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Flexible systems bending in steady flows are known to experience a lesser drag compared
to their rigid counterpart. Through a careful dimensional analysis, an analytical expression
of the Vogel exponent quantifying this reduction of drag is derived for cantilever beams,
within a framework based on spatial self-similar modelling of the flow and structural
properties at the clamped edge of the structure. Numerical computations are performed
on various situations, including systems involving more complex distributions of the flow
or structural parameters. The scaling of drag versus flow velocity for large loadings is
shown to be well predicted by fitting the system properties by simple power laws at the
scale of the length on which significant bending occurs. Ultimately, the weak sensitivity of
the Vogel exponent to the parameters of the system provides an explanation to the rather
reduced scattering of the Vogel exponents around �1 observed on most natural systems
in aquatic or aerial vegetation.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

It has beenwell known, since the seminal work of Vogel (1984), that flexible structures subjected to fast flows experience
a drag F that grows slower with the velocity than if they were rigid. When the velocity U of the flow exceeds a given
threshold, the classical quadratic velocity–drag law that holds for rigid bodies at large Reynolds number changes to a
smaller power law FpU2þ ν characterized by the so-called Vogel exponent ν, which is negative. This phenomenon is for
instance broadly observed in nature. Indeed, plants growing in fast flow environments are very often made of flexible
tissues that bend to comply with the flow, hence lowering the risk of failure by fracture or uprooting.

To get a better understanding of the underlying mechanisms, Alben et al. (2002, 2004) first studied the model problem of
an elastic one dimensional fibre in an inviscid two dimensional flow, both experimentally and numerically. Their study
revealed the importance of a single control parameter, which they call the elastohydrodynamical number, related to the
more commonly used Cauchy number CY (Tickner and Sacks, 1969; Chakrabarti, 2002; de Langre, 2008), that scales the
competing effects of fluid loading to the elastic restoring force. The model of Alben et al. (2002, 2004) exhibits the expected
transition from the classical rigid-body U2 drag scaling law to a new U4=3 drag law concomitant with the convergence
towards a self-similar shape at large Cauchy numbers. Gosselin et al. (2010) obtained similar results for a finite width plate
with a simplified model of fluid loading. They also managed to predict the same asymptotic drag scaling law from a very
simple dimensional analysis. In order to explain the drag reduction due to the rolling up of daffodil leaves originally
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observed by Vogel (1984), Schouveiler and Boudaoud (2006) obtained theoretical and experimental estimates of the Vogel
exponent for circular plastic sheets cut along a radius. They found a drag scaling as U2=3, while a theoretical and numerical
study by Alben (2010) on the same system concludes that the drag increases as U1. Recent studies have proposed models
that account for additional effects such as gravity (Luhar and Nepf, 2011), viscosity (Zhu and Peskin, 2007; Zhu, 2008), shear
background flow (Henriquez and Barrero-Gil, 2014) or unsteady wake effects due to vortex shedding at the edges (Yang et
al., 2014).

Many experimental measurements made either in the field or in the laboratory have also been able to provide estimates
of the Vogel exponents for systems as diverse as full trees, grasses, flowers, leaves, near-shore marine macrophytes or
freshwater algae. Some quite comprehensive reviews such as Harder et al. (2004) or de Langre et al. (2012) list Vogel
exponents varying in a range around �0.7, between 0 and �1.3 at most for such systems. What is especially striking is not
the scattering of Vogel exponents found for different systems, but much more the robustness of the drag reduction phe-
nomenon with respect to the great variability of structural and flow configurations, and the rather narrow range in which
the Vogel exponents usually lie. From the assumption that the scaling of drag reduction results from the loss of one typical
length scale, de Langre et al. (2012) showed that the Vogel exponent of any structure made of beams and plates (such as
most plants) should exhibit approximately the same behaviour. By a simple dimensional analysis, they recovered the
classical �2/3 Vogel exponent found by Alben et al. (2002, 2004) and Gosselin et al. (2010). They further claimed that non-
linearity in the material constitutive law should have little impact on the scaling of drag. Any possible effect of flow or
structural non-uniformities was however not addressed in this study, and nor was it, to the authors' knowledge, in any other
one, with the only exception of Henriquez and Barrero-Gil (2014) in the specific case of shear flow. A range of models is
clearly missing to fill the gap between the idealized cases above and the more complex natural configurations.

The goal of the present work is to provide a general framework for the derivation of the Vogel exponent of a flexible
beam in the limit of large velocity flows. It includes most possible non-uniformities in the flow or structural parameters, but
it excludes the additional effects of viscosity, unsteadiness in the wake or in the background flow, or other external forces
such as gravity. In some aspects, it is a generalization of the works of Gosselin et al. (2010), de Langre et al. (2012) and Luhar
and Nepf (2011).

In Section 2, the general framework of this study is described. In Section 3, a theoretical analysis of drag reduction of a
system described by self-similar fluid and structural parameters is presented. In Section 4, the results of numerical simu-
lations performed on several practical cases are given. Finally, Section 5 discusses the implications of the present results
regarding the understanding and the predictability of the typical values of the Vogel exponents of actual systems. A
nomenclature of the main variables used throughout this paper is given in Table 1.
2. Model

The model used in this paper is represented in Fig. 1. The elastic body is a cantilever beam of length L bending in the xz-
plane. The width W, thickness D and material stiffness may all vary with the curvilinear coordinate s. The height z(s) and
Table 1
Nomenclature.

L, W(s), D(s) Length, width and thickness of the beam
EI(s) Bending stiffness in the case of linear elasticity
CD(s) Cross-section drag coefficient
ρðzÞ Fluid density distribution
U(z), U0 Flow profile and reference velocity
θðsÞ, κðsÞ Inclination angle of the beam from the vertical axis and curvature
m(s), m0 Internal bending moment and reference value
fn(s) Internal shear force
q(s), q0 Local normal fluid load and reference value
cðθÞ Angular dependence of the normal fluid load
gðκÞ, α Function and exponent associated with the material constitutive law
b(s), b0, β Distribution, reference and exponent associated with the stiffness factor
w(s), w0, γ Distribution, reference and exponent associated with the cross-section shape factor
p(z), p0, μ Distribution, reference and exponent associated with the pressure
ϕ, ψ Geometrical and material parameter
F, Frigid Drag force on the flexible/rigid beam
R Reconfiguration number
CY Cauchy number
ν, ν1 Local and asymptotic Vogel exponents
ℓ Characteristic non-dimensional bending length
LB Characteristic non-dimensional boundary layer thickness
δ Characteristic non-dimensional tapering length



Fig. 1. Description of the system. (a) Side view of the beam bending in the flow. (b) Front view of the unbent structure.
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curvature κðsÞ are related to the local angle of the beam with the vertical axis θðsÞ by the kinematic relationships:

z¼
Z s

0
cos θ s0ð Þ ds0; κ¼ ∂θ

∂s
: ð1Þ

We assume a rather general form of the constitutive law relating the internal bending moment m to the curvature κ:

mðs; κÞ ¼ bðsÞgðκÞ; ð2Þ
where b(s) is a local coefficient that accounts for the local stiffness and geometry, while gðκÞ is characteristic of the material
constitutive law, which we take to be uniform on the beam. For instance, in the case of linear elasticity, gðκÞ ¼ κ and
bðsÞ ¼ EIðsÞ is the local bending stiffness of the beam. Under the assumption that the local radius of curvature 1=κ remains
large compared to the thickness D (κD⪡1), Kirchoff's equations for rods (see for instance Audoly and Pomeau, 2010) relates
the internal shear force fn to the internal bending moment m by

f n ¼ �∂m
∂s

: ð3Þ

We further assume that the structure is placed in a horizontal flow U(z) of a fluid of density ρðzÞ. Both U and ρ may vary
with the vertical coordinate z, Fig. 1a only displaying a velocity profile U(z) for clarity. We restrict our study to large Reynolds
numbers, so that viscosity effects are neglected. The local fluid load q is then purely normal. In the case of uniform flow, it is
usually considered that the normal fluid load includes one term due to the so-called “reactive force” (� ρU2WDκ in the
steady limit of the model of Lighthill, 1971, see also Candelier et al., 2011) and one other term due to flow separation
(“resistive force” � ρU2W in the model of Taylor, 1952). Thus, in the slender body assumption κD⪡1, the resistive force is
dominant. We assume that this is still the case for our vertically varying flow, and so we take q as purely resistive and
independent of the body curvature. We assume a somewhat general form

qðs; z; θÞ ¼ pðzÞwðsÞcðθÞ; ð4Þ
where p(z) accounts for the local dynamic pressure due to the undisturbed background flow at height z on the beam, w(s) is
a shape coefficient that accounts for the interactions of the normal flow with the local cross-section, and cðθÞ is a projection
term due to the local angle of the cross-section with respect to the background flow. It is not always obvious that the s- and
θ-dependency can be decoupled, as the structure of the boundary layer and of the recirculating flow downstream will be
modified by the angle of incidence. However, it is usually considered that to the first order, the resistive normal force only
depends on the interaction between the cross-section and the flow in a plane normal to it, hence the expression chosen. The
most classical example of such model is the resistive pressure drag derived by Taylor (1952): q¼ 1=2ρCDWU2

n where ρ is the
fluid density, W the local width of the structure, Un ¼U cos θ the normal projection of the local flow velocity, and CD a drag
coefficient that accounts for the shape of the local cross-section. Specifically, Taylor's model is equivalent to considering

p zð Þ ¼ 1
2 ρ zð ÞU2 zð Þ; w sð Þ ¼ CD sð ÞW sð Þ; c θð Þ ¼ cos 2 θ: ð5Þ

Note that the model chosen here only gives an approximation of the exact loading. In particular, the modifications of the
flow caused by the structure itself are neglected. However, the close similarity of the results obtained, on the one hand by
Gosselin et al. (2010) with the present model, and on the other hand by Alben et al. (2002, 2004) who computed the
pressure force distribution on the actual structure using a much more complex algorithm, indicates that the exact form of
the force has little impact on the asymptotic scaling of the drag. Unless otherwise stated, cðθÞ ¼ cos 2 θ is used everywhere in
the rest of this paper. The framework of the present paper includes the study of the influence of the still unspecified form of
gðκÞ, b(s), w(s), and pðzÞpU2ðzÞ. Note that the dynamic pressure due to the background flow at a given point in space does
not depend on the position of the structure, so p(z) only depends on the Cartesian coordinate z (assuming the flow is
invariant in the x-direction). On the other hand, the elasticity factor b(s) and the cross-section shape coefficient w(s) are
structural properties that are specific to a given location along the beam span s, even though the Cartesian coordinates (x,z)
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of that physical point change as the beam bends. The internal bending momentm(s) depends on the curvilinear coordinate s
explicitly via the local stiffness factor b(s), but also implicitly via the local value of the curvature κðsÞ in the material con-
stitutive law gðκÞ.

Following Luhar and Nepf (2011), the local equilibrium at a given point sn between the local internal shear force and the
normal fluid load yields the governing equation

∂m
∂s

����
s�
¼ �

Z L

s�
q sð Þ cos θðsÞ�θðs�Þð Þ ds; ð6Þ

where the force-free boundary condition fn¼0 at the free end s¼L has been used. Non-dimensionalizing this equation yields
one governing parameter called the Cauchy number

CY ¼
q0L
m0=L

� typical external fluid load
typical elastic restoring force

; ð7Þ

considering that q0 and m0 are the orders of magnitude of the fluid load q and internal moment m in Eq. (6). Besides, the
total drag of the beam reads

F ¼
Z L

0
qðsÞ cos θðsÞð Þ ds: ð8Þ

The focus of this paper is the scaling of the drag force, F, with the velocity of the flow. In the case of a flow that may not be
uniform, we have to choose a reference velocity U0 that scales the velocity at any point in the flow field. We are then
interested in the variations of the Vogel exponent ν such that F scales as U2þ ν

0 , noted FpU2þν
0 . At large Reynolds number

and in the limit of a rigid structure, the drag force is expected to grow as U2
0. Following Gosselin et al. (2010), to isolate the

contribution of flexibility to the velocity–drag law, we define the reconfiguration number

R¼ F
Frigid

; ð9Þ

so that RpUν
0. The actual governing parameter being the Cauchy number, we will prefer to work in the CY–R space rather

than the U0–F space. The Cauchy number being proportional to the typical fluid load q0pU2
0, the local Vogel exponent can

be computed directly in the CY–R space as

ν¼ 2
∂ logR
∂ log CY

: ð10Þ

A schematic view of the correspondence between the three different representations of a velocity–drag relationship is
displayed in Fig. 2 in arbitrary units. The Vogel exponent displayed in Fig. 2c corresponds to twice the slope of the loglog
plotRðCY Þ shown in Fig. 2b. In this particular case, the Vogel exponent asymptotically goes to �1 for large Cauchy numbers,
so that the velocity–drag law goes from quadratic to linear.

In the remaining of this paper, unless otherwise stated, the Cauchy number is always defined based on the flow and
structural properties at the tip of the upright beam.
3. Drag reduction in a self-similar framework

First, we further assume that the pressure, cross-section shape and stiffness parameters p(z), w(s) and b(s) can be
expressed as power functions of their respective arguments, namely

p zð Þ ¼ p0
z
L

� �μ

; w sð Þ ¼w0
s
L

� �γ

; b sð Þ ¼ b0
s
L

� �β

: ð11Þ

Note that, although these power-law formulations of the structural parameters w and b may recall those of Lopez et al.
Fig. 2. Schematic view of the loading–drag relationship in the different parameter spaces (arbitrary units). U0: reference flow velocity, F: drag force, CY:
Cauchy number, R: Reconfiguration number, and ν: Vogel exponent.
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(2011) for a slender cone, or those of Lopez et al. (2014) for a tree-like structure, they actually describe quite different
distributions because the curvilinear coordinate s used in these papers was defined from the free tip towards the floor
instead of the other way around here. We also assume that the material constitutive law may differ from linear elasticity by
considering a more general dependency on curvature, still in the form of a power law

gðκÞ ¼ κα: ð12Þ
Substituting (11) and (12) and the particular form cðθÞ ¼ cos 2θ into (6), the equilibrium equation reads

∂
∂s

sβκα
� �����

s�
¼ �CY

Z 1

s�

Z s

0
cos θðs0Þ ds0

� �μ

sγ cos 2 θð Þ cos θ�θ�ð Þ ds; ð13Þ

where all the space variables have been made non-dimensional using the beam length L, and the Cauchy number CY has
been defined as

CY ¼
p0w0L

b0L
�1�α

: ð14Þ

From (8), the total drag force on the beam in this framework reads

F ¼ p0w0L
Z 1

0

Z s

0
cos θðs0Þ ds0

� �μ

sγ cos 3 θð Þ ds: ð15Þ

We further assume that the drag is bounded by that on a rigid structure, namely

Frigid ¼ p0w0L
Z 1

0
sμþ γ ds¼ p0w0L

1þμþγ
: ð16Þ

For this quantity to be finite, it is required that μþγ4�1. Using (9), (15) and (16), the reconfiguration number now reads

R¼ 1þμþγð Þ
Z 1

0

Z s

0
cos θðs0Þ ds0

� �μ

sγ cos 3ðθÞ ds: ð17Þ

Within this framework, the asymptotic Vogel exponent for large Cauchy numbers, noted ν1, can now be inferred from a
dimensional analysis that accounts for the particular power-like form of the flow and structural parameters. The flow
pressure p, the cross-section shape coefficient w and the bending stiffness b are characterized by their respective invariants:

Ip ¼
pðzÞ
zμ

¼ p0
Lμ

kg m�1�μ s�2	 

;

Iw ¼wðsÞ
sγ

¼w0

Lγ
m1� γ
	 


;

Ib ¼
bðsÞ
sβ

¼ b0
Lβ

kg m2þα�β s�2	 

: ð18Þ

The Vaschy–Buckingham theorem predicts three non-dimensional figures which we choose to be the non-dimensional drag
force, the Cauchy number and the aspect ratio:

~F ¼ F

IpIwL
1þμþ γ

; CY ¼
IpIwL

1þμþ γ

IbL
�1�αþβ

; Λ¼w0

L
: ð19Þ

Following Gosselin et al. (2010), we disregard the effect of the aspect ratio Λ so that the problem reduces to finding the
relationship between ~F and CY, or equivalently to determining the function G such that

F ¼ IpIwL
1þμþ γG IpIw

Ib
L2þμþ γþα�β

� �
: ð20Þ

For highly bent structures, Gosselin et al. (2010) demonstrated that the drag no longer depends on the beam length L. Hence,
function G must be taken as a power function GðCY ÞpCφ

Y that cancels the overall exponent of L in (20), meaning

1þμþγð Þþφ 2þμþγþα�βð Þ ¼ 0: ð21Þ
Consequently, the asymptotic drag force scales as

Fp
ðIpIwÞ1þφ

Iφb
with φ¼ � 1þμþγ

2þμþγþα�β
: ð22Þ

We are interested in the scaling of the drag force with the velocity U0, which only appears in the flow pressure invariant
through Ippp0pU2

0. Therefore, F scales as U2þ2φ
0 and the asymptotic Vogel exponent naturally appears as ν1 ¼ 2φ. Ulti-

mately,

ν1 ¼ �2
1þμþγ

2þμþγþα�β
: ð23Þ

For a uniform, linearly elastic, rectangular plate bending in a uniform flow, ðα; β; γ; μÞ ¼ ð1;0;0;0Þ, so that ν1 ¼ �2=3, which is



T. Leclercq, E. de Langre / Journal of Fluids and Structures 60 (2016) 114–129 119
consistent with Alben et al. (2002, 2004) and Gosselin et al. (2010). In the case of a non-linear stress–strain relationship
σpε1=N considered in de Langre et al. (2012), we get α¼ 1=N in our model, and so we recover the asymptotic result
ν1 ¼ �ð2NÞ=ð2Nþ1Þ.

If it is well known that the effects of flexibility are negligible below CY � 1, no study has ever predicted, to the authors'
knowledge, the threshold above which the Vogel exponent should finally reach its asymptotic value. This threshold can
however be estimated by looking at the global balance of forces on the beam. Assuming that the beam length L loses its
relevance when the beam is highly bent implies that there must exist a smaller region of length ℓ, function of the level of
loading only, on which all the significant interactions between the beam and the flow concentrate. This inner region is thus
responsible for the dominant contribution to the drag, and show a large curvature responsible for the balancing force.
Assuming that the contribution of the region s4ℓ to the drag is negligible, (15) gives the dominant contribution to the drag
as

F � p0w0Lℓ1þμþ γ : ð24Þ
On the other hand, using (3), (2), (11) and (12), the internal shear force at the base can be roughly estimated as

f nð0Þ � b0ℓβ Lℓð Þ�1�α ¼ b0L
�1�αℓ�1�αþβ: ð25Þ

Balancing these two quantities yields

ℓ�ð2þμþ γþα�βÞ � p0w0L

b0L
�1�α

; ð26Þ

which is the Cauchy number defined in Eq. (14). We now choose the specific value of ℓ as follows:

ℓ¼ C�ð1=ð2þμþ γþα�βÞÞ
Y : ð27Þ

This analysis highlights the emergence of an intrinsic characteristic length ℓ that characterizes the region of the beam on
which the interactions governing its behaviour concentrate. Note that this length differs from the effective length used in
Luhar (2012). If ℓ is larger than 1 (or equivalently CY o1), the flow interacts with the beam on its whole length and the
structural behaviour is close to that of a rigid beam. On the other hand, if ℓ⪡1, then the interactions in the region of length ℓ
dominate the behaviour of the beam, and so the asymptotic regime is reached. This regime, where the Vogel exponent given
by (10) has become constant, should thus be expected to be obtained above a threshold that is expressed in terms of some
critical value of ℓ instead of CY. Depending on the exponent of the power law relating ℓ to CY, the gap between the onset of
significant bending (CY¼1) and the convergence of the asymptotic regime (ℓ⪡1) might cover a wider or smaller range of
loadings. This analysis is consistent with the dimensional analysis above. Indeed, injecting (27) into (24) and using the fact
that the pressure of reference p0 and the Cauchy number CY both scale as U2

0 easily yields

F �U2�2ðð1þμþ γÞ=ð2þμþ γþα�βÞÞ
0 ; ð28Þ

and so the asymptotic Vogel exponent given by Eq. (23) is obviously recovered.
Note that the choice of expression (27) to define ℓ is somewhat arbitrary, as no actual “bending length” can be uniquely

defined on the physical system. Eq. (27) essentially represents a scaling of the Cauchy number that transforms a ratio of
forces into the ratio of some characteristic bending length over the length of the beam. As such, it gives a different inter-
pretation of the Cauchy number, but it does not correspond to a physical quantity that can be easily measured or obtained as
the output of a numerical simulation.
4. Applications

4.1. Numerical method

To check the validity of our Eq. (23) for the asymptotic Vogel exponent as well as the predicted threshold discussed
above, we numerically compute the Vogel exponent in different cases by solving (13). To solve the integrodifferential
equation, we use a first order centred finite difference scheme with the discrete boundary conditions θ1 ¼ 0, θNþ1�θN ¼ 0
(Thomas, 1995). The integrals are computed by the trapezoidal rule. The resulting non-linear system of equations is solved
using a pseudo-Newton solver (so-called method of Broyden, see Broyden, 1965). The beam is discretized with N¼30 panels.
For CY r1, the beam bends very little, so we use a uniform mesh. When the beam reconfigures significantly, we have seen
that its curvature tends to concentrate in a small region of characteristic non-dimensional length ℓ near the clamped edge.
In order to model the curved region with accuracy when CY Z1, we use a non-uniform mesh sk ¼ k=ðNþ1Þ� �χ with
χ ¼ log ℓ=log 2 so that sððNþ1Þ=2Þ ¼ ℓ, meaning that half of the points are in the curved region srℓ. This mesh scales with the
characteristic bending length in the curved region, and so it is not necessary to increase the number of points to maintain a
good accuracy when the beam is highly bent. Convergence was checked on a few cases by measuring the relative error on
the asymptotic Vogel exponent. On all the cases tested, doubling the number of points changed the value of the asymptotic
Vogel exponent by less than 0.1%.



T. Leclercq, E. de Langre / Journal of Fluids and Structures 60 (2016) 114–129120
4.2. A uniform beam in a shear flow

One first situation that is of particular interest is the case of reconfiguration in a sheared flow. This situation is observed
for instance for aquatic organisms in underwater boundary layers or within canopies (see Luhar, 2012). We consider a plate
of constant width W and cross-section drag coefficient CD, made of a linearly elastic material of uniform bending stiffness EI,
deforming in a flow of uniform density ρ with a sheared velocity profile:

U ¼U0
z
L

� �μ=2
: ð29Þ

Assuming Taylor's model for the local fluid load, the parameters of the model specifically read

p zð Þ ¼ 1
2
ρU2

0
z
L

� �μ

; w sð Þ ¼ CDW ; c θð Þ ¼ cos 2θ; b sð Þ ¼ EI; g κð Þ ¼ κ; ð30Þ

which corresponds to a constitutive law, stiffness and cross-section shape exponents respectively ðα; β; γÞ ¼ ð1;0;0Þ with the
shear exponent μ being the only varying parameter. Hence, from (23), the theoretical asymptotic Vogel exponent is pre-
dicted as

ν1 ¼ �2
1þμ

3þμ
: ð31Þ

In the case of a uniform flow μ¼0, we recover the classical ν1 ¼ �2=3 of Gosselin et al. (2010). From (27), the characteristic
bending length reads here

ℓ¼ C�ð1=ð3þμÞÞ
Y : ð32Þ

To numerically confirm these predictions, we solve the non-dimensional governing equation Eq. (13) that reads in this
specific case:

∂2θ
∂s2

����
s�
¼ �CY

Z 1

s�

Z s

0
cos θðs0Þ ds0

� �μ

cos 2 θ sð Þ cos θðsÞ�θðs�Þð Þ ds; ð33Þ

with the Cauchy number

CY ¼
ρU2

0CDWL3

2EI
: ð34Þ

Fig. 3 shows the results of the computational approach. In Fig. 3a, the deflection of the beam for increasing loads is shown in
the case of a linear flow μ=2¼ 1. As expected, significant bending is observed when CY 41. The evolution of the reconfi-
guration number and of the Vogel exponent in Fig. 3b and c stresses the existence of two asymptotic regimes. At low Cauchy
numbers, the structure behaves as a rigid beam so the Vogel exponent is null no matter the flow profile. At very large
Cauchy numbers however, the Vogel exponent converges towards a constant that depends on the shear exponent μ. The
asymptotic Vogel exponent numerically obtained for varying flow profiles is plotted in Fig. 10 in the Appendix, for CY ¼ 105

(which implies ℓ¼0.02 for μ/2¼0 and ℓ¼0.2 for μ/2¼2). It shows excellent agreement with the theoretical value given by
(23). We re-plot in Fig. 4 the evolution of the Vogel exponent as a function of the characteristic bending length ℓ given by
(32) instead of the Cauchy number CY. In the three cases displayed, the Vogel exponent was within 2% of the asymptotic
value for ℓo0:2. This confirms that the threshold for the asymptotic regime is well expressed, for any value of the para-
meter μ, in terms of the same critical value of ℓ.

The asymptotic results shown in Fig. 10 contradict the preliminary results of Henriquez and Barrero-Gil (2014). The
origins of these discrepancies are discussed in the Appendix.

4.3. A uniform beam in a Blasius boundary layer

The particular power-like form of the pressure, cross-section shape and stiffness distributions p(z), w(s), b(s), as well as
the constitutive law gðκÞ, is a necessary assumption for the theoretical derivation of the asymptotic expression (23) that may
appear like a strong limitation of the model above. It seems however that the actual scope of applicability of (23)
encompasses a much wider range of practical situations. For highly bent structures, the curvature tends to concentrate in a
small “inner” region soℓ near the clamped edge. As explained in Alben et al. (2002, 2004), the “outer” portion of the system
located above ℓ “sits” in the wake created by the deflection of the incident flow heading to the inner region upstream, and
so it only endures very little fluid loading. Consequently, the outer domain only has negligible influence on the overall shape
and drag of the structure, and only the spatial dependency of the flow and structural parameters inside the inner domain is
actually relevant to the modelling of the system. The whole theory above should thus remain valid as long as power function
approximations can accurately model these parameters at the scale of ℓ only, and not necessarily at the scale of the whole
beam length.

To better understand the implications above, we consider the reconfiguration of a non-tapered, elastic, homogeneous
beam, in a Blasius boundary layer. In this case, all the structural parameters are spatially invariant, but the flow exhibits a
more intricate shear profile than a simple power-law fit in z. For the sake of clarity, all the space variables have been



Fig. 3. A uniform beam in a shear flow. (a) Deformation of the beam in a linear flow profile μ=2¼ 1. (b) and (c) Reconfiguration number R and Vogel
exponent ν as functions of the Cauchy number CY: uniform flow profile μ=2¼ 0 (——), linear flow profile μ=2¼ 1 (� � �), and quadratic flow profile μ=2¼ 2
(���). Asymptotic Vogel exponent predicted by Eq. (23), uniform flow profile μ=2¼ 0 (○), linear flow profile μ=2¼ 1 (□), and quadratic flow profile
μ=2¼ 2 (▵).
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normalized by the length of the beam, or equivalently L¼1. In the model of Blasius, the vertical velocity is negligible and the
horizontal velocity is expressed as

Uðx; zÞ ¼ U1f 0 ηð Þ; ð35Þ

with the similarity variable η¼ z
ffiffiffiffiffiffiffiffiffiffi
RL
e=x

q
, the Reynolds number based on the length of the beam and outer flow velocity RL

e,
and f the solution of the Blasius boundary layer equations:

2f ‴þ ff ″ ¼ 0; f ð0Þ ¼ f 0ð0Þ ¼ 0; f ðηÞ⟶
η-1

1: ð36Þ

The resulting flow profile, shown in Fig. 5a for a fixed value of x, is characterized by a smooth transition from a linear
increase with slope U1=LBðxÞ near the wall saturating to a uniform magnitude U1 far from it. The two domains are roughly
delimited, at each location x, by the dimensionless characteristic length scale

LB xð Þ ¼ 1

f ″ð0Þ

ffiffiffiffiffi
x

RL
e

s
; ð37Þ



Fig. 5. Description of the reconfiguration in a Blasius boundary layer. (a) Blasius profile Uðx; zÞ at a fixed x. (b) Beam deforming in a Blasius boundary layer.

Fig. 4. A uniform beam in a shear flow. Variation of the Vogel exponent in the ℓ–ν space, uniform flow profile μ=2¼ 0 ( ), linear flow profile μ=2¼ 1
(� � �), and quadratic flow profile μ=2¼ 2 (���). Asymptotic Vogel exponent predicted by Eq. (23), uniform flow profile μ=2¼ 0 (○), linear flow profile
μ=2¼ 1 (□), and quadratic flow profile μ=2¼ 2 (▵).
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such that

U x; zð Þ �U1 for z⪢LB xð Þ and U x; zð Þ � U1
LBðxÞ

z for z⪡LB xð Þ: ð38Þ

The approach presented in this paper is based on the assumption that the flow is invariant in the x-direction, and so the x-
dependency of the Blasius flow inside the boundary layer would a priori prevent (23) to be valid. However, the region of
space swept by the deforming beam extends at most one beam length downstream of its anchorage point x0 (see Fig. 5b). If
the structure is placed far enough from the origin of the boundary layer (x0⪢1), then LBðxÞ � LBðx0Þ anywhere in the vicinity
of the beam, and so the flow can be considered locally horizontally invariant. The coexistence of the two flow regimes along
the vertical axis makes room for two different characteristic velocities according to (38): U0 ¼ U1 in the uniform domain,
and U0 ¼U1=LB in the linear domain. Two Cauchy numbers can subsequently be defined according to (14): CY ;uni is based on
the uniform outer flow velocity U0 ¼U1, while CY ;lin ¼ CY ;uni=L

2
B is based on the inner characteristic velocity U0 ¼ U1=LB.

Fig. 6a displays the evolution of the Vogel exponent as the loading increases, for several fixed values of LBr1. The parameter
chosen to describe the fluid loading is the Cauchy number based on the uniform outer flow, CY ;uni.

Evidently, if LBZ1, then the beam lies entirely in a linearly sheared flow even when it stands upright. This situation is
strictly equivalent to the shear flow case studied in Section 4.2 with pressure shear exponent μ¼ 2, if the Cauchy number CY
is identified with the linear flow Cauchy number CY ;lin. For LB ¼ 1, CY;lin ¼ CY;uni and the evolution of the Vogel exponent
shown in Fig. 6a, is very similar to the curve obtained for a linear velocity profile in Fig. 3c.

On the other hand, structures reconfiguring in boundary layers smaller than their length (LBo1) experience much more
intricate behaviours. Fig. 6b shows a zoom on the near-wall region of a beam reconfiguring in a Blasius boundary layer a
hundred times smaller than its size (LB ¼ 10�2). This plot should be analysed jointly with the corresponding curve in 6a.
When the Cauchy number is small, the linear flow region is much smaller than the portion of the beam that experiences
significant bending. The inner domain soℓ is mostly subjected to the uniform flow U ¼U1, and the influence of the linear
flow on the very bottom of the beam is negligible. Consequently, the evolution of the Vogel exponent for CY ;unio102 is very
similar to that obtained for a uniform flow in Fig. 3c. As the loading increases, the beam bends more and more and as a
result the linear flow covers an increasing portion of the inner region. It follows that the Vogel exponent decreases for
CY;uni4102. Asymptotically, when the bending region is fully confined inside the boundary layer, the Vogel exponent cat-
ches up with the asymptotic value characteristic of linear shear, ν1 ¼ �6=5. The same analysis remains valid for other
boundary layers smaller than the beam LBo1. If the loading increases enough, the beamwill always eventually dive entirely



Fig. 6. Reconfiguration in a Blasius boundary layer, anchorage point x0 ¼ 107. (a) Vogel exponent ν as a function of the Cauchy number CY ;uni , LB ¼ 10�3

(——), LB ¼ 10�2 (� � �), LB ¼ 10�1 (���), and LB ¼ 1 (� � �). Asymptotic Vogel exponent predicted by Eq. (23), uniform flow profile (○), and linear flow
profile (□). (b) Zoom near the clamped edge of a beam bending in a Blasius boundary layer, LB ¼ 10�2.
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inside the boundary layer and the Vogel exponent will asymptotically reach the theoretical value predicted for a linear flow
profile. But the threshold above which this asymptotic regime is reached depends on the thickness of the boundary layer LB.
The larger LB, the sooner the shear flow will dominate. Precisely, the relative impacts of the uniform and linear flow regions
can be estimated by comparing the thickness of the boundary layer LB to the size of the bending region ℓ. However, the
expression of ℓ depends on which of the uniform or linear flow dominates. In the uniform outer flow, (27) yields
ℓuni ¼ C�1=3

Y ;uni , while in the linear region it would predict ℓlin ¼ C�1=5
Y ;lin ¼ L2=5B C�1=5

Y ;uni ¼ L2=5B ℓ3=5
uni . At the threshold between the two

regimes, ℓuni ¼ ℓlin ¼ LB, which also yields CY;uni ¼ L�3
B . Note that this threshold specifically sets the lower bound (in terms of

the Cauchy number) to the purely linear flow approximation, but the purely uniform flow approximation loses its validity
for much smaller loads. Indeed, for ℓ smaller but close to LB, the region of the beam that concentrates the interaction with
the flow is already confined inside the boundary layer so that the influence of the uniform domain above totally vanishes.
Conversely, for ℓ4LB, the influence of the linear domain never strictly vanishes, and its influence becomes negligible only
for ℓ⪢LB. This result is consistent with the thresholds for convergence towards the linear regime observed for the different
cases in Fig. 6a. For LB equal to 10�1;10�2 and 10�3, the Vogel exponent was within 2.5% of its expected asymptotic value
ν1 ¼ �6=5 for CY ;uni respectively superior to 102:9, 105:85 and 108:8. If the thickness of the boundary layer LB is small enough,
the influence of the linear region may remain negligible for loadings large enough to permit convergence of the Vogel
exponent in the uniform domain, before it reaches the linear domain. This is observed for instance in Fig. 6a, where the
Vogel exponent for LB ¼ 10�3 displays a plateau around the asymptotic uniform flow Vogel exponent ν¼ �2=3 for
CY ;uni � 102�105, before switching to the asymptotic linear flow Vogel exponent ν1 ¼ �6=5 above CY ;uni � L�3

B ¼ 109. On the
other hand, for thicker boundary layers (LBZ10�2), the influence of the linear domain may not be neglected for loadings
large enough to reach convergence in the uniform domain. For LB ¼ 10�1, convergence to the asymptotic regime is
approximately concomitant with the switch from uniform to linear flow regime. The small hump around CY ;uni ¼ 102

illustrates the successive dominance of the uniform flow that tends to bring the Vogel exponent closer to ν¼ �2=3 as the
asymptotic regime approaches, soon overcome by the linear flow whose influence is to decrease it to ν¼ �6=5. When
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LB ¼ 1, the linear flow region dominates as soon as reconfiguration occurs, so the early effects of the uniform domain are not
even noticeable in Fig. 6a.

This example shows that our approach based on self-similarity actually provides understanding of the behaviour of much
more complex configurations. Strictly speaking, there will always be an asymptotic regime, should it be reached for
extremely large Cauchy numbers. Indeed, as the structure bends, curvature always concentrate in a region of characteristic
length ℓ that gets smaller and smaller, so that it eventually gets small enough for all the parameters to be well approximated
by power laws at its scale. Thus, the actual asymptotic Vogel exponent is given by (23) using the exponents of the first order
in the power law expansions of the structural and flow parameters at the foot of the beam. Yet, the threshold above which
these power law approximations all hold may be too large to be ever reached in practice. In this case, intermediate
asymptotic regimes may arise on whole ranges of Cauchy numbers. We may conclude that convergence of the Vogel
exponent towards a constant independent of the loading may occur if the bending length ℓ is either much larger or much
smaller than any of the other characteristic length scales involved.

4.4. A non-uniform beam in a uniform flow

To further check the validity of the asymptotic expression (23), we compared it to the numerically computed asymptotic
Vogel exponent in some other cases involving variations of the material constitutive law, material stiffness or structural cross-
section shape. To make sure that the asymptotic regime was reached in the numerical simulations, a large enough value of the
Cauchy number (CY ¼ 105) was chosen so that the characteristic bending length ℓwould be inferior to 0.1 in all cases. The results
are shown in Table 2, along with the corresponding ℓ-value. Agreement is excellent in all the cases considered.

A more intricate example is that of a linearly tapered beam of increasing width W, namely

WðsÞ ¼W1þðW0�W1Þs; ð39Þ

as shown in Fig. 7. In most cases, we would then expect the bending stiffness to also vary, but to highlight the effect of the
cross-flow area alone, we assume here that the variations of the cross-sectional shape and elastic modulus are chosen such
that the bending stiffness remains uniform. Consistently with (14), we define the Cauchy number as in Eq. (34) using the
width at the tip W0 as characteristic width. Note that the case W0�W1 ¼ 0 corresponds to the constant width problem γ¼0,
while the caseW1 ¼ 0 corresponds to the linear width problem γ¼1. We define the characteristic length δ as shown in Fig. 7,
Table 2
Comparison of the theoretical and numerically computed Vogel exponents for varying systems.

System α β γ μ Theoretical ν1 (23) Numerical ν at CY ¼ 105 ℓ-Value (27) at CY ¼ 105

Benchmark case 1 0 0 0 �2/3 �0.6681 0.02
Elastoplatic behaviour 0.5 0 0 0 �0.8 �0.8013 0.01
Rigid base 1 �1 0 0 �0.5 �0.5006 0.06
Linear width 1 0 1 0 �1 �1.0024 0.06

Fig. 7. Tapered beam.



Fig. 8. Vogel exponent ν of a tapered beam for increasing Cauchy numbers CY, δ¼ 10�3 (——), δ¼ 10�2 (� � �), δ¼ 10�1 (���), δ¼1 (� � �), and δ¼ þ1
(thick ). Asymptotic Vogel exponent predicted by Eq. (23), constant width (○) and linear width (∇).
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such that Wð�δÞ ¼ 0:

δ¼ W1

W0�W1
: ð40Þ

This quantity can be seen as the length on which the width must vary to significantly deviate from W1 due to the given
slope. Notably, the relative gap between W(s) and W1 can be expressed as

WðsÞ�W1

W1
¼ s
δ
: ð41Þ

In other words, the quantity δ is a measure of the length of validity of the uniform width approximation, as LB was char-
acteristic of the length of validity of the linear flow approximation in the Blasius boundary layer. Hence, the evolution of the
computed Vogel exponents shown in Fig. 8 for several values of δ and for increasing Cauchy numbers may be explained in a
similar fashion. The Vogel exponent converges at large Cauchy numbers towards the theoretical value ν1 ¼ �2=3, con-
sistently with the first orderW1 in the power function expansion (39). For δ41, the Vogel exponent deviates very little from
that of a beam of uniform width (δ¼1). Conversely, for very small δ such as 10�3, the structure behaves as a beam of linear
width, long enough to exhibit an intermediate asymptotic regime ν¼ �1 on a broad range of loadings. Structures with
intermediate δ-values show an earlier shift from linear-like to uniform-like behaviour that do not allow intermediate
convergence of the Vogel exponent. Finally, it should be noted that the characteristic bending lengths reads here ℓ¼ C�1=4

Y
in the linear width regime. Hence, the threshold between the two regimes, ℓ=δ¼ 1, reads in this case CY � δ�4. Contrary to
the case of reconfiguration in a boundary layer, this threshold here must be thought of as a reference load around which
both the uniform and linear terms of the width (39) influence the behaviour of the beam equally. It is not a critical load
above or under which one of the two regimes loses all influence. This is so because, while the two flow domains of the
boundary layer were spatially separated (above and below LB), the two terms of W(s) coexist everywhere, including at the
clamped edge. If each term can be neglected, respectively far above or far below the threshold CY ¼ δ�4, none of them can be
ignored in the transition range around this value. This is consistent with the evolutions displayed in Fig. 8. At CY ¼ δ�4, the
Vogel exponent is equal to �0:79 for all three values δ¼ 10�1, 10�2 and 10�3.

One may wonder what would happen if the width was decreasing from base to tip instead of increasing. In this case,
δo�1 means that the effects of the slope are only noticeable near the tip, but never near the base where the finite value
dominates in any case. In other words, the effects of taper may slightly affect the Vogel exponent for low Cauchy numbers,
but the drag rapidly resembles that of a beam of constant width W1 as soon as bending is significant. These expectations are
confirmed by numerical simulations, not shown.

These results shed light on the apparent contradiction between the two asymptotic Vogel exponents for a disk cut along
many radii derived respectively by numerical computations (ν1 ¼ �2=3) and by dimensional analysis (ν1 ¼ �1) in Gosselin
et al. (2010). In the latter, it was assumed that because the inner radius Ri was 4–6 times smaller than the exterior radius the
small width at the base W1pRi could be neglected. However, because the bending stiffness EI, proportional to the width W,
cannot vanish at the base, it was assumed that the inner radius still influenced the drag through its finite contribution to the
characteristic bending stiffness at the base. Consequently, their analysis corresponds to the case of a purely linear increase of
the width from 0 at the base (γ¼1), on a beam with a non-vanishing bending stiffness (β¼0), hence the predicted Vogel
exponent ν1 ¼ �1. However Fig. 8 clearly shows that for δ as small as 10�1, we do not see a plateau at ν¼ �1 before the
effects of the actually non-vanishing width are observed. The two taper ratios considered in Gosselin et al. (2010), δ¼0.22
and 0.32 are even larger, and so the assumption of negligible base width does not hold there. A Vogel exponent of �2=3 is in
fact to be expected, and that was indeed the result of their numerical computations. Note that the experimental results in
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Gosselin et al. (2010) do not match either ν¼ �2=3 nor ν¼ �1, neither for the cut-disk nor for the single rectangular plate.
The largest Cauchy number considered in the experiments barely exceeded 102, so it is very likely that the asymptotic
regime was simply not reached. However, the close values of the Vogel exponents computed in both cases (ν¼ �1:3 for the
cut-disk and ν¼ �1:4 for the rectangular plate) may indicate that the cut-disk behaves similarly to the rectangular plate,
consistently with our expectations.

It should also be noted that the influence of other types of tapering was also addressed by Lopez (2012), for slender cones
and tree-like structures with rectangular cross-sections (see also Lopez et al., 2014). It was found in both cases that taper
had no influence on the scaling of drag, as numerical computations all yielded the same asymptotic Vogel exponent
ν1 ¼ �2=3. As a matter of fact, as the vertical axis used in these studies was reversed with respect to ours, both the cross-
flow width and the thickness of the beam would reach finite values at the clamped edge for any of the geometries con-
sidered. Consequently, according to the present study, the drag experienced by such structures in the limit of large loadings
scales as that on a beam of uniform properties ðα; β; γ; μÞ ¼ ð1;0;0;0Þ. According to Eq. (23), this indeed yields ν1 ¼ �2=3.
5. Discussion

5.1. On the use of Eq. (23) for actual systems

Eq. (23) gives the Vogel exponent for large Cauchy numbers in the general case as a function of the exponents α
(constitutive law gðκÞ), β (stiffness distribution b(s)), γ (cross-section shape distribution w(s)), and μ (pressure distribution p
(z)). Interestingly, (23) can also be written in a simpler form

ν1 ¼ � 2
1þψ=ϕ

ð42Þ

that highlights the influence of only two parameters: on the one hand, a geometrical parameter ϕ¼ 1þμþγ that accounts for
the distribution of fluid loading on the structure, and on the other hand, amaterial parameter ψ ¼ 1þα�β that characterizes
the restoring stresses.

In practice, the ranges accessible to the exponents α, β, γ and μ are bounded by limitations of multiple kinds. First,
considering the rigid-body force a limiting value, the finiteness of the drag force mathematically requires that γþμ4�1
(see Section 3). But in fact, neither the structural cross-section nor the flow profile of actual systems can possibly diverge at
s¼0, so γ and μ must actually be both positive or null in practice. Moreover, to ensure that the structural stress vanishes for
zero curvature, the exponent α of the material constitutive law gðκÞ has to be strictly positive. Finally, the bending moment at
the base cannot vanish when a loading exists. If the stiffness at the base bð0Þ was null, the curvature there would need to be
infinite and the resulting discontinuity in the angle θ across the boundary s¼0 would make the problem ill-posed. The
minimum energy solution would obviously be the straight horizontal beam, which experiences neither drag nor internal
stress. To eliminate this case, bð0Þ must be different from 0, so the exponent β of the self-similar stiffness function b(s) must
be negative or null. Note that a system with zero-stiffness at the base would essentially revert to a pin joint free to rotate,
with a Neumann boundary condition at s¼0. This would define a different system that falls out of the scope of this study,
and that would experience zero drag no matter the magnitude of the fluid loading. Consequently, the lower physically
admissible boundaries for the geometrical and material parameters of our system are ψ41 and ϕZ1.

Moreover, practical considerations further set upper boundaries to the typical values expected for these parameters. First, the
vast majority of actual structures have finite width, and only quite exotic systems would exhibit cross-sections increasing more
than linearly. It also seems unlikely that an actual flow would show more than linear shear, so we may reasonably expect the
geometrical parameter ϕ to remain approximately below 3 in most cases. Besides, the constitutive law of most elastic materials
should not deviate much from linearity (α¼1). Even the extreme case of perfect plasticity may be represented by taking α¼0, as
noted by de Langre et al. (2012), and a larger value α¼2 would already be a very strong exponent. Besides, continuous structures
generally show rather smooth variations of their stiffness, so that the magnitude of the exponent of the stiffness distribution, jβj,
should really not deviate much at all from 0. Nonetheless, the use of the present model with βa0 might constitute a valid
approach to handle the overall behaviour of compound or branched structures such as trees. Indeed, the drag of such structure is
the sum of the individual drag forces on each of its constitutive elements: trunk, branches, and leaves. The relative contribution
of each term is proportional to the projected area of each element. If we model the structure as an equivalent beam with local
stiffness based on the weighted mean of the individual elements at a given height, we would expect the equivalent stiffness to
decrease by several orders of magnitude from bottom (trunk) to top (leaves). At this point, the validity of this modelling is purely
speculative and further investigations should be carried on to analyse its relevance. But in any case, β as low as –1 leads to
variations of the stiffness factor that seem already quite sharp for an actual structure, and so we do not expect the material
parameter ψ to exceed 3 by much in general.

Considering all these limitations, we may now estimate the expected range of variation of the Vogel exponent. The isovalues
of the asymptotic Vogel exponent ν1 predicted by (42) are displayed in Fig. 9. They clearly indicate that, in these typical ranges of
the geometrical and material parameters ϕA ½1;3� and ψA ½1;3�, ν1 may approximately vary between �1=2 and �4=3 at most.
To illustrate the diversity of situations included in this rather narrow parameter space domain, a few practical configurations are
marked with crosses on (42). Case A is the benchmark case of Alben et al. (2002, 2004) and Gosselin et al. (2010), where all is



Fig. 9. Absolute value of the Vogel exponent in the reduced parameter space ψ–ϕ. The domain shaded in grey corresponds to non-physical ranges. Practical
cases: A–E (see text for the details).
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homogeneous and the constitutive law is linear: ðα; β; γ; μÞ ¼ ð1;0;0;0Þ. Case B is the linear flow case shown in Fig. 3a:
ðα; β; γ; μÞ ¼ ð1;0;0;2Þ. Case C would correspond to a uniform, perfectly plastic beam, in a uniform flow: ðα; β; γ; μÞ ¼ ð0;0;0;0Þ.
Finally, case D would characterize a system with either ðα; β; γ; μÞ ¼ ð2;0;0;0Þ (non-linear constitutive law gðκÞ ¼ κ2) or
ðα; β; γ; μÞ ¼ ð1; �1;0;0Þ (global model of a tree with infinite stiffness at the base and flexible branches). Overall, we expect that in
most situations of practical interest, the Vogel exponent at large Cauchy numbers will not deviate much from �1. This is
consistent with observations on plants, as discussed in the Introduction. Case E will be discussed in Section 5.3.

5.2. On the robustness of the results

The use of Eq. (23) to predict the asymptotic Vogel exponent of a given system relies on the ability to fit a power-law on
the spatial distributions of the structural and flow parameters, at least at the scale of the typical length on which significant
bending is observed. This requirement may appear as a very limiting factor, because some parameters may exhibit complex
variations, and because accurate assessment of the exponents might be challenging. However these two apparent issues
might not be as problematic as one might expect.

First, it follows from Sections 4.3 and 4.4 that discrepancies between the actual distributions of the parameters and their
best power-law approximations affect very little the validity of the analytical estimation of the Vogel exponent by (23). For
instance, it is striking that a beamwith taper ratio as large as 10, or even close to 100, still does not exhibit any intermediate
plateau similar to the asymptotic regime of a linearly tapered one. In fact, drag reduction on a beamwith taper ratio of order
10 is very similar to that of a beam of constant width equal to the base width. Similarly, a structure in a Blasius boundary
layer of thickness one order of magnitude smaller than its size is well described, as far as the asymptotic scaling of drag is
concerned, by a beam entirely inside the boundary layer. In other words, the ability of (23) to provide accurate estimation of
the Vogel exponent of actual systems seems very robust with respect to the accuracy of the self-similar fit of the system
parameters. Crude power-law fits at the scale of the bending length are likely to yield rather good results.

Second, the consequences of poor estimations of the exponents of the flow and structural parameter distributions α, β, γ,
μ also appear limited. It is noticeable in Fig. 9 that the asymptotic Vogel exponent ν1 does not vary much in the domain
under consideration. The larger the geometrical and material parameters ϕ and/or ψ, the less sensitive the Vogel exponent
becomes to small variations of the parameters. As already noted in de Langre et al. (2012), in the case of a uniform beam in a
uniform flow, a quadratic material constitutive law (case D in Fig. 9) is expected to lead to a Vogel exponent of �0:5, which
differs very little from the �2=3 exponent characteristic of linear elasticity (case A). Similarly, changing a linearly elastic,
uniform beam from a linearly sheared flow (case B, μ¼2 so ϕ¼3) to an environment with half less shear (μ¼1 so ϕ¼2)
would only reduce the Vogel exponent from �6=5 to �1. Hence, the estimation of the asymptotic Vogel exponent given by
(23) is expected to be also robust with respect to the possible errors made in estimating the fitting exponents.

To conclude, it may be said that the prediction of the Vogel exponent using Eq. (23) is quite robust with regard to the
parameters of the model.

5.3. On the limits of the model

The whole theory derived in this paper is based on assumptions of three different natures.
First, assumptions have been made regarding the way the action of the flow on the deforming structure is handled. The choice

of the simplified form for the local fluid loading (4) has already been discussed in Section 2. As to the specific form of the



Fig. 10. Asymptotic Vogel exponent ν1 for large Cauchy numbers as a function of the flow profile exponent μ=2. Henriquez and Barrero-Gil, 2014 (���),
present results given by Eq. (23) ( ), and numerical simulations at CY ¼ 105 (o).
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projection term in the fluid loading distribution cðθÞ ¼ cos 2 θ used all along the present study following Taylor (1952), alternative
admissible forms cðθÞ ¼ cos nθ with nZ1 were numerically tested, and did not lead to any significant alteration of the results.

Second, the study is limited to the influence of the steady background flow at large Reynolds number, in an otherwise
force-free environment. Namely, other effects such as gravity, viscosity, vortex shedding or dynamic effects have been
neglected here. Depending on the situation, these additional forces may impact the Vogel exponent of natural systems and
explain some of the scattering noted in the measurements performed on actual biological or man-made systems. Yet,
consistently with the results of Luhar and Nepf (2011) and Zhu (2008), we do not expect that the present results will be
largely affected by the effects of gravity or viscosity. The field of dynamics however still requires further investigations (see
Kim and Gharib, 2011 or Luhar, 2012).

Third, as to the type of system chosen, we have considered exclusively the reconfiguration of flexible cantilever beams in
cross-flow. Eq. (23) might actually remain valid for a broader range of systems, if the mechanism of reconfiguration is
resemblant enough to the axial bending considered here. Formula (42) directly embodies the competition between the fluid
loading, characterized by the geometrical parameter ϕ, and the structural restoring force, characterized by the material
parameter ψ. All along this paper, we have considered the restoring force to be the internal elastic bending force, but it might
very well be of a different nature. For instance, Barois and de Langre (2013) showed that a ribbon with a weight at one end
exhibits a constant drag. In that case, the fluid loading is of the same nature as in the present study, but the restoring force is
the constant axial tension due to the weight. For such system, the material parameter is ψ¼0 because there is no length
scale associated with the restoring force. It lies out of the admissible range defined earlier, and Eq. (42) yields an asymptotic
Vogel exponent ν1 ¼ �2 (case E in Fig. 9). This does indeed correspond to a constant drag. Conversely, there does not seem
to be any obvious analogy between the present study and the rolling up of sheets cut along one radius treated by Schou-
veiler and Boudaoud (2006) and Alben (2010). In their case, drag reduction is the result of a more complex three dimen-
sional bending process that does not resemble the mechanism considered here.

Finally, it should be noted that the approach used here may easily be adapted to assess the asymptotic effect of elastic
reconfiguration on other physical quantities such as the torque at the base of the structure. After some straightforward
calculations, the analytical expression found for the Vogel exponent is similar to (42) except that the geometrical and
material parameters ϕ and ψ must be respectively replaced by 1þϕ and 1þψ .
6. Conclusions

To conclude, we may say that this work provides a framework for the understanding of the typical values of Vogel
exponents observed in nature. It was shown that the scaling of drag with respect to the flow velocity, in the limits of large
loadings, mostly depends on the best power-law approximation of the flow and structural parameter distributions at the
scale of the length on which significant bending occurs. An analytical formula relating the asymptotic Vogel exponent to the
fitting exponents was derived in Eq. (23), and the sensitivity of this expression with respect to the accuracy of the modelling
was shown to be weak.

More importantly, the application of Eq. (23) to a variety of actual systems highlighted the fact that scattering of the
Vogel exponents due to non-uniformities in the structural or flow distributions is expected to remain small. Consistently
with experimental observations, the predicted Vogel exponents for large loadings always lie around �1. Consequently, the
scaling of the drag on bending beams appears as a characteristic of the mechanism of elastic reconfiguration that depends
only on a very limited extent on the actual features of the system. The present study is however limited to quasi-static
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configurations. The effects of possible coupling between the structural inertia and the flow dynamics, should it be originated
by a time-varying background flow or the consequence of unsteady vorticity shedding in the wake of the structure, still
remains to be further investigated.
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Appendix A. Comparison with the results of Henriquez and Barrero-Gil (2014)

The problem of reconfiguration in a sheared flow addressed in Section 4.2 is identical to that treated by Henriquez and
Barrero-Gil (2014). However, our results strongly differ from theirs, as illustrated in Fig. 10 and discussed below.

There seem to be several possible causes for these discrepancies. First, the choice of the reconfiguration factor R in Eq.
(9) of Henriquez and Barrero-Gil (2014) is non-classical. The numerator does indeed correspond to the total drag on the
elastic structure as in the present paper. Yet, the denominator used in Henriquez and Barrero-Gil (2014) does not represent
exactly the force on the rigid body. Second, the Vogel exponent is defined as ν¼ 1=2� ∂ log R=∂ log CY instead of ν¼ 2�
∂ logR=∂ log CY given in Eq. (10) of the present paper to be consistent with FpU2þv. Besides, we believe their numerical
solution technique might not be as accurate as ours. As explained in Section 4.1, the inhomogeneous bending along the
beam axis makes their choice of uniform mesh with 20 discretization points ill-suited to the large deformation cases
investigated here. Finally, the largest Cauchy numbers investigated in Henriquez and Barrero-Gil (2014) do not exceed 104,
and their definition of the Cauchy number does not include the contribution of the drag coefficient CD which they choose as
0.4. Hence, the asymptotic results they show correspond to a value of CY C103:6 in our simulations. This does not reach the
asymptotic regime for the largest shear exponents.

The very good fit shown in Fig. 10 between our numerical simulations and our Eq. (23) strengthens our confidence in the
results of the present study.
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