

##(dr . !27"

These formulas can be seen as an empirical “composite” ap-
proximation: they tend to Eq. !25" for #→0 and to Eq. !22"
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FIG. 3. !a" Frequency Re!#" and !b" growth rate Im!#" for case !1" for
N=5. Solid line: WKBJ formula !12" for Re!#" and Eq. !13" for Im!#";
dashed line: formula !12" applied in the complex plane. Symbols: numerical
results. Only the five first branches have been plotted.
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for finite #. They are represented by the dashed lines in
Fig. 4.

Remarkably, the growth rates plotted in Figs. 3!b" and
4!b" show that the normal modes for case !1" are stable while
they are unstable for case !2". Formula !13" for case !1"
predicts very well the damping rate of the modes. For case
!2", Eq. !22" predicts also reasonably well the growth rate of
the modes, the first branch excepted #Fig. 4!b"$. However, as
seen by the dashed lines, a much better agreement is ob-
tained by using Eqs. !26" and !27".

IX. INSTABILITY MECHANISM

It is quite striking that the wave emission is stabilizing
for case !1" as for the radioactive decay of nuclei, while it is
destabilizing for case !2". The origin of this difference can be
understood by looking at the sign of ##( in region !II" since
it controls directly the sign of the growth rate #i.e., Im!2#"$
in Eqs. !13" and !27". Physically, the sign of ##( defines
locally the direction of propagation of energy. Since ##(
= !k /N"% /+%2−2&' for a strongly stratified fluid, it is itself
directly given by the sign of the local Lagrangian frequency
%!r"=#−m'!r". For case !2", this quantity changes sign at
the critical point rc in region !III". Therefore, ##( is of op-
posite sign in regions !II" and !IV" in case !2" whereas it

keeps the same sign in case !1". For case !2", this implies that
the wave which propagates energy outward !##()0" in re-
gion !IV" transforms to a wave propagating energy inward
!##(+0" in region !II". In other words, the potential barrier
!region III" plays the role of an energy source which transfers
energy to both the bounded states !region II" and to the ra-
diated wave !region IV". This explains why the internal wave
radiation is destabilizing when there is a critical point as in
case !2" and stabilizing when there is no critical point as in
case !1". A quite similar explanation, based on the concept of
wave action, was also provided in Narayan et al.7 in the
context of accretion disks. Case !2" can also be viewed as a
configuration with over-reflection: the wave propagating en-
ergy in region !II" toward region !III", which corresponds to
the second wave in Eq. !21", has a smaller amplitude than the
reflected wave. As in Lindzen and Barker,6 we have seen that
a critical point is also necessary for this over-reflection pro-
cess. Note, however, that the role of the critical point is quite
subtle. When the potential barrier becomes large, we have to
use expression !18" for the growth rate instead of Eq. !27".
As the second term of this expression can become dominant,
we may no longer be unstable. This restabilization can be
understood by the same arguments. In that case, the domi-
nant effect on the waves emitted toward region !IV" by the
bounded state leaving in region !II" is the absorption and
reflection at the critical point rc. There is no longer over-
reflection as the reflected wave has now a smaller amplitude
than the incident wave #see expression !15"$. This dual effect
of the critical point has also been pointed out by Schecter
and Montgomery.2

X. CONCLUSION

We have demonstrated that the emission of internal
waves by columnar vortices in strongly stratified fluid can be
described for large axial wave number by similar WKBJ for-
mulas as those for the radioactive decay of bounded states in
quantum mechanics. These formulas explain the discretiza-
tion of the frequencies of the normal modes and provide the
growth rate due to the wave radiation. In contrast to the
radioactive decay, the wave emission can be destabilizing
owing to the presence of a critical point in the potential bar-
rier where the direction of energy propagation is reversed.
When the potential barrier is infinitely thin, we have seen
that the growth rate of the instability is the largest and that it
is proportional to the wave transmission coefficient across
the potential barrier. By contrast, for finite potential barriers,
the destabilizing effect of the wave emission becomes expo-
nentially small and can be dominated by the stabilizing ab-
sorption at the critical point.

When the rotating flow is confined between two bound-
aries, another instability generated by the stratification is
possible as observed in Taylor–Couette flows in centrifugally
stable regimes.17,18 The instability mechanism is, however,
different from that described in the present paper, as it is due
to the resonance of two modes localized near each
boundary.19 A WKBJ description of this instability would be
interesting as already done for shallow-water flows,8,20

strongly rotating shear flows,21 and accretion disks.7
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FIG. 4. #!a" and !b"$ Same as Fig. 3 for case !2" and N=5 except that
formula !22" has been used to plot the solid lines. The dashed lines show the
predictions obtained from Eqs. !26" and !27". The black squares show the
results of the formula !25". Only the three first branches have been plotted.
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APPENDIX: ANALYSIS OF THE CRITICAL POINT
REGION

In this section, we consider the problem around the criti-
cal point in order to determine the modifications that this
point induces on the WKBJ approximations in region !III-"
of case !2" #see Fig. 1!b"$. For this purpose, it is convenient
to consider the problem for the pressure p which satisfies the
equation

d2p

dr2 + &1
r

−
8!
8
'dp

dr

+ % 2m

r%8
!'8! − '!8" +

k28

%2 − N2 −
m2

r2 (p = 0,

!A1"

with

%!r" = # − m'!r", 8!r" = 2&!r"'!r" − %2!r" . !A2"

An expression for $ can then be deduced from p by the
relation

$ = & r

G
'1/2& i%

8

#p

#r
−

2im'

r8
p' . !A3"

The problem is the following. Without critical point,
WKBJ approximations are uniformly valid in region !III".
This means that if we consider two WKBJ expressions of p,

pIII, ) P!r"#S,e−-.rc

r (dy- + D,e-.rc

r (dy-$ , !A4"

where the sign + or - denotes r)rc and r+rc, respectively,
and P!r"=81/4!N2−%2"1/4r−1/2, the coefficients C−

= !S− ,D−"! and C+= !S+ ,D+"! are connected with each other
by a reversible connection relation C,=MpC9 with a matrix
Mp defined by

Mp = &0 1

1 0
' . !A5"

If rc is a critical point, we are going to show that a different
relation applies, which is obtained by studying the neighbor-
hood of rc. The analysis of the solution near a critical point
rc, defined by %!rc"=0, is performed by expanding Eq. !A1"
near rc and by searching for a local solution, say p̃ as a
function of a local variable r̃=k!r−rc". Up to O!1 /k2" terms,
we obtain that p̃!r̃" satisfies

p̃" − -(c-2p̃ +
1
k
& 1

rc
−

8c!

8c
'p̃!

− %8c!r̃

N2 +
2

rc'c!8cr̃
!'c8c! − 'c!8c"(p̃ = 0, !A6"

where the index c indicates values taken at rc. The general
solution of this equation is

p̃!r̃" = A0%e-(c-r̃&1 +
3r̃

k
+

5r̃2

k '
+

:

k
e−-(c-r̃*

−.

r̃

e2-(c-u log!u"du(
+ B0%e−-(c-r̃&1 +

3r̃

k
−

5r̃2

k '
+

:

k
e-(c-r̃*

.

r̃

e−2-(c-u log!u"du( , !A7"

with

3 = −
1

2rc
+

8c!

48c
, 5 =

8c!

4N2-(c-
, : =

2'c&c!

rc'c!&c
. !A8"

In the above integrals, the branch cut of the logarithm is
chosen along the negative real axis. The integration path is
prescribed by the condition that the solution should become
uniformly valid on the real axis when a small positive imagi-
nary part is added to the frequency. When m)0 and 'c!
+0, as in case !2", this condition implies that the integration
path is “above” the branch cut, that is −.= -.-ei/. Note, how-
ever, that the logarithm singularity is still present as r̃→0.
This singularity, which corresponds to the critical layer sin-
gularity, requires additional effects to be smoothed. Assum-
ing that the solution remains valid on the integration path
mentioned above, that is above the singularity in the com-
plex plane, means that the singularity is smoothed by viscous
effects as explained by the classical theory of viscous critical
layers.22

In order to obtain the connection formula across rc, we
need to determine the behavior of p̃!r̃" when r̃→ ,.. The
problem then reduces to an evaluation of the behavior of the
functions

f,!r̃" = e,-(c-r̃*
,.

r̃

e92-(c-u log!u"du !A9"

for large -r̃-.
There is no difficulty to evaluate f+ at +. and f− at −.

as they are both subdominant. The difficulty is to compute
the subdominant contribution to f, when they become expo-
nentially large. Let us consider f+!r̃". A similar method can
be used for f−!r̃". The idea is to perform an integration by
part,

f+!r̃" = − e−-(c-r̃ log!r̃"
2-(c-

+
e-(c-r̃

2-(c-
*

+.

r̃ e−2-(c-u

u
du , !A10"

such that the subdominant contribution that is created as
r̃→−. becomes apparent. It comes from the pole singularity
of the second integral and can be computed by “residue theo-
rem.” It leads to the following behavior of f+!r̃" as r̃→−.:

f+!r̃" )
r̃→−.

−
e−-(c-r̃

2-(c-
#log!-r̃-" + O!1"$ +

i/

2-(c-
e-(c-r̃, !A11"

where the subdominant contribution is the second part of this
expression. Similarly, we obtain for f−!r̃" as r̃→+.,
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f−!r̃" )
r̃→+.

e-(c-r̃

2-(c-
#log!r̃" + O!1"$ +

i/

2-(c-
e−-(c-r̃. !A12"

From these expressions, we can obtain the behavior of p̃ as
r̃→ ,.,

p̃ )
r̃→+.

A00e-(c-r̃#1 + O!1/k"$ +
i/

2-(c-k
e−-(c-r̃#1 + O!1/k"$1

+ B0e−-(c-r̃#1 + O!1/k"$ , !A13"

p̃ )
r̃→−.

A0e-(c-r̃#1 + O!1/k"$ + B00e−-(c-r̃#1 + O!1/k"$

+
i/

2-(c-k
e-(c-r̃#1 + O!1/k"$1 , !A14"

from which we can deduce the matrix Mp that connects the
coefficients C−= !S− ,D−"! and C+= !S+ ,D+"! of the WKBJ
approximations across rc,

Mp = & ia 31

32 − ia
', a =

/

2-(c-k
, !A15"

where 3i are coefficients such that 3i=1+O!1 /k".
The connection formula across rc for the function $ can

then be easily deduced by using Eq. !A3". We obtain the
connection matrix

M$ = &− ia 31

32 ia
' . !A16"

We are now in a position to determine the effect of the
critical point on the solution of case !2". For case !2", the
critical point modifies the WKBJ approximations in region
!III-". The approximation in region !III+" is still given by
Eq. !8" as this expression is obtained by the condition of
radiation in region !IV". This expression can also be written
as

$III+!r" ) A-Q!r"-#eWc3e−-.rc

r -(-dy-e−i!//4"

+ 1
2e−Wc3e-.rc

r -(-dy-ei!//4"$ . !A17"

Using the above expression for M$, we deduce the expres-
sion in region !III-",

$III− ) A-Q!r"-ei!//4"%&− aeWc3 +
31

2
e−Wc3'e−-.rc

r -(-dy-

+ i&a

2
e−Wc3 − 32eWc3'e-.rc

r -(-dy-( , !A18"

from which we can obtain expression !15" for the solution in
region !II" by using the connection formula across a single
turning point.14
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