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This paper investigates the control of self-excited oscillations in spatially developing flow
systems sich as jets and wakes using #£, control theory on a complex Ginzburg Landau (CGL)
model. The coefficients used in this 1D equation, which serves as a simple model of the evolution
of hydrodynamic instability waves, are those selected by Roussopoulos & Monkewitz (Physica
D 1996, 97) to model the behavior of the near-wake of a circular cylinder. Based on noisy mea-
surements at a point sensor typically located inside the cylinder wake, the compensator uses a
linear #L. filter based on the CGL model to construct a state estimate. This estimate is then used
to compute linear . control feedback at a point actuator location, which is typically located
upstream of the sensor. The goal of the control scheme is to stabilize the system by minimizing
a weighted average of the “system response™ and the “control effort” while rigorously bounding
the response of the controlled linear system to external disturbances. The application of such
modern control and estimation rules stabilizes the linear CGL system at Reynolds numbers far
above the critical Reynolds number Re, = 47 at which linear global instability appears in the
uncontrolled system. In so doing, many unstable modes of the uncontrolled CGL system are lin-
early stabilized by the single actuator/sensor pair and the model-based feedback control strategy.
Further, the linear performance of the closed-loop system, in terms of the relevant transfer func-
tion norms quantifying the linear response of the conlrolled system to external disturbances, is
substantially improved beyond that possible with the simple proportional measurement feedback
proposed in previous siudies. Above Re = 84, the 7. control designs significantly outperform
the corresponding % control designs in terms of their ability to stabilize the CGL system in the
presence of worst-case disturbances. The extension of these contrel and estimation rules to the
nonlinear CGL system on its attractor (a simple limit cycle) stabilizes the full nonlinear system
back to the stationary state at Reynolds numbers up to Re = 97 using fixed-gain linear feedback
and a single actuator/sensor pait.

1. Introduction

Understanding the physical mechanisms responsible for self-excited hydrodynamic phenom-
ena, and how such self excitation can best be subdued or eliminated by the action of control
feedback, are problems of important engineering consequences. For example, periodic vortex
shedding in the flow past a structure can lead to large oscillating forces on either the structore
causing the shedding or other structures situated downstream. This can cause significant struc-
tural damage when the flow velocity is such that the natural frequency of the vortex shedding is
near one of the resonant frequencies of the structure in question. This paper investigates the use
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of linear robust control theory and an illuminating model problem in order to shed light on some
of the relevant issues in the feedback control of such phenomena.

Open shear flow instabilities are commonly interpreted using the concepts of absolute and con-
vective instability (Huerre & Monkewitz 1990). An unstable linear system is termed absolutely
unstable if a localized impulse injection of energy spreads downstream and upstream and even-
tually destabilizes the entire media; on the other hand, if the system relaxes to the equilibrium
at any fixed location as the growing disturbance energy is advected downstream, it is termed
convectively unstable. In the preferential frame of reference of the system (which can usually
be defined without ambiguity, due to the presence of bodies or inflow conditions), an important
characterization of the system is the normal mode with vanishing group velocity with maximum
growth rate, referred to as the absolute mode, If the growth rate of this mode is positive, the sys-
tem is absolutely unstable and is described as a femporal instability; if it is negative, the system is
convectively unstable and is described as a spatial instability, This criterion was first introduced
in plasma physics and, together with the requirement that the absolute mode must arise from
the cealescence of upstream and downstream spatially developing modes, is referred to as the
Briggs-Bers criterion (Briggs 1964; Bers 1983).

In fluid mechanics, the definitions given above may strictly only be applied to parallel flows,
for which the stability characteristics do not depend upon the streamwise coordinate. Never-
theless, the analysis can be extended locally at each streamwise location when the flow is only
slowly diverging, i.e., when the length scale A of the typical instabilities is small with respect
to the characteristic evolution length scale L of the mean flow. This extension may be used to
establish a valuable link between the spatially localized short time response to local forcing and
the global long time response of the entire system (Huerre & Monkewitz 1990; Monkewitz 1993)
when control feedback is not applied. In this setting, the flow may be characterized by analysis
of its local stability properties, obtained by artificially extending the local values of the flow
characteristics to the entire system.

Flows which only display local convective instability or for which the size of the pocket of ab-
solute instability is not sufficiently large will behave in the linear regime as noise amplifiers with
extrinsic dynamic behaviour, returning to rest when external forcing on the system is removed
and all disturbances wash downstream. Flat-plate boundary layers (Gaster [968) and coflow-
ing mixing layers (Huerre & Monkewitz 1985) behave in this manner, Alternatively, certain
marginally globally stable flows behave like slightly damped oscillators, in which an intrinsic
oscillating mode is preferentially excited by system disturbances. Low Mach number axisym-
metric jets (Huerre & Monkewitz 1990) demonstrate this type of behaviour, Finally, flows in
which a sufficiently large pocket of absolute instability is present typically behave as oscillators
with intrinsic dynamic behaviour, sustaining growing (and eventually saturating) perturbations
in the system even when all external forcing on the system is removed, Such is the case for cap-
illary jets (Monkewitz 1990) and bluff-body wakes (Huerre & Monkewitz 1930). In this case,
as a global control parameter is increased (the Weber number in the case of capillary jets, the
Reynolds number in the case of wakes) a supercritical Hopf bifurcation eventually takes place in
which a stable steady solution bifurcates to a periodic limit cycle whose magnitude is governed
by the nonlinearities of the system (Chomaz et al. 1987, 1988; Couairon & Chomaz 1999; Pier &
Huerre 2001). The unstable mode prevailing in the linear regime, termed the linear global mode,
is a time-harmonic spatial mode that satisfies a streamwise eigenvalue problem; in the case of
linear global instability, the system eventually saturates into a limit cycle, termed the nonlinear
global mode (Pier et al. 1998; Pier & Huerre 2001).

Our main interest here, the bluff-body wake, has been the central subject of many studies. In
the early 1980’s, the elegent experimental discoveries of Mathis ez al. (1984) and Provansal et
al. (1987) motivated renewed interest in this flow. These studies, perhaps the first studies of an
open flow considered as a dynamical system, showed that the von-Kérm4n shedding characteris-
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tic of biuff-body wakes was not a response to continuous excitations upstream but was indeed a
limit-cycle oscillation of the near wake in which an initially exponentially-growing linear global
mode nonlinearly saturates. This was the first link between theoretical work on linear global
instability and real flows, and has been used ever since as motivation for the study of both lin-
ear and nonlinear global instability. These results were related to local near-wake instability in
Monkewitz (1988). For the case of the cylinder wake, when the Reynolds number based on the
cylinder diameler, Re, exceeds Re = 5, a local pocket of convective instability appears in the near
wake, this region growing in dimension when one increases Re further. Upon reaching Re =2 25,
a second local bifurcation takes place and a region of absolutely unstable flow appears within the
convectively unstable flow. The size of the absolutely unstable region increases with Re up to the
critical value Re, =2 47 at which point a global bifurcation takes place in the wake, and vortex
shedding appears. Below this critical value, noise amplification takes place, but when all exterior
forcing is removed, the system eventually comes back to rest everywhere. For further review
of bluff-body wake phenomena in the uncontrolled setting, especially of the three-dimensional
effects that appear for Re 2 190, the reader is referred to Williamson (1996). The goal of the
present study is to develop simple feedback control rules based on #£, control theory to delay
the appearance of linear global instability until some Re > 47.

As previously proposed (Ffowes Williams & Zhao 1989; Roussopoulos 1993), since vortex
shedding is the nonlinear limit cycle of an initially linear instability, linear control rules sup-
pressing linear instability might also prevent vortex shedding, possibly (at least at some Reynolds
numbers) regulating to zero the fully nonlinear system from everywhere on the attracting limit
cycle of the uncontrolled nonlinear system. The extrapolation of linear control strategies to the
control of nonlinear systems is based on the hypothesis that, at a given Reynolds number, the do-
main of convergence to the stationary state in the linearly-controlled nonlinear system includes
the entire nonlinear attractor of the uncontrolled system. Whether or not linear feedback may be
found such that this hypothesis is true in a particular system is often difficult to predict a priori,
but may be at least partially verified by simulationt. In the control of fluid-mechanical systems,
this hypothesis has sometimes proven to be true, as in the conirol of turbulent channel flow at
very low Reynolds number as studied in Hégberg, Bewley, & Henningson (2003). On the other
hand, it has sometimes proven to be false, as in the control of a simple convection loop as studied
in Bewley (1999). In these two examples, the attractor of the uncontrolled nonlinear system is in
fact chaotic, and the nonlinear concept of gain scheduling (that is, selecting linear feedback gains
based on some measure of the state of the system) has proven to be quite useful. In the present
case, the attractor of the uncontrolled nonlinear system (that is, the vortex shedding) is a simple
limit cycle. In open flows dominated by the effects of convection, such as the present, the idea of
extrapolating linear control strategies to the full nonlinear system is particularly appealing, as far
enough upstream in such systems, all perturbations (even those on the attractor of the full nonlin-
ear system) are small, and thus linear analysis without gain scheduling is valid, Therefore, if the
actuator and sensor are located sufficiently far upstream, linear control should have a stabilizing
effect on the nonlinear synchronized behavior.

t Note that Lyapunov-based analysis may sometimes be used to establish rigorously an (often conserva-
tive) lower bound on the domain of stability of a controlled nonlinear system. Using a constructive control
design approach such as backstepping (which leverages Lyapunov-based analysis), it is even possible in
certain cases to design globally-stabilizing nonlinear feedback. A recent application of such an approach
to the CGL equation is discussed by Aamo & Krsti¢é (2003). In sitwations for which such global stabiliza-
tion is possible, synthesizing a control design which is both locally #£. optimal and globally (nonlinearly)
stabilizing is possible, using the technique developed by Ezal, Pan, and Kokotovi¢ (2000). For brevity, the
present paper focuses on the development of linear #,-optimal control feedback; the possible synthesis of
these linear control designs with globally-stabilizing nonlinear control designs (in those limited cases for
which this is currently possible) is deferred to future work.
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As a model for spatially developing flows, the complex Ginzburg-Landau {CGL) equation has
been chosen in this study. In previous studies, this 1D model equation has proven to be quite
useful for determining global frequency criteria [in both the lingar (Chomaz er al, 1991) and
nonlinear (Pier ef al. 1998) regimes] which extend accurately to the full 3D system governed by
the Navier-Stokes equation (Monkewitz et al. 1993; Pier & Huerre 2001, Pier 2002). Moreover,
because the eigenfunctions of the CGL model at sufficiently low Re accurately represent all
of the unstable linear global modes of the full Navier-Stokes system, analysis of this model
equation has also allowed semi-quantitative predictions of the effect of proportional feedback
control in physical experiments (Monkewitz 1989, 1993; Monkewitz er al. 1991; Roussopoulos
& Monkewitz 1996) of spatially-developing flow systems.

A few previous investigations have studied the control of the present system using strategies
based on physical insight or inspired by simple practical considerations. Using a linear CGL
model, it was shown in Monkewitz (1989) that stabilization of self-excited oscillations with pro-
portional measurement feedback from a single sensor to a single actuator was only effective near
the global bifurcation point and for small values of the feedback gain. When the bifurcation pa-
rameter exceeded this narrow window, the feedback still stabilized the primary unstable mode,
but it destabilized a secondary mode. In a related study, Park et al. (1993) obtained similar con-
clusions. More recently, Roussopoulos & Monkewitz (1996) (hereafter referred to as RM96) used
a cylinder wake model, combining the usual linear streamwise CGL equation with a nonlinear
diffusive spanwise CGL equation in order to account for both 2D and 3D effects. To control this
model, they applied proportional measurement feedback, with the result that vortex shedding at
Re = 50 could only be suppressed in the spanwise vicinity of the sensor, even if the actuator acted
uniformly over the entire span; this confirmed previous experimental results from Roussopoulos
(1993). The model we will use in this paper is the 2D version of the model used in RM96.

An earlier study of by our group (Lauga & Bewley 2003) considered the full-information
feedback control of the lincar CGL model and the gradual decay of linear stabilizability of this
system as the Reynolds number is increased. It was found that, even though in theory the sys-
tem considered is linearly stabilizable for all Re, the control authority on the unstable modes
becomes exponentially small as the Reynolds number is increased. For a given actuator position,
an effective upper bound on the Reynolds number is reached above which numerical codes fail to
determine a stabilizing feedback control rule via solution of the relevant Riccati equations. How-
ever, this apparent “limit” is nothing more than a persistent numerical artifact, as it is strongly
dependent on the numerical precision used in the computation of the feedback gains. Thus, such
“limits” do not represent fundamental features of the system considered. This study in fact mo-
tivates us to explore different measures to quantify the control system effectiveness in both the
linear and nonlinear regimes, as we set forth to do in the present paper.

Finally, experimental and numerical studies of the control of vortex shedding have been the
focus of several investigations. Proportional measurement feedback control of vortex shedding
behind an oblong cylinder was implemented experimentally in Berger (1967) with success for a
short range of Reynolds numbers, between Re; = 79.2 and Re = 90.3, Since then, many other
publications have considered various passive and physically-based active strategies, either nu-
merically (Park et al. 1994; Min & Choi 1999), theoretically (Monkewitz 1993; Park 1994),
or experimentally (Roussopoulos 1993). In the comprehensive numerical study by Park et al.
(1994), proportional measurement feedback control could suppress vortex shedding at Re = 60
for select sensor locations, but at Re = 80 the wake could not be controlled, as the primary vortex
shedding mode was stabilized but a secondary shedding mode was not. This effect was also ob-
served experimentally by Roussopoulos (1993). More recently, Min & Chei (1999) used “subop-
timal” control theory (i.e. finite-horizon model predictive control theory applied over an infinites-
imal time horizon) to completely stabilize vortex shedding in simulations up to Re = 160. This
impressive performance well exceeds previous results and motivates the present work, which
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attempts to stabilize a model of the wake using the linear %5/, control approach and time-
independent feedback gains in a single-input, single output configuration for Reynolds numbers
up to the onset of three-dimensional effects.

The present paper is organized as follows. In Section 2, we develop the control-oriented system
model, presenting both the CGL equation and the spatial discretization used to the represent this
equation in state-space form. We briefly review in Section 3 the #4/%, control theory used in
the present work, the special considerations involved in applying this theory to the discretized
CGL madel, and the tools used to analyze its effectiveness. Section 4 is devoted to the study of
the performance of the controlled linear system, including a comparison between modern and
proportional control and a comparison of the effectiveness of the 7 and . control design
strategies. Section 5 addresses the effectiveness of the linear control and estimation strategies on
the nonlinear CGL. system. Section 6 presents some concluding remarks.

2. System modeling
2.1. The complex Ginzburg-Landau equation

As stated in the introduction, the one-dimensional complex Ginzburg-Landau (CGL) equation
was chosen in this study as a model of the evolution of instability waves in flows which develop
slowly in the spatial coordinate x. The generic form of the CGL equation describes the spatio-
temporal evolution of a complex streamfunction yix,¢) of a perturbation wavepacket to some
base-flow streamfunction W(X,t) close to marginal stability. It is given by
2

Y o ) g uxpw v T )P, @
where the complex coefficients x, g, v and 1 are said to depend on the “slow” variable X = ex
where € < 1, reflecting a weak spatial dependance of the base state on x. This equation pa-
rameterizes a combination of (or “competition” between) advection, instability, diffusion, and
nonlinear effects on perturbations of the flow. Note that, in physical terms, x is normalized by
cylinder diameter I and ¢ is normalized by D over the free-stream velocity Ue..

Early work on the CGL equation in the fluid mechanics community can be found in Newell
& Whitehead {1969) in the case of Rayleigh-Bénard convection and Stewartson & Stuart (1971)
in the case of plane Poiseuilte flow. An exact derivation of (2.1) in the context of weakly nen-
parallel shear flows such as jets or bluff-body wakes can be found in Monkewitz ef al. (1993)
(see also Huerre & Monkewitz 1990; Le Gal ez al. 2003).

Physical arguments can also be invoked to derive the CGL equation. A local normal mode
stability analysis of a base state which depends weakly on the spatial coordinate x can provide,
at each location x, an absolute mode whose complex frequency is denoted by wq(x). The real
part of &y is the temporal frequency of this mode, and the imaginary part of oy is the temporal
growth rate of this mode. The results of Chomaz ef al. (1991) can then be used to relate the
global stability characteristics of a nonparallel, slowly diverging uncontrolled system to its local
characterizations given by wy{x). To achieve such a global characterization, the complex-valued
function wg(x) is analytically continued into the complex plane z defined such that x = R(z).
The closest point to the real axis in the complex plane for which duyg/dz = 0 is referred to as the
wavemaker 7. The value of g at this complex turning point, o = wo{z'}, is (to first order in €)
the complex global frequency of the entire uncontrolled linear system, which is linearly globally
unstable if and only if 3(w') > 0f.

As the the linear response of the uncontrolled system to an impulse injection of energy will

1 Note that when a feedback control loop is used to relate sensing at one point in this system to forcing
at another point, this analysis technique breaks down, and the global behavior of the system must be char-
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eventually be dominated by the single global mode {ko(x), wp(x)} with zero group velocity
dw/ok = 0, the dispersion relation describing o{k;x) for a perturbation wavepacket to the base
configuration may be approximated in the neighborhood of this mode by a truncated Taylor series
expansion in X of the form

o(kx) ~ wolx) + %mu(x)[k — ko). 22)

As the behavior of the system is dominated by, the effect of this mode, one may proceed by
assuming equality in this relation for all w, &, and x. Multiplying this equation by /{1, «(x) and
inverse transforming the result with respect to both time ¢ and the spatial coordinate x, assuming
that both the Fourier modes {1, +(x) and the coefficients wg(x), Wk (x), and ko{x) vary only slowly
with x and thus at any particular value of x may be considered essentially invariant in x, leads to
the CGL equation (2.1) for y(x,t) = Ty, ; Yook (x) € €71, linearized around the state y = 0

; 2
W o o)+ Ryt oo +tou T 2 Ly @3
For the purpose of analysis, we endow this equation with vanishing boudary conditions as |x| —
oo, As a consequence, we restrict our attention to systems for which local instabilities are not
dominated by the effects of boundaries, which is a valid approximation for many flows of physi-
cal interest, such as bluff-body wakes (Hammond & Redekopp 1997; Huerre & Monkewitz 1990;
Monkewitz et al. 1993) and geophysical shear flows.

For the specific case of the wake behind a cylinder, recalling that dwp,/dz = 0 at the wavemaker
Z, we expand the absolute mode {ko(x), wg(x)} on the real line near the (complex) point 2’
and retain the minimal number of terms consistent with numerical simulations and experimental
observations of bluff-body wake dynamics (see Monkewitz 1998 and RM96):

0o(x) = + %mfa(x—z’)?
ko(x) = K +H(x—7) 24

wu(x) = (l)'kk.

Inserting these low-order expansions of the absolute mode and its derivatives into (2.3), we obtain
an x-dependant model equation whose eigenmodes can be computed analytically in terms of
Hermite polynomials and exponential functions (Chomaz et al. 1987). Note that the model is
strictly valid only in the vicinity of the wavemaker {(see Monkewitz er al, 1993 for more details);
however, for weakly non-parallel base flows, the range of validity of this model includes a rather
long streamwise extent around R(z'), within which we will assume the sensor and actuator are
located.

The final step in modelling the unforced system consists of accounting for the bifurcation
parameter (in the present case, the Reynolds number) that transforms the global behavior of
the system from time-damped to self-excited. Near the global bifurcation point Re, = 47, it
is appropriate to perform a Taylor series expansion in powers of {Re — Re,) for each of the
coefficients of the expansion given in (2.4). The simplest form of these Re expansions consistent
with experimental and numerical data, and appropriate numerical values of the coefficients for

acterized with different tools. The present paper presents appropriate tools to analyze the global dynamics
of such a system in the closed-loop setting.
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FIGURE 1. Sketches of the regions on the real x-axis of local stability (light grey), convective instability
(dark grey) and absolute instability (black) of the uncontrolled linear wake model for: (a) Re = 29, onset
of local absolute instability at x = 1.24, (b) Re = 47 onset of linear global instability, (¢) Re = 100, (d)
Re = 175, (€) Re = 235, (f) Re = 284, Representative locations for the sensor and actuator are marked with
o and x respectively.

the present system (from RM96)}, are given by:

o = 0.690 + 0.080i + 1073(—1.59 + 4.47i){Re — Re,)
!, = 0.108 - 0.057
7 =1.183-0.031i
K = 1,452 — 0.844i + 1072(0.341 4 1.1i}{Re — Re,)
K = 0.164 — 0.006i
wl, = —0.292i.

Figure 1 displays the local instability characteristics of the linear CGL model (2.3) {(used in
Section 4 of this paper) with the coefficients given in (2.4) and (2.5) for various values of the
Reynolds number. The additional coefficient 1 of the nonlinear term in (2.1) (used in Section
5 of this paper) models the Hopf bifurcation arising near Re, == 47 and the resuiting nonlinear
saturated state. As in RM96, we take its value as 1 = 0.0225 — 0.0671i. Even though this model
is, strictly speaking, derived for Re in the vicinity of the threshold Re. and in the vicinity of
the “wavemaker” (the complex turning point Z mentioned previously), it has been shown for
a wide variety of flows (Rayleigh-Benard convection, Taylor-Couette flow, parallel wakes) that
CGL-type models often remain surprising accurate far outside this vicinity (Williamson 1996;
Hammond & Redckopp 1997; Couvairon & Chomaz 1999). We therefore approach the stabi-
lization of this model system as far more than simply an academic exercise, hoping to obtain
significant physical insight by considering it even for Re far above the critical value Re,.

(2.5)

2.2. Spatial discretization and disturbance modeling

The generic goal of control design is to determine appropriate inputs for a dynamic system with
unknown disturbances and modeling errors, often coordinating such inputs with available noisy
measurements of the system state, in order to achieve a specified objective. The objective of the
present linear control design is to robustly stabilize the linearized CGL cylinder wake model. To
achieve this objective, we will modify our linear model equation (2.3) by forcing it with both
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control and disturbance inputs and construct an equation modeling sensor measurements y at
some location x; in the following fashion:
w_ . (x,1)+5 ’
3 = LV Hwynn)+8(x—x7)f ()
y=W(x) +wy(r).

(2.6)

The input f represents the strength of the control concentrated at a specific streamwise forcing
location x¢. The value xy = 0, from RM96, was chosen for this study. It corresponds to actuation
applied uniformly in the spanwise coordinate via, e.g., spanwise oscillation of the cylinder itself.
The input wy, accounts for process noise, state disturbances, and modeling errors. The output
y is the measurement at the specific streamwise location x; from a sensor corrupted by a finite
amount of measurement noise wy. The value x; = 1.5, from RM96, was chosen for this study.
It corresponds to a sensor located 1.5 diameters downstream of the body on the symmelry axis.
Flow perturbations are assumned to be 2D,
Linear control theory is well developed for systems in standard state-space form

kK =Ax+ Giwy+Bu

2.7
y =Cx + aGawy, 2.7

where x is the state vector, w) is the state disturbance vector, u is the control vector, y is the
measurement vector, and w; is the measurement noise vector. We will therefore discretize the
CGL partial differential equation (2.6) and express it as a linear ordinary differential equation
of this form. A standard Fourier collocation technique on a finite domain is used, with a grid
stretching function given by

xn=E,—E {tanh [ﬂ] + tanh [ﬁ] + tanh [é] }
e e e

with the £, variable vniformly distributed on (Eins,&sup). With this formulation, the two stretch-
ing parameters E and e facilitate the clustering of gridpoints in the vicinity of the actuator and
sensor in order to resolve the significant effects of the pointwise forcing and sensing on the
closed-loop system dynamics, while the grid smoothly returns to uniform away from these lo-
cations; the values E = 2.87 and ¢ = 3 were found to be adequate in this regard in the present
simulations. The parameters £; and &, are selected to cluster gridpoints near the physical forcing
location x; = 0 and sensor location x, = 1.5; this is achieved by selecting £ = 0 and solving
the equation 1.5 = &, — 2E tanh(¥;/e) for &, resulting in &; = 7.143. By selecting §;,p = —15.7
and &;,p = 24 and defining N = 140 gridpoints via the above approach, adequate resolution is
achieved to resolve the present system dynamics. The field y representing the dynamics of the
perturbations is discretized as the state vector X (not to be confused with the spatial coordinate x)
containing the state values at the gridpoints inside the domain considered. The state is prescribed
to be periodic, though the domain size used is large enough that the state approaches zero well
before the edge of the computational domain. All results presented here have been verified to be
independent of grid resclution, box size, grid stretching, and the spatial discretization method
(an 8th order central finite difference scheme with homogeneous boundary conditions was also
implemented for comparison).

The vectors comprising the state-space representation (2.7) are the vectors x and w (dis-
cretization of y and wy, respectively on the grid points {xy...xy}) and the scalarsu = (f), y = (),
wz = (wy). The matrix A is determined by spatial discretization of the operator L with standard
Fourier collocation techniques on the stretched grid. The control, applied at the gridpoint x;,, and
the measurement, taken at the gridpoint x, are incorporated into the state-space representation
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by defining

(B = —
A+l —Xp-1
where 8;; denotes the dirac delta. Disturbances are modeled by defining G, and aG; as the
square root of any known or expected covariance structure of the state disturbances and the
measurement noise respectively. The scalar o2 is identified as an adjustable parameter which
defines the ratio of the maximum singular value of the covariance of the measurement noise
divided by the maximum singular value of the covariance of the state disturbances; w.l.o.g., we
take G{G1) = 6{Gz) = 1. The matrix G effectively reflects which state disturbances are assumed
to be strongest. As the measurement in the present system is just a scalar, we define Gy = 1.
Small o implies relatively high overall confidence in the measurements, whereas large ¢ implies
relatively low overall confidence in the measurements. Note that, for the present simulations
(for lack of any better disturbance modeling) we have assumed G = I. Other choices should be
stuclied in future investigations by more closely modeling the disturbance covariance of interest

in physical systems and their sensitivity to external disturbances.

8, and (Chij =By,

3, Control design and analysis tools
3.1. Control objective

A cost function J defining the infinite-horizon contrel problem at hand is now specified that
weighs together the state x, the (scalar) contrel u, and the disturbances w such that

A * 2 % _ * _{w _ Sl 0

J—E:[x Ox + ¢2u*Ru —y’w Sw], w-(wZ), S_(O Sz)’ (3.1)
where we take the expectation ‘E to be defined by E[] = limr ... fi []dr. It is assumed that
0 >0,R>0and S > 0. The matrix  shaping the dependence on the state in the cost function,
x*(x, may be selected to numerically approximate any of a variety of physical properties of the

flow system. In the present case, we define a grid-independent metric based on the mean-square
value of W over the domain of interest:

X2 —X] fOl‘i=j=1,
Oy={m—ma  fori=j=N, 5  yxQOx~ / itdx.  (3.2)
Xitl —Xi-1 : R
B — otherwise,

A variety of other metrics might also be tried in the future. We note that the control objective
selected here targets all components of the state, not only the measured compoenents. In order to
retain an equivalent control formulation upon refinement of the numerical grid, R and § should
also be chosen carefully. In the present formulation, we take R = 1, §1 = (, and 53 = 1. Note
that if we had taken $; = /, the contro! problem would change whenever the numerical grid is
modified, significantly hindering physical interpretation of the results, With the present strategy,
as the grid is refined, the discrete matrices representing the feedback gains (denoted by K and L
in the following section) converge to continuous weighting functions, and the definitions of the
tunable parameters £, ¢, and ¥ in the control formulation remain fixed.

3.2. The structure of the compensator

As only a limited number of noisy measurements y of the state x are available in any practical
control implementation, it is beneficial to develop a filter which extracts as much useful infor-
mation as possible from the available flow measurements before using this filtered information
to compute a suitable control. In modern control theory, a model of the system itself is used as
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this filter, and the filtered information extracted from the measurements is simply an estimate of
the state of the physical system. By modeling the influence of the unknown disturbances in (2.7),
the system model takes the form

R=AR+ G; W1 +Bu—v (3.3a)
¥ =C&+40Grw, (3.30)

where % is the state estimate, Wy is a state disturbance estimate, W, is a measurement noise
estimate, and v is a feedback term based on the difference between the measurement of the state
y and the corresponding quantity in the model ¥ such that

v=L{y-§). (3.3c)
The control u, in turn, is based on the state estimate % such that
u=K% (G4

Equation (2.7) is referred to as the “plant”, (3.3) is referred te as the “estimator”, and (3.4) is
referred to as the “controller”. The estimator (3.3} and the controller (3.4), taken together, will
be referred to as the “compensator”. The problem at hand is to compute linear time-invariant
matrices K and L and some estimate of the disturbance, W, such that: i} the estimator feedback
v forces & towards x (that is, X becomes an accurate estimate of the unknown state x), and ii)
the controller feedback u forces x towards zero (that is, the unstable modes of the system are
stabilized).

3.3. The H. conirol solution

Given the structure of the system defined in (2.7), (3.3) and (3.4) and the control objective defined
in (3.1), the ., compensator is determined by simultanecusly minimizing the cost function 7
with respect to the control u and maximizing 7 with respect to the disturbance w. In such a
way, 2 control u is found which maximally attains the control objective even in the presence of a
disturbance w which maximally disrupts this objective. For sufficiently large values of y and for a
system which is both stabilizable and detectable via the controls and measurements chosen (see
discussion at the end of this section), this results in finite values for v, v, and w, the magnitudes
of which may be adjusted by variation of the three scalar parameters £, ct, and y respectively.
Reducing £ (which scales the control penalty in the cost function) generally results in increased
control feedback u*Ru and reducing o (which scales the measurement noise in the governing
equation) generally results in increased estimator feedback v*v. Reducing y (which scales the
disturbance penalty in the cost function) generally results in increased disturbances w*Sw with
the maximally malevolent structure when designing the most suitable feedback rules for w and
v to compensate, in the spirit of a noncooperative game; the 2L approach is thus often referred
to as a robust control approach. The #L. control solution first derived in Doyle et al. (1989)
may be described as a saddle-point solution as follows: a compensator which minimizes 7 in the
presence of that disturbance which simultaneously maximizes 7 is given by

K=—GRBY,  L=-ZYC'Gy 50",
with

w1=%s;‘c‘;x:‘( and W =0,
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and where
1 —1 1 —1p*
Xx=Ric[ A 7OSICi-gBR'E}
-0 _A*
* 1 1 * =1 —1
¥ = Ric A Y_ZQ_EC Gy 506G, C , 3.5
-G,871Gy —A
rx\~!
z=(1-5)
and Ric fC ——A* denotes the unique positive-definite solution X of the associated algebraic

Riccati equation 0 = XA + A*X — XBX + C. A lower bound on ¥ for which the control problem
may be solved, yg, may be found by trial and error. The ¥ — o limit of this approach is referred
to as #4 or Linear Quadratic Gaussian (LQG) control, and is also referred to simply as optimal
control.

Three conditions are necessary and sufficient for the #£, control solution to exist: (1) the
system matrix A has to be stabilizable by the input matrix B, meaning that it is possible to stabilize
all the unstable modes of A with an appropriate input, (2) the matrix A has to be detectable by
the observation matrix C, meaning that it is possible for the output to measure the dynamics of
all the unstable modes of A, and (3) a coupling condition p(XY) < ¥?, where p(M) denotes the
maximum eigenvalue of M, has to be satisfied by two positive-definite matrices X and ¥ which
solve the above listed Riccati equations. When y = oo, the third requirement vanishes and the first
two are, in fact, necessary and sufficient for the solution, which is unique in this case, to exist.
When ¥ < oo, even if the first two requirements are satisfied, if y is too small, positive-definite
solutions X and ¥ to the Riccati equations listed above might not exist, or the coupling condition
p(XY) < y® might be violated even if such solutions X and ¥ do exist. In other words, in the case
with ¥ < oo, stabilizability and detectability of the system are not sufficient for the #L. control
problem to be solvable.

Further, when a solution to the #£. control problem in the case yp < ¥ < oo does exist, it
is not unique; alternative solutions might be of particular interest in secondary minimization
problems which are not addressed here. It is interesting to note here that both the #4 and #.
problems, as formulated above, involve solving two Riccati equations and thus require almost
the same computational effort. In the present work, the Riccati equations were solved using both
the Schur decomposition approach (Laub 1991) and the standard eigenvalue decomposition ap-
proach {Zhou & Doyle 1997) using double-precision arithmetic. As discussed in detail in Lauga
& Bewley (2003), particular care is needed in the numerical solution of these Riccati equations
as the Reynolds number is increased, as the corresponding Riccali equations become increas-
ingly difficult to solve and double-precision arithmetic (the default precision in Matlab) becomes
inadequate above Re 22 200. The present work avoids these difficulties by focusing its attention
on cases with Re < 190.

The simple structure of the #£, control solution, and its profound implications in terms of
the performance and robustness of the resulting closed-loop system, is one of the most elegant
results of linear control theory, and is discussed in greater detail in, e.g., Doyle et al. (1989)
and Green & Limebeer (1995}, and in a fluid-mechanical setting in Bewley & Liu (1998)t. It is
useful to state an alternative interpretation of the %, control solution, as presented in the Iucid

t Note that Bewley & Liu (1998) omitted the term W and assumed Z = [ in the compensator formulation,
While the formulation listed there was correct in the %4 limit (for y — o), including the Z and W terms
correctly, as done here, might significantly improve the performance of the #£. compensator.
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textbook of Green & Limebeer (1995). Instead of interpreting the solution in a non-cooperative
framework, an alternative interpretation can be given in terms of operator norms, where the
control u minimizes the cost functional

7= £[x*Qx+ *u"Ru|

under the noise-amplification constraint 7 < y>£[w*Sw), The control solution is the same as the
one given above, while making clear the rationale for applying #£. control instead of #; control:
the #£, control design prescribes an upper bound on the noise amplification by the closed-leop
system. Reducing this upper bound frem infinity (its 74 value) can sometimes facilitate a signif-
icant decrease in the system sensitivity to external disturbances of particular disruptive structure.

3.4, Techniques used to characterize closed-loop system performance
3.4.1. Linear stabilizability and detectability

The first objective of the control design is simply to stabilize the closed-loop linear system.
In the 74 setting described above, this is possible when the linear system considered is both
stabilizable and detectable. As discussed in detail in Lauga & Bewley (2003), the present linear
system is, in theory, stabilizable at any Reynolds number; it follows via a very similar anal-
ysis that the linear system is also, in theory, detectable at any Reynolds number. Thus, using
sufficiently high precision arithmetic and a sufficiently high value of ¥ in the #£, control de-
sign, linearly-stabilizing control feedback may, in theory, be found for the present system at any
Reynolds number, though the performance of the linear control designs at high Reynolds num-
bers is so bad that, in practise, they most assuredly will fail to stabilize the full nonlinear system.
The difficulty lies in the fact that as the Reynolds number is increased and an increasing number
of modes become open-loop unstable, the controllability and observability of these open-loop
unstable modes, though not zero, become exponentiaily small (Lauga & Bewley 2003), Thus,
the problem of characterizing the controlled linear system is significantly more delicate than just
the hinary characterizations of linear stabilization and detection. To characterize the linear and
nonlinear performance of the controlled system, other metrics must be used, as described below.

3.4.2. Linear transient energy growth

As mentioned in the previocus paragraph, stabilization of the closed-loop eigenvalues of the
system (that is, moving the closed-loop system eigenvalues into the left-half plane) only par-
tially characterizes the behavior of the controlled linear system. As shown in Lauga & Bewley
(2003), the diminishing controllability and observability of the open-loop unstable modes as
the Reynolds number is increased, as discussed above, manifests itself by the increasing non-
normality of the ¢losed-loop system eigenvectors as the Reynolds number is increased to the
point that, at high Reynolds numbers, the closed-loop linear system is nearly defective. Both the
transient response of the unforced closed-loop linear system from perturbed initial conditions
and the statistics of the stochastically forced closed-loop linear system are strong functions of
the degree of non-normality of the closed-loop system eigenvectors. In particular, initial con-
ditions formed by destructive linear combinations of the non-normal system eigenvectors can
sometimes lead to very large transient energy growth in a stable system; thus, very small initial
perturbations can sometimes be efficiently amplified by such linear mechanisms and lead to non-
linear instability of the full systern even though it is linearly stable (for an example of how this
happens commonly in uncontrolled transitional flows, see, e.g., Schmid & Henningson 2001).
Hence, non-normality of the closed-loop system eigenvectors has important implications for the
application of linear control to the nonlinear system. We will quantify this effect in this paper by
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computing the worst possible energy amplification by the closed-loop linear system,

x(1)Qx(1) ]/
Epax = ———— | 3.6
e [%ifi x(0)Qx(0) ¢
over all possible initial conditions x(0) and finite time horizons 7. Enar is computed using a
standard matrix norm method, as detailed in Schmid & Henningson (2001},

3.4.3. Transfer function norms

Another important goal of the control design is disturbance rejection, that is, keeping the
response of the system to external disturbances as small as possible. This objective may be quan-
tified by computing input-output transfer function norms ||Tzw|| in the closed-loop setting. As
discussed further in Bewley & Liu (1998), the analysis can be made on a generic closed-loop
system (i.e., one for which a control design has already closed the control and/or estimation
loops) written in the standard state-space form:

¢ = A% + Bw
o 3.7
Z=CX.

.0

The output of interest Z in this generic form can, for example, be some scaling of the state x, the
control u, or a linear combination of the two. Two specific quantities of interest are the trans-
fer function 2-norm and the transfer function ee-norm. Loosely speaking, these norms quantify
how the wake model with control applied responds to “benign” and “malevolent” disturbance
respectively.

The transfer function two-norm ||Tiw||2 is defined as the expected value of the mean square of
system output Z when the system (3.7) is driven by white Gaussian disturbances W of prescribed
variance, that is, assuming some disturbance covariance structure £ [%W*] = §-1,

1%l = Z [22).

In particular, by coordinating the control u with the measurements y in the system (2.7) with a
dynamic compensator, the 4 control design is constructed to exactly minimize

172
J=E[z"7, where z= (QO )x+£ (R?ﬂ) u, (3.8)

in the presence of white Gaussian disturbances w with covariance £ [ww*] = §~1. Thus, it fol-
lows that the 74 control design minimizes

(17wl 3 = | Twlf3 + 1| Tuwl 13, (3.9)

where ||Txwl|2 and ||Tuw||2 represent, respectively, the two-norms of the transfer functions from
disturbances w (of covariance S™!) to the state x (weighted by Q'/2) and to the control u
(weighted by R'/%), The latter can usually be interpreted as a measure of the control energy
used by the control design in the presence of Gaussian disturbances. The two-norms may be
computed using a trace formula involving either the controllability Gramian L, of the realization
(A, B) or the observability L, Gramian of the realization (4,C) (Green & Limebeer 1995).

The #& control design minimizes the expected (that is, time-average) amplification of distur-
bances of Gaussian structure by the system over the class of all stabilizing controllers. In many
problems, however, one can argue that instead of considering as an input a particular stochastic
process (namely, Gaussian disturbances), a more relevant quantity to compute is the maximum
amplification possible over all bounded disturbances. This quantity is the second performance
index we will use, and is called the transfer function infinity norm. In the generic setting of the
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system {3.7), it is defined as the operator norm

2 _ E[2'2]
“Tz\*‘”w - mg'x £ [W‘S'ﬁ"] !
and may be computed iteratively (Doyle et al. 1989). The value of W that achieves the maximum
in this expression is the worst-case disturbance which adjusts continuously in time to produce
the largest energy amplification in the system on the infinite horizon. Note in particular that
L. control minimizes || T ||z while bounding ||Zzw||- < ¥. The transfer function infinity norms
presented in this paper have been determined with a 0,5% tolerance of error.

4. Control of the linear wake model

The linear control strategy outlined in the previous section was tested over a range of relevant
parameters in the control formulation. We now quantify the performance of this control strategy
on the linear CGL system using two values for the control penalty in the cost function (£ =
1000, which results in relatively weak control feedback, and £ = 0.1, which results in relatively
strong control feedback) and two values for the measurement-noise-to-state-disturbance ratio
{0 = 1000, which implies lots of measurement noise and results in relatively weak corrections
to the estimator with feedback based on the measurements, and o = 0.1, which implies little
measurement noise and results in relatively strong corrections to the estimator with feedback
based on the measurements). Examination of the linear control effectiveness on the full nonlinear
system is deferred to Section 3.

4.1. Examination of eigenvalues: root loci

As mentioried previously, stabilization of the closed-loop eigenvalues of the system (that is, mov-
ing the closed-loop eigenvalues into the left-half plane) partially characterizes the effect of con-
trol feedback on the system. A roor locus plot characterizes the movement of the closed-loop
system eigenvalues as a scalar parameter in the control formulation is varied. In classical con-
trol approaches, this scalar control design parameter is almost always selected to be the overall
feedback gain K. In our present modern control framework, there are three scalar control de-
sign parameters of interest: {£,a,y}. Two root loci of the controlled system in the state feedback
setting (that is, based on full state information) are illustrated here; the root loci characterizing
(partially) the closed-loop dynamics of the state estimation error demonstrate similar trends.

Figure 2 displays a “root locus with respect to £7, that is, the locus of the first several eigen-
values of the wake model at Re = 175 before (D) and after state-feedback control is applied for
control penalties ranging continuously from £ = 1000 (¢) to £ = 0.01 (o}, taking ¥ = oo, The first
observation to make in this figure is that the minimum-energy control (with £ = 1000) does not
simply move the unstable eigenvalues of the model just to the stable side of the imaginary axis,
but actually reflects them across the imaginary axis into the stable half-plane (this phenomenon
is well known in the field of control theory). As the strength of the conirol feedback is allowed
to increase (by decreasing £ in the cost function), the eigenvalues move in a non-trivial manner,
some shifting to the left and some shifting to the right, with some moving a lot and some moving
only a little.

Figure 3 displays a “root locus with respect to ¥”, that is, the locus of the first several gigen-
values of the wake model at Re = 175 before (o} and after state-feedback control is applied, for
robustness parameters ranging continuously from y = = (¢) to ¥ = Yo (0), taking £ = 1000. The
striking feature displayed by Figure 3 is that the effect of decreasing y is much more targeted,
moving only a few of the eigenvalues (specifically, in the present case, those corresponding to
the open-loop unstable linear modes).
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FIGURE 2. Comparison of the eigenvalues of the linear closed-loop wake model at Re = 173 without control
(o) and with full-information %5 control applied as a function of the control penalty £, from £ = 1000 (o)
to £ =0.01 (c). This plot is referred 1o as “root locus with respect to £”.
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FIGURE 3. Comparison of the eigenvalues of the linear closed-loop wake model at Re = 175 without control
(o) and with full information #£, control applied as a function of the robustness parameter y, from y = oo
{0} to ¥ = Yo (). The control penalty is £ = 1000. This plot is referred to as “root locus with respect to ¥”

While the trends in such plots look interesting, root locus plots fail to provide a complete pic-
ture of the effect of control feedback on a highly non-normal system such as the present, This is
because, as mentioned previously, the eigenvectors are significantly modified by the control feed-
back, and this has a very important effect on the closed-loop system dynamics. This information
is not evident in a root locus plot.
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Control “wa”2 ||Tuw”2 ”T!n'l”m Epnax

o= 1000 RM9% 2050 586 24200 7.35

Hy(y=o) £=1000 1610 583 13400 6.03

£=0.1 954 660 5590 3.85

Ho(y=vp) £=1000 1060 2280 6820 3.66

£=0.1 2520 9090 2890 3.26

a=01 RM96 - 559 160 654 7.35

Hhy=os) £=1000 211 093 131 333
£=0.1 765 172 154 340
Hoy=yo) £=1000 875 883 319 253
£=0.1 777 107 130 447

TABLE 1. Comparison of the transfer function 2-norms ||Tew||z and || Tuw|2. the transfer function se-norm
|| Txve|Jows and the maximum transient energy growth Epax, using the proportional control strategy of RM96
and the modern 7% (¥ = o) and 7L (¥ = Yo) control strategies in the linear wake model at Re = 60, taking
two values of the measurement-noise-to-state-disturbance ration .

4.2. Comparison of performance: modern vs proportional control

The proportional measurement feedback scheme proposed and tested in RM96 may, in the present
notation, be written as

ux,r) = lgle®dx—x)wln) = u=|glety.

There are two degrees of freedom in this scheme, the phase ¢, and the amplitude |g|. Effective
values of these parameters (RM96) are ¢, = 0.427 and |g| = 0.0048{Re — Re.). This existing
proportional control strategy for the present system will be used as a point of comparison for the
present study. The RM96 control scheme was capable of stabilizing only one open-loop unstable
global mode in RM96 (that is, it could stabilize the linear system up to Re = 64); our own numer-
ical tests verified this. On the other hand, as discussed in Lauga & Bewley (2003), the present
modern control design is able to linearly stabilize several open-loop unstable global modes with
a single sensorfactuator pair. To be specific, using double-precision arithmetic, six open-loop un-
stable global medes may be linearly stabilized (that is, the present control design could stabilize
the linear system up to Re = 284); this number is significantly smaller if single-precision arith-
metic is used and significantly larger if quad-precision arithmetic is used. Another advantage of
the modern control design over simple proportional feedback is a significant reduction in both
transient energy growth and input/output transfer function norms, Table 1 presents a compari-
son between the values of the transfer function 2-norms ||Taw||2, ||Zuwl}2, the transfer function
infinity-norm || Tiw||e, and the maximum transient energy growth En,, using the proportional,
36, and FL.(yp) control design approaches.

As seen in Table 1, the %5 and FL.(yg) control designs generally result in smaller values for
both the transient energy growth Ey,., and the transfer function norms || Tyw||2 and || Trw]|- than
the proportional control design of RM96. This illustrates that the modern control approach typi-
cally makes the closed-loop system less prone to amplify perturbations in initial conditions and
less sensitive to external disturbances of both Gaussian and worst-case structure, Both results
indicate that the closed-loop system is made closer to normal (that is, lessening the severity of
the nonnormality of the closed-loop system eigenvectors) by the modern control design than by
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76 control
Re [|Tawllz  [|Tuwllz ||Twll Emas
100 £=1000 215 2.89 126 4.37
£=0.1 10.6 12.0 273 473
150 €= 1000 412 65.0 351 826
£=0.1 158 233 489 492
Ho{yo) control
Re Tllz [1Tawllz [Fawlles Emax
100 £=1000 124 132 53.1 297
£=0.1 14.3 43.0 16.9 15.0
150 £= 1000 254 283 2080 529
£=0.1 195 542 293 815

TABLE 2. Transfer function 2-norms ||Tyw||2 and ||Tuw||2, e>-norm || Tyw| |, and maximum transient energy
growth Epg, of the linear wake model with full information 74 (top) and L. (¥ = Yo, bottom) control
applied as a function of the Reynolds number for two values of £. ‘

the proportional control design. We also see that, for large £, the H, control designs outperform
the proportional control design in terms of both the disturbance-to-state transfer function norm,
H|Taw |2, and the disturbance-to-control transfer function norm, ||Tyw||2. However, the control en-
ergy required by both the FL.(yp) designs and the #4(£ = 0.1) designs are large as compared
with the other approaches. Generally, a tradeoff must be made between the various metrics of
interest during the control design process, and the norms |{7Txw||2 and || Tiw|| may be reduced at
the price of increasing || Tuw||2 by adjusing £ and y. In most cases, intermediate values of both £
and ¥ would be preferred.

4.3, Comparison of performance: H vs H.. control designs

We now compare of the performance of the #4 and #.(Yo) control strategies for both the full-
information and the estimator-based configurations at Re = 100 and 150. Note the proportional
control strategy discussed earlier fails to stabilize the linear CGL system modeling the cylin-
der wake at Reynolds numbers this high. Table 2 displays the transfer function norms ||Txw||2,
|| Tuw||2 2nd ||Zxw||ee, and the maximum transient energy growth Ejugy, for two controls strate-
gies: the full-information #4 control and the full information #. control with the smallest value
possible for y. Table 3 repeats these calculations in the case in which a dynamic compensator is
used to compute the control based on noisy measurements at the point sensor location x;.

4.3.1. General characteristics

Most of the trends depicted in Tables 2 and 3 are what one might expect before actually calcu-
lating the numbers. For example, || Tow||z is always smaller than || Ty ||, since the former quanti-
fies the amplification by the system of disturbances of a particular, somewhat “benign” structure
(zero-mean, uncorrelated, white Gaussian), whereas the latter quantifies worst-case amplification
by the systemn of any bounded disturbances of any structure. Thus, recalling the relations between
z and x in (3.8) and (3.9), it is often found (see Tables 2 and 3) that ||Tyw| |2 is also smaller than
[| 7w || os» though this relation does not hold in general.

For a given Reynolds number, when %4 control is applied, the transfer function norms depend
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5 control

Re 1 Txwll2 [[Tawllz  |[Tawllo Ermax
100 a=1000 £=1000 21500 2930 144000 34.2
=01 8910 12300 36200 8.70

a=01 £=1000 754 10,2 538 119
£=0.1 35.6 41.1 191 13.7

150 o= 1000 £=1000 3660000 549000 31700000 2920
£=0.1 1280000 2030000 351000 1350

a=01 £=1000 12200) 1830 106000 1640
£=01 4400 6840 12400 1190

H.(yo) control

Re Tewllz Towllz N1Tawllee Evmax
100 oo=1000 £=1000 12000 16000 68900 25.5
£=0.1 15600 56900 18000 23.1

a=01 §£=1000 439 103 252 678
£=0.1 73.2 233 96.8 820

150 a¢=1000 #=1000 2130000 3700000 17600000 5400
£=0.1 1740000 6400000 1980000 864

a=0.1 £=1000 7340 10300 58300 1740
£=0.1 6240 23500 6920 3590

TABLE 3. Transfer function 2-norms || Tw||2 and || Tuw] |2, co-norm || Ty ||=, and maximum transient energy
growth E.,. of the linear wake model with estimator-based 75 (top) and 9. (¥ = Yo, bottom) control
applied as a function of the Reynolds number for two values of £ and two values of .

monotonically on the control penalty £ and the measurement-noise-to-state-disturbance ratio ..
For a given @, reducing £ results in the application of more control (a larger value for || Tyw|[2)
and an improved disturbance rejection (smaller values for the transfer function norms || Tl |2
and ||Tyw|]). For a given £, increasing o corresponds to having less reliable measurements,
resulting in more control effort to achieve stabilization (larger ||Tyw|]2} and a degradation in the
disturbance rejection (larger values for the transfer function norms |{Txw|l2 and || Tew|| ).

Such observations do net extend directly to the variations of the maximum transient energy
growth with £ and o. For example, for a given o in Table 3, E;q, sometimes increases with £
and sometimes decreases with £. Such behavior is to be expected, as the 26/ 7L, control design
procedure is based explicitly on transfer function nerms, which account for the A, B, and C ma-
trices in the state-space form, whereas transient energy growth is related only to the eigenvectors
and eigenvalues of A. Nonnormality is generally reduced by application of effective control feed-
back, but this is only a “byproduct” of the modem control design, it is not its explicit “target”.
Analyzing both transfer function norms and transient energy growth thus gives a more complete
picture of the closed-loop system behavior.

Finally, the results from Table 2 and Table 3 indicate that, for a given £ and o, the transfer func-
tion norms and transient energy growth generally increase as the Reynolds number is increased,
reflecting the increased sensitivity of the closed-loop system to disturbances and initial pertur-
bations as the Reynolds number (and the number of open-loop unstable linear global modes)
increases. A more detailed view of this behavior is given in Figure 4, which illustrates the varia-
tion of the four tabulated performance indices for the uncontrolled (Re < 47, O) and controlled
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FIGURE 4. Performance of the uncontrolled (O, Re < 47) and controlled lingar wake model as a function
of Reynolds number for two control penalties (+) £ = 1000, (0) £ = 0.1 using full information 25 control.
Top left: transfer function 2-norm || Tyw|[2; top right: transfer function 2-norm || Ty ||2; bottom left: transfer
function eo-norm || Ty ||« bottom right: maximum transient energy growth Epz,. All plots are semilog-y
and were computed using double precision arithmetic; note that, at this precision, stabilizing linear control
feedback could not be determined above Re == 284,

(Re > 47, %4 full information control) linear wake model as a function of Reynolds number for
two control penalties £.

4.3.2. 25 vs H., control designs: the linear trade-off

Both in the case of full-information control and in the case estimator-based control, applying
an FL.{yp) control design instead of an %4 control design was found to result in greater control
energy (larger ||Tuw|l2) and a better worst-case disturbance rejection (smaller ||Zxw||=). A robust
controller essentially uses the additional control energy to ensure the constraint on the upper
bound on the transfer function norm || T;w| |- is enforced. This behavior can result in either a better
or worse Gaussian disturbance rejection (smaller or larger || Tew||2 respectively) depending on the
control penalty £. This fact is not surprising from a mathematical point of view since the robust
control approach “detunes” the corresponding optimal controller, implying that it increases the
transfer function ||Tew|[2. Note that, by (3.9), ||7w||2 measures the response of both the state
and the control to Gaussian disturbances. A balance between the two terms on the right hand
side of (3.9) implies that, as ||Tyw||2 increases when ¥ is decreased and the optimal controller is
“detuned”, || T ||z might either increase or decrease, as evidenced in Tables 2 and 3.

At a given Reynolds number, the robustness parameter ¥ in the #. control design can be
selected anywhere between § = ¢ and ¥ = o, which itself is a function of the two design pa-
rameters, Yo = Yo(£,0t). When designing the controls, one must therefore perform, via appropriate
selection of {£,0.,Y}, a trade-off between the average control energy consumed and the rejection
of both Gaussian disturbances and worst-case disturbances; as mentioned previously, intermedi-
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