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ABSTRACT
Phoretic particles self-propel using self-generated physico-chemical gradients at their surface. Within a suspension, they inter-
act hydrodynamically by setting the fluid around them into motion and chemically by modifying the chemical background seen
by their neighbours. While most phoretic systems evolve in confined environments due to buoyancy effects, most models focus
on their interactions in unbounded flows. Here, we propose a first model for the interaction of phoretic particles in Hele-Shaw
confinement and show that in this limit, hydrodynamic and phoretic interactions share not only the same scaling but also the
same form, albeit in opposite directions. In essence, we show that phoretic interactions effectively reverse the sign of the inter-
actions that would be obtained for swimmers interacting purely hydrodynamically. Yet, hydrodynamic interactions cannot be
neglected as they significantly impact the magnitude of the interactions. This model is then used to analyse the behavior of a
suspension. The suspension exhibits swirling and clustering collective modes dictated by the orientational interactions between
particles, similar to hydrodynamic swimmers, but here governed by the surface properties of the phoretic particle; the reversal
in the sign of the interaction tends to slow down the swimming motion of the particles.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5065656

I. INTRODUCTION

To self-propel autonomously at the microscopic scale,
biological and synthetic micro-swimmers must overcome the
viscous resistance of the surrounding fluid to create asymmet-
ric and non-reciprocal flow fields in their immediate vicinity.1
Beyond their individual self-propulsion, understanding their
interactions and collective behavior is fascinating researchers
across disciplines, particularly because their small scale sug-
gest simpler interaction routes than larger and more complex
organisms or systems.

While biological swimmers mainly rely on the actuation
of flexible appendages such as flagella or cilia,2,3 artificial
microswimmers fall within two main categories. Externally-
actuated swimmers respond to an external force or torque
applied by a magnetic,4 electric,5 or acoustic field6 at the
macroscopic level. In contrast, autophoretic (or fuel-based)
swimmers exploit the chemical and electrical properties of

their surface to generate slip flows within a thin inter-
action layer in response to local self-generated gradients
of their physico-chemical environment. This ability to turn
such gradients into fluid motion is known as phoresis,7
and this can arise from concentration of a diffusing solute
species (diffusiophoresis), temperature (thermophoresis), or
electric potential (electrophoresis). Popular experimental
realizations of such systems include metallic or bi-metallic
colloids catalyzing the decomposition of hydrogen perox-
ide solutions8–12 or other redox reactions,13 as well as
heat-releasing particles in binary mixtures.24 It should be
noted that in many aspects, active droplets, which achieve
self-propulsion through self-generated Marangoni flows,14,15

can also be considered as examples of synthetic fuel-based
swimmers.

Because their individual self-propulsion is based solely
on the interaction with their immediate microscopic envi-
ronment, these systems have recently been intensely stud-
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ied, experimentally and numerically, as canonical examples of
active matter to analyse collective dynamics at the micron
scale, demonstrating complex or chaotic behavior as well
as clustering.16–20 Chemically-patterned systems (e.g., Janus
particles) have played a central role in these investigations.
Their chemical polarity establishes the chemical gradient
required for propulsion and can be obtained using a pas-
sive colloid partially coated with a catalytic9,12,21–23 or heat-
absorbing layer,24,25 bi-metallic swimmers,8,10,26,27 or active
material encapsulated in a passive colloid.11 Beyond the quali-
tative understanding of the link between their asymmetry and
their self-propulsion, the details of the competing physico-
chemical mechanisms at the heart of each system are still the
focus of ongoing investigations.28,29

All such systems share a common feature: they gener-
ate flow fields and motility from the dynamics of physico-
chemical fields (which will be taken in the following as the
concentration of a chemical solute for simplicity and gener-
ality) that can diffuse and potentially be advected by the fluid
flows. This provides two distinct interaction routes between
individual swimmers. Like their biological counterparts, their
self-propulsion sets the surrounding fluid into motion which
influences the trajectory of their neighbors. But, just as
bacteria and other microorganisms perform chemotaxis in
response to different chemical nutrient or waste compounds,
these systems can also exhibit a chemotactic behavior and
respond to the chemical signals left by the other particles.30,31

Understanding the role of each interaction route32–34 as well
as their interplay and competition35 is the focus of active
research.

A major difficulty in the quantitative rationalization of
experimental results on collective dynamics of such particles
lies in their geometric environment. Most phoretic swimmers
are either denser or lighter than the surrounding fluid, and
buoyancy forces effectively confine them to the immediate
vicinity of a solid wall or a free-surface.10,11,36 This confine-
ment and reduced-dimensionality can have profound conse-
quences on their collective behavior.37 Yet, the vast majority
of existing models consider their evolution in a 3D unbounded
environment.28,38–40 Recent and successful attempts have
demonstrated the ability of confining boundaries to signif-
icantly influence the dynamics of single particles,41–44 even
providing controlling strategies for guidance.26,45,46 Because
they can profoundly affect the flow field or chemical con-
centration generated by the particle, confining boundaries
also significantly modify the interactions among them.37,47

As an example, their ability to screen differently the viscous
and potential components of the flow field generated by the
swimmer48 allows confining boundaries to significantly alter
the clustering dynamics of such particles; these modifications
were recently shown to depend fundamentally on the number
and nature of the confining surfaces.49

The goal of the present work is to analyse the fundamental
role of confinement on the interactions of many phoretic par-
ticles and, in particular, on the relative weight of the hydrody-
namic and chemical (phoretic) coupling. To this end, we model
a dilute suspension of weakly-confined particles in a Hele-
Shaw cell, effectively assuming a separation of three length

scales: the size of the swimmers, the depth of the confining
chamber, and the typical distance between two swimmers.
Because of this separation of the three length scales, confine-
ment profoundly modifies the interaction dynamics, which is
driven by the hydrodynamic and chemical fields screened by
the presence of the confining walls, while the individual self-
propulsion remains essentially unchanged at leading order.
This effective decoupling of self-propulsion and interaction
dynamics, which are normally intrinsically linked as they arise
from the same slip distribution at the particles’ surface, pro-
vides some fundamental insight on the influence of boundaries
on the latter.

After reviewing the fundamental mechanisms of self-
propulsion of spherical Janus particles, the hydrodynamic
and chemical signatures of individual particles as well as the
resulting drifts in external flows and concentration gradients
in Sec. II, we derive the leading order far-field hydrodynamic
and chemical signatures of an individual particle in a Hele-
Shaw environment in Sec. III. In both settings, the fundamental
scalings of these signatures and interaction drifts are clearly
identified and demonstrate the fundamental role of confine-
ment in setting these interactions. Section IV presents the
equations of motion for N interacting particles, and Sec. V
finally applies this model to the dynamics of a dilute sus-
pension. We finally discuss our results and present some
perspectives in Sec. VI.

II. JANUS PARTICLES IN UNBOUNDED DOMAINS
We first analyse the individual motion, signature, and

interactions of chemically-active spherical particles in the
absence of any confinement. The particles considered
throughout this paper are spherical and chemically active with
radius a. Their self-propulsion along self-generated gradients
of a physico-chemical field results from their polar chem-
ical activity and their sensitivity to the field.28,38,39 In the
following, we focus for simplicity on neutral diffusiophore-
sis for which the driving field is the concentration of a solute
species produced or consumed at the surface of the particle.
The principles and quantitative results can be easily adapted
to other phoretic mechanisms such as electrophoresis or
thermophoresis.

Before focusing on the interactions of such particles in
confined environments, we first review their self-propulsion
and interactions in the canonical context of unbounded flows.
Most of the analyses presented in this section therefore sum-
marizes some classical results on the self-propulsion,38,39

hydrodynamic coupling,50 and phoretic interactions30,31 of
such particles in bulk flows, and their derivation is briefly out-
lined here so as to emphasize their physical origin and rela-
tive scaling, which is critical to the later understanding of the
screening effects in Sec. III.

The chemically-active spherical particles have radius a,
and their physico-chemical properties are characterized by
chemical activity A(xs) (i.e., their ability to modify the solute
concentration) and mobility M(xs) (i.e., their ability to drive a
surface slip flow from a local concentration gradient), which
depend on the position xs along the surface of the particle.
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FIG. 1. Schematics of a single auto-phoretic Janus particle of radius a in uncon-
fined 3D space, with self-propelled velocity Up, and a population of particles in
weak Hele-Shaw confinement, where a � h � L. The unit vector p indicating
the orientation of the Janus particle is directed orthogonally to the plane that delin-
eates the two sides of the Janus particle, depicted in red and blue, respectively.
Specifically, p is oriented from red to blue.

Axisymmetric spherical particles are considered with an axis
of symmetry p (see Fig. 1).

A. Self-propulsion of isolated auto-phoretic particles
The concentration field C(r) around the particle rela-

tive to its background value satisfies the following system of
equations:

D∇2C = 0, for r ≥ a, (1)

C |r→∞ = 0, D(n · ∇C)��r=a = −A(µ). (2)

Here, r is the position vector measured from the particle
center, r = ‖r‖ is its magnitude, and µ = cos θ = p · r/r
in spherical polar coordinates given by (r, θ). This prob-
lem can be canonically solved for the concentration
field38

C(r,µ) =
∞∑

m=0

aAm

D(m + 1)

(a
r

)m+1
Lm(µ), (3)

where Am =
2m+1

2 ∫
1
−1 A Lmdµ are the Legendre moments of the

axisymmetric activity distribution A(µ), with Lm(µ) being the
mth Legendre polynomial.

The gradient in chemical concentration induces a slip
velocity at the surface of the phoretic particle given by7

uslip = M(µ)(I − nn) · ∇C |r=a, (4)

where M(µ) is the axisymmetric particle mobility, I is the iden-
tity tensor, and nn refers to the dyadic product of the vector
n with itself. This chemically-induced slip serves as a forcing
boundary condition to solve for the Stokes flow around the
force-free and torque-free phoretic particle

η∇2u − ∇p = 0, ∇ · u = 0, for r ≥ a, (5)

subject to boundary conditions

u |r→∞ = 0, u |r=a = U + uslip. (6)

In Eq. (5), u is the fluid velocity field, p is the pressure field, η
is the dynamic viscosity, and U = Up is the swimming veloc-
ity of the particle. The relative flow velocity at the surface is
purely tangential; therefore, the flow field u in the lab frame is
generically given by51,52

u = −
1

r3

∂ψ

∂µ
r −

1
r(1 − µ2)

∂ψ

∂r

( rr
r2
− I

)
· p, (7)

where ψ is the stream function

ψ(r,µ) =
Ua2(1 − µ2)

2r̄
+
∑
n≥2

(2n + 1)a2αn

2n(n + 1)
(1 − µ2)L′n(µ)

[
r̄−n − r2−n]

,

(8)

with r̄ = r/a. The prime in L′n denotes the derivative with
respect to µ. Substituting Eq. (8) into Eq. (7), one gets that the
first term in ψ corresponds to a source dipole [u ∼ (a/r)3 for
r � a] and the term of order n in the infinite sum includes
a potential singularity (gradient of a source dipole) and a vis-
cous singularity (gradient of a Stokeslet). For example, n = 2
includes a source quadrupole and force dipole, n = 3 a source
octopole and a force quadrupole, and so on. The intensity
of these singularities is defined in terms of αn, given for
n ≥ 2 by

αn = −
1

2D

∞∑
m,p=0

AmMp

m + 1

∫ 1

−1
(1 − µ2)L′mL′nLpdµ, (9)

where Mp =
2p+1

2 ∫
1
−1 M Lpdµ are the Legendre moments of M(µ).

The magnitude U of the swimming velocity is given by38

U = −
∞∑

m=1

mAm

2m + 1

(
Mm−1

2m − 1
−

Mm+1

2m + 3

)
. (10)

The physico-chemical properties of the axisymmetric
particle are set by its activity and mobility distributions A(µ)
and M(µ). For a generic particle, these two functions are arbi-
trary (they can be positive or negative). A specific example
is that of a hemispherical Janus particle, as shown in Fig. 1,
with the chemical properties of the front half given by (Af ,
Mf ) and of the back half given by (Ab, Mb). The first two Leg-
endre moments of the activity and mobility distributions are
given by A0 = (Af + Ab)/2, A1 = 3(Af − Ab)/4, and M0 = (Mf
+ Mb)/2, M1 = 3(Mf −Mb)/4, respectively, whereas all non-zero
even moments are identically zero, that is to say, A2n = M2n = 0
for n , 0. The swimming velocity U and α2 can be found
analytically38,40

U = −
A1M0

3D
=

(Ab − Af )(Mf + Mb)
8D

(11)

and

α2 = −
16κA1M1

9D
= −

κ(Mf −Mb)(Af − Ab)
D

, (12)

with κ being a numerical constant, defined as

κ =
3
4

∞∑
m=1

2m + 1
m + 1



∫ 1

0
Lmdµ





∫ 1

0
µ(1 − µ2)L′mdµ


(13)

such that κ ≈ 0.0872.

B. Hydrodynamic and chemical signatures
The chemical and hydrodynamic signatures of a Janus

particle in an unbounded three-dimensional (3D) domain are
obtained by keeping the two most dominant terms in Eqs. (3)
and (7), respectively. The chemical signature consists of (i) a
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source of solute proportional to the net production rate A0
and (ii) a source dipole proportional to A1

C =
1

4π

(
4πa2A0

D

)
1
r

+
1

4π

(
2πa3A1

D

) (p · r
r3

)
+ O

(
a3

r3

)
. (14)

The hydrodynamic signature consists of (i) a force dipole
(or stresslet) proportional to α2, (ii) a source dipole pro-
portional to U, and (iii) a force quadrupole proportional to
α3

u =
1

8πη
∇

(
I
r

+
rr
r3

)
: A −

1
4π
∇

( r
r3

)
· B

+
1

8πη
∇∇

(
I
r

+
rr
r3

) ... C + O
(

a4

r4

)
, (15)

where the coefficients are given by

A =
10
3
πηa2α2(3pp − I), B = 2πa3Up, (16)

C =
7

24
πηa3α3

[
pI + (pI)T12 + Ip − 18ppp

]
. (17)

Here, (·)T12 is the transpose over the first two indices [i.e.,
(C)T12

ijk = Cjik].
Note that we consistently carry the development of

C and u up to O(a3/r3) and O(a4/r4), respectively, since
the chemical and hydrodynamic drifts on neighboring
particles will be driven by ∇C and u, respectively. The leading-
order terms in the fluid velocity field u(r) and the chemi-
cal concentration field C(r) are summarized in Table I. We
highlight that the axisymmetric Janus particle swims in the
p-direction at speed U given in Eq. (11), but it does not reori-
ent under the influence of its own chemical activity. The
results presented in Table I emphasize that the dominant
hydrodynamic (force dipole) and chemical (source) interac-
tions result in particle drift following the same algebraic decay
in 1/r2 in the far-field limit. This underscores the necessity to
account for both types of interactions, in contrast with sim-
plifying assumptions regularly made in existing studies where
hydrodynamic interactions are neglected,53,54 mostly on the
grounds that the force dipole vanishes for hemispheric Janus
particles, which is only correct for the very specific case
of a uniform mobility,40 which is likely difficult to achieve
experimentally.

C. Hydrodynamic and phoretic drift in external
flows and chemical gradients

When the particle is placed in an external and possi-
bly non-uniform flow u∞(r), it will translate and reorient. For
a spherical particle, the translation and rotational drifts are
given at the leading order by Faxen’s laws50

Ud = u∞(r0), Ωd =
1
2
ω∞(r0), (18)

where ω∞ = ∇ × u∞ is the external vorticity field and r0 is
the position of the particle’s centroid. Non-spherical particles
are also sensitive to the local rate of strain due to their non-
isotropy, and thin elongated particles would reorient in the
principal strain direction.55

The existence of an external non-uniform concentration
field C∞(r), generated, for example, by the particle’s neighbors,
induces an additional slip velocity on the particle’s boundary
that leads to a phoretic drift and reorientation.7,56 To compute
the phoretic drift velocities, one needs to solve the following
solute diffusion problem:

D∇2Cd = 0, for r ≥ a, (19)

Cd
��r→∞ = C∞(r) ≈ C0

∞ + G∞ · r +
1
2
H∞ : rr + . . . , (20)

D(n · ∇Cd)��r=a = 0. (21)

Here, we expanded the chemical field C∞ in a Taylor series
about the particle position r0, with G∞ = ∇C∞ |r0

and H∞
= ∇∇C∞ |r0

evaluated at the particle location. The solution to
Eq. (19) is uniquely obtained as57

Cd(r) = C0
∞ + (G∞ · r)

[
1 +

1
2

(a
r

)3
]

+
1
2

(H∞ : rr)
[
1 +

2
3

(a
r

)5
]

+ · · · . (22)

The additional slip velocity on the boundary of the particle is
given by

uslip = M(r)(I − nn) · ∇Cd

= M(r)(I − nn) ·
[
3
2
G∞ +

5
3
H∞ · n

]
+ · · · . (23)

TABLE I. Scaling laws of the chemical and hydrodynamic fields created by an isolated self-propelled phoretic particle in an
unbounded 3D domain based on Eqs. (14) and (15), respectively. Here, A0, A1 and M0, M1 represent the surface activity and
motility of the particle, respectively, D is the molecular diffusivity of the solute, a is the particle size, and r is the distance from
the particle at which these fields are evaluated.

Hydrodynamic signature Chemical signature

u(r) C(r)

Force dipole Source dipole Force quadrupole Source Source dipole

Intensity a2 A1M1

D
a3 A1M0

D
a3α3 a2 A0

D
a3 A1

D

Decay rate
1

r2

1
r3

1
r3

1
r

1
r2
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TABLE II. Scaling laws of the chemical and hydrodynamic drift in an unbounded 3D domain created by a phoretic particle at
a distance L from the particle of interest.

Hydrodynamic drift Chemical drift

Force dipole Source dipole Force quadrupole Source Source dipole

Translational
a2

L2

A1M1

D
a3

L3

A1M0

D
a3α3

L3

a2

L2

A0M0

D
a3

L3

A1M0

D
drift Ud

Rotational
1
L

a2

L2

A1M1

D
1
L

a3

L3

A1M0

D
1
L

a3α3

L3

1
a

a2

L2

A0M1

D
1
a

a3

L3

A1M1

D
drift Ωd

When the background concentration field C∞ is generated by
other particles located at a distance L far enough from the par-
ticle of interest, the contribution of the second term involving
H∞ = ∇∇C∞ |r0

is subdominant by a factor a/L; we thus omit it
in the following analysis.

Determining the translation and rotation velocities of a
force- and torque-free particle for a given prescribed slip dis-
tribution is a now-classical linear fluid dynamics problem.58

For a spherical particle, the reciprocal theorem for Stokes’
flow around an isolated sphere provides the drift translational
and rotational velocities as7

Uc
d = −

〈
uslip(r)

〉
= −

3G∞
2
·
〈
M(r)(I − nn)

〉
, (24)

Ωc
d = −

3
2a

〈
n × uslip(r)

〉
= −

9
4a

〈
M(r)n

〉
×G∞, (25)

where 〈. . .〉 denotes the spatial average taken over the parti-
cle’s surface. These expressions can be simplified further for
axisymmetric particles noting that31

〈M(r)nn〉 =
M0

3
I +

M2

15
(3pp − I), (26)

〈M(r)n〉 =
M1p

3
(27)

so that the translational and rotational drift velocities can
finally be rewritten as (with G∞ = ∇C∞ |r0

)

Uc
d = −M0∇C∞ |r0

+
M2

10
(3pp − I) · ∇C∞ |r0

, (28)

Ωc
d = −

3M1

4a
p × ∇C∞ |r0

. (29)

For the particular case of a hemispheric Janus particle, all
even modes A2n and M2n (for n > 0) are zero due to symmetry,
and one finally obtains

Uc
d = −M0∇C∞ |r0

, Ωc
d = −

3M1

4a
p × ∇C∞ |r0

. (30)

The phoretic interactions include a reorientation to align
the particle with (respectively, against) the chemical gradient
if M1 < 0 (respectively, M1 > 0) [Eq. (29)], as well as a transla-
tional drift with components both along the chemical gradient
and in the particle’s direction [Eq. (28)]. These different contri-
butions provide different modes of chemotaxis to the catalytic
colloids that were recently analyzed in detail.30,31 The trans-
lational velocity scales as Uc

d ∼ M0G and the reorientation

velocity scales as Ωc
d ∼ M1G/a, where G is the characteristic

solute concentration gradient created by the other particles
at the location of the particle considered. The reorientation
time scale is τc

rotation = 1/Ωc
d ∼ a/M1G.

We now briefly discuss the relative magnitude of these
chemical and hydrodynamic effects. When the background
chemical gradient experienced by a given particle is due
to a second particle located at a distance L, this gradi-
ent scales as G ∼ (A0/D)(a/L)2 at leading order, if these
particles are net sources or sinks of solute (A0 , 0) [see
Eq. (14)]. Consequently, the chemical drift velocity scales as
Uc

d ∼ (M0A0/D)(a/L)2 and the reorientation time scale is
τc

rotation = 1/Ωc
d ∼ a(D/A0M1)(L/a)2. If the net production

rate vanishes (A0 = 0), the gradients are weaker, scaling as
G ∼ (A1/D)(a/L)3, and therefore Uc

d ∼ (M0A1/D)(a/L)3 and
τc

rotation ∼ a(D/A1M1)(L/a)3.
These scalings for chemical interactions between parti-

cles can be compared to their hydrodynamic counterparts.
The leading order translational hydrodynamic drift scales as
Uh

d ∼ (M1A1/D)(a/L)2 [see Eq. (15)], and the reorientation time
scales as τh

rotation ∼ L(D/A1M1/)(L/a)2. A summary of the scaling
of the translational and rotational velocities due to hydrody-
namic and phoretic drifts is given in Table II.

When the particles act as net sources or sinks of solute
(A0 , 0), the chemical and hydrodynamic drift velocities are
of the same order Uc

d ∼ Uh
d, but chemical rotations act much

faster than hydrodynamic rotations τc
rotation � τh

rotation. When
the chemical signature of the particle is a source dipole only
(A0 = 0), the hydrodynamic drift is dominant Uc

d � Uh
d, whereas

chemical and hydrodynamic rotations are of the same order
τc

rotation ∼ τ
h
rotation.

III. WEAKLY CONFINED JANUS PARTICLES
IN HELE-SHAW CELLS

Section II established that in an unbounded domain (i) the
dynamics of individual Janus particles is the superposition of
their self-propulsion and the translational and rotational drifts
associated with the background concentration of solute (the
latter is not related to their activity) and (ii) only the latter
plays a role in their re-orientation when the particles are net
sources or sinks of solute.
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We investigate here how these results and associated
scalings are modified when the Janus particles are confined
in a Hele-Shaw cell consisting of two no-slip walls that are
chemically-inert, with no activity or mobility, and separated
by a distance h [Fig. 1(b)]. We consider the joint limit of (i) weak
confinement, where the particle radius a is much smaller than
the gap h between the walls, namely, a � h, and (ii) Hele-Shaw
interactions, where the typical distance L between particles is
much greater than the cell depth leading to dilute suspensions
with h � L. The first condition implies that the chemical and
hydrodynamic drift of a particle in response to the local chem-
ical and hydrodynamic fields are obtained in the same way
as those of a particle in unbounded flow. The second condi-
tion is important to determine these local fields, given a dilute
suspension of particles in the Hele-Shaw cell, as discussed
next.

A. Chemical signature in Hele-Shaw confinement
Within the Hele-Shaw cell and outside of the individual

particles, the solute concentration is governed by Laplace’s
equation with no-flux condition at the confining walls

D∇2C = 0, with
∂C
∂z

�����z=±h/2
= 0. (31)

Here, we consider the Cartesian coordinates (x, y, z) such
that the (x, y)-plane is located in the middle of the Hele-
Shaw cell, parallel to the bounding walls, and z is along its
depth, and we introduce the corresponding inertial frame
(ex, ey, ez) as depicted in Fig. 1. We non-dimensionalize the
length in the z-direction by h and in the (x, y)-plane by L with
ε = h/L � 1, and we seek a solution to Eq. (31) in this form:
C = C0 + ε2C1 + · · · . We immediately obtain from Eq. (31)
that C0 is independent of z. That is to say, at the leading
order, the solute concentration is homogeneous across the
channel depth and its leading order gradient is horizontal. A
direct but fundamental consequence of this homogeneity is
that all Janus particles will be forced to align parallel to the (x,
y)-plane, which justifies a quasi-2D approach to the present
problem. The presence of a net source of solute in 2D con-
finement would induce a logarithmic far-field singular behav-
ior in the concentration field. For a well-posed problem, one
needs either to consider two different populations of parti-
cles (net producers and net consumers in similar proportions)
or a single population of dipolar particles. We focus on the
latter.

We consider the solute concentration field generated by
a single Janus particle located at r0 and oriented horizontally
such that p · ez = 0. In an unbounded flow domain, the con-
centration generated by this chemical dipole is obtained by
setting A0 = 0 in Eq. (14), which we rewrite as

C =
1

4π

(
2πa3A1

D

)
p · (r − r0)

‖r − r0 ‖
3

, (32)

where 2πa3A1/D is the intensity of the chemical dipole in
the unbounded domain. When the particle is located within
a Hele-Shaw channel, at r0 = δez, where δ is the vertical posi-
tion of the particle relative to the central plane (|δ| < h/2), the

concentration within the channel gap can be reconstructed
using the method of images by superimposing identical dipoles
located at vertical positions z+

n = δ + 2nh and z−n = −δ + (2n + 1)h
(n ∈ Z). To this end, we write r = x + zez, where x = xex + yey.
The concentration field due to the chemical dipole and its
infinite image system is given by

C =
1

4π

(
2πa3A1

D

)
(p · x)

×

∞∑
n=−∞




1

‖r − z+
nez ‖

3/2
+

1

‖r − z−nez ‖
3/2



· (33)

In the Hele-Shaw limit ‖x‖ � h, the leading order concentra-
tion field is obtained using Riemann’s sum as

CH−S =
1

4π

(
2πa3A1

D

)
(p · x)

h‖x‖2

∞∑
m=−∞

h/‖x‖

1 +

(
mh
‖x‖

)2

3/2

=
1

2π

(
2πa3A1

Dh

)
(p · x)

‖x‖2
· (34)

This concentration field corresponds to a two-dimensional
chemical dipole of intensity 2πa3A1/hD. It is homogeneous
within the channel depth, i.e., it is independent of the particle’s
vertical position δ.

B. Hydrodynamic signature in Hele-Shaw
confinement

The far-field hydrodynamic signature of a Janus particle
in an unbounded fluid domain is given by Eq. (15). The lead-
ing order term of the velocity field is that of a force dipole (or
Stokeslet dipole) whose velocity field decays as 1/r2. The dom-
inant correction to the leading order term includes a potential
horizontal source dipole and force quadrupole, both decaying
as 1/r3.

We now consider a Janus particle that is confined
between the two no-slip surfaces. We are interested in its
hydrodynamic signature in the (far-field) Hele-Shaw limit, at
distances L much greater than the channel depth h. By lin-
earity of the Stokes equations, the velocity field produced by
the confined particle is the sum of the velocity fields pro-
duced by the confined singularities: force dipole, potential
source dipole, and force quadrupole. The effect of confine-
ment between two rigid walls on a force singularity (Stokeslet)
is analyzed at length by Liron and Mochon.59 They showed
that in the far-field (L � h), a Stokeslet oriented along the
horizontal direction (parallel to the confining walls) induces
an exponentially-decaying velocity field in the z-direction,
whereas in the (x, y)-plane, its dominant behavior corresponds
to a two-dimensional source dipole. The direction of the
source dipole is that of the original Stokeslet, and its strength
depends in a parabolic way on its placement between the two
walls. Mathematically, for a Stokeslet of unit strength located
in a plane z = δ between the two walls such that

ust =
1

8πη
(
I
r

+
rr
r3

) · p, (35)
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the leading order far-field flow in Hele-Shaw confinement is
given by [see Eq. (51) in Ref. 59]

uH−S
st = −

3h
2πη

(
1
4
−
δ2

h2

) (
1
4
−

z2

h2

) (
I
‖x‖2

− 2
xx
‖x‖4

)
· p. (36)

Therefore, the far-field flow generated by a horizontal force
dipole corresponding to the first term in Eq. (15),

ufd =
1

8πη
∇

(
I
r

+
rr
r3

)
: A, (37)

becomes, when confined between two walls, that of a two-
dimensional source quadrupole decaying as 1/‖x‖3

uH−S
fd = −

3h
2πη

(
1
4
−
δ2

h2

) (
1
4
−

z2

h2

)
× ∇

(
I
‖x‖2

− 2
xx
‖x‖4

)
: A (38)

where A = 10πηa2α2(pp − I/3) [see Eq. (16)] and α2 is given in
Eq. (12). Substituting into Eq. (38) and evaluating the resulting
expression at δ = z = 0, the leading order flow field generated
by a horizontal force dipole is obtained as

uH−S
fd =

5ha2κA1M1

9D

[
∇

(
I
‖x‖2

− 2
xx
‖x‖4

)]
: (3pp − I). (39)

We now examine the effect of confinement on the flow
generated by a 3D source dipole. We recall that the source
dipole can be seen either as a potential flow solution to the
Stokes equations, associated with Laplace’s equation,60 or as
a degenerate force quadrupole. Following the latter approach,
the source dipole contribution in the unconfined domain cor-
responding to the second term in Eq. (15) can be rewritten as
the Laplacian of a Stokeslet

usd = −
1

4π
∇

( r
r3

)
· B = −

1
8π
∇

2
(
I
r

+
rr
r3

)
· B, (40)

where B = 2πa3Up is given by Eq. (16) and the last equality fol-
lows directly by differentiation [e.g., Kim and Karrila,50 Chap.
2, Eq. (2.12)]. The leading order velocity field associated with
the confined potential singularity is then obtained by consid-
ering the dominant contribution to the Laplacian of Eq. (36)
and is given by

uH−S
sd = −

3
πh

(
1
4
−
δ2

h2

) (
I
‖x‖2

− 2
xx
‖x‖4

)
· B. (41)

Evaluating at δ = 0 and substituting the expression for U from
Eq. (11), we get that

uH−S
sd = −

3a3U
2h

(
I
‖x‖2

− 2
xx
‖x‖4

)
· p

=
a3A1M0

2hD

(
I
‖x‖2

− 2
xx
‖x‖4

)
· p. (42)

It is important to note that in unbounded 3D domains, the
contribution of the source dipole was a higher order correc-
tion to the contribution of the force dipole. The situation is
reversed in Hele-Shaw confinement: the source dipole decays
as 1/‖x‖2, whereas the force dipole decays as 1/‖x‖3. Mean-
while, the force quadrupole decays as 1/‖x‖4. Ignoring the
latter, the leading-order terms in the flow field created by
a self-propelled phoretic particle placed horizontally in the
mid-plane of the channel in the Hele-Shaw limit is computed
by substituting Eqs. (39) and (42) into Eq. (15)

uH−S =
a3A1M0

2hD

(
I
‖x‖2

− 2
xx
‖x‖4

)
· p

+
5ha2κA1M1

9D

[
∇

(
I
‖x‖2

− 2
xx
‖x‖4

)]
: (3pp − I). (43)

The leading-order terms in the hydrodynamic and chem-
ical signatures, uH−S(x) and CH−S(x), of a self-propelled
phoretic particle in the Hele-Shaw limit are summarized in
Table III.

C. Hydrodynamic and phoretic interactions
under weak confinement

Under weak confinement a � h, the hydrodynamic and
phoretic drifts of individual particles—which result from the
chemical and hydrodynamic fields immediately around it—can
be determined as in the unbounded case. The hydrodynamic
and phoretic drift velocities are therefore given by Eqs. (18)
and (30), respectively, where u∞ and ∇C∞ are the velocity field
and concentration gradient created by other phoretic parti-
cles, respectively, and should now be evaluated for uH−S(x)
and CH−S(x) in the Hele-Shaw limit obtained in Eqs. (34)
and (43).

Using Eqs. (30) and (34), the phoretic drifts of a particle
with orientation p0 created by a particle located at relative

TABLE III. Scaling laws of the chemical and hydrodynamic signatures induced by a confined self-propelled phoretic particle
in a Hele-Shaw cell of width h such that a � h and h � L. Parameter values are defined in Table I.

Hydrodynamic signature Chemical signature

uH−S(x) CH−S(x)

Force dipole Source dipole Force quadrupole Source Source dipole

Intensity ha2 A1M1

D
a3

h
A1M0

D
a3α3

h
. . .

a3

h
A1

D

Decay rate
1

L3

1
L2

1
L4

. . .
1
L
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TABLE IV. Scaling laws of the chemical and hydrodynamic drift under confinement created by a phoretic particle at a distance
L from the particle of interest.

Hydrodynamic drift Chemical drift

Force dipole Source dipole Force quadrupole Source Source dipole

Translational
ha2

L3

A1M1

D
a3

hL2

A1M0

D
a3α3

hL4
. . .

a3

hL2

A1M0

D
drift Ud

Rotational . . . . . . . . . . . .
1
a

a3

hL2

A1M1

D
drift Ωd

position x with orientation p are given by

Uc
d = −

a3M0A1

Dh

[
I
‖x‖2

−
2xx
‖x‖4

]
· p, (44)

Ωc
d = −

3a2A1M1

4Dh
p0 ×

[(
I
‖x‖2

−
2xx
‖x‖4

)
· p

]
, (45)

and, respectively, scale as Uc
d ∼ (a3/hL2)(A1M0/D) and Ωc

d
∼ (a3/hL2)(M1A1/aD). Similarly, the velocity of translational
drift due to hydrodynamic interactions is computed from
Eqs. (18) and (43)

Uh
d =

a3A1M0

2Dh

(
I
‖x‖2

−
2xx
‖x‖4

)
· p

+
5ha2κA1M1

9D

[
∇

(
I
‖x‖2

−
2xx
‖x‖4

)]
: (3pp − I). (46)

For spherical particles, the rotational hydrodynamic drift
arises only from the vorticity field, as expressed explicitly in
Eq. (18). Since the flow field in Eq. (43) is potential, the vorticity
field is identically zero, and therefore there is no hydrody-
namic rotational drift in the Hele-Shaw limit. A summary of
the phoretic and hydrodynamic drift velocities in this limit is
given in Table IV.

A direct comparison of the translational drift velocities Uc
d

and Uh
d shows that the contributions of the hydrodynamic and

chemical source dipoles follow the same scaling, while that
due to the hydrodynamic force quadrupole is always subdom-
inant (see Table IV). Comparing the velocities due to hydro-
dynamic and chemical source dipoles to that induced by the
force dipole, the following three regimes can arise depend-
ing on the relative magnitude of a/h versus h/L or on the
relative magnitude of the range of the interactions L versus
h2/a:

• For far-field interactions L � h2/a, the translational
drift velocity Ud is governed at the leading order by
the hydrodynamic and chemical source dipoles. The
influence of the force dipole is negligible.

• For short-range interactions L � h2/a, the translational
drift due to the hydrodynamic force dipole is dominant.
The chemical drift is negligible and so is the role of the
hydrodynamic source dipole.

• When L ∼ h2/a, the drifts induced by the hydrodynamic
force dipole and source dipole and the chemical source
dipole are all of the same order.

Effectively, if the particles’ density is small enough (dilute
systems) that the typical distance between particles satisfies
L � h2/a, then the leading-order interactions of the differ-
ent particles can be written solely in terms of source dipoles.
Higher particle densities require more care to account for the
effect of the force dipole. In all regimes, one can readily ver-
ify that the rotational drift due to the chemical source dipole
is always dominant. Starting from this insight, we next formu-
late equations of motion governing the far-field interaction of
multiple phoretic Janus particles in each of these regimes.

IV. FAR-FIELD INTERACTIONS OF CONFINED
AUTO-PHORETIC PARTICLES

Based on the results obtained in Sec. III, we formulate a
self-consistent description for the dynamics of N autophoretic
particles in weak confinement (a � h) and dilute suspensions
(h � L).

Let particle j be located at xj with orientation given by
the unit vector pj (j = 1, . . ., N). For simplicity, we consider
that all particles are located on the midplane of the chan-
nel (δ = 0). The translational motion of particle j is due (i) to
its self-propulsion at speed U as a result of its own chemi-
cal activity and mobility property, (ii) the hydrodynamic drift
generated by the motion of its neighbors, and (iii) the chemi-
cal drift resulting from the particle’s own mobility in response
to the chemical activity of its neighbors. The particle’s orien-
tation pj also changes in response to these flow and chemical
disturbances. Given a � h, the resulting equations of motion
of particle j are given at the leading order by the particle’s
behavior in unbounded flows

ẋj = Upj + u(xj) + µc∇C(xj), (47)

ṗj = (I − pjpj) ·
[
w(xj) · pj + νc∇C(xj)

]
. (48)

Here, U is the self-propulsion velocity given in Eq. (11), µc and
νc are the chemical translational mobility coefficients, and w
= (∇u − ∇uT)/2 is the anti-symmetric (vorticity) component
of the local velocity gradient. In Sec. II, we obtained that, for
a spherical Janus particle, U, µc, and νc are given by Eq. (30),
which we rewrite for convenience as
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U = −
A1M0

3D
, µc = −M0, νc = −

3M1

4a
. (49)

In Sec. III, we found that the rotational drift is always
dominated by the chemical component. Therefore, in the fol-
lowing, we will neglect the hydrodynamic term in the orien-
tation equation. We also obtained expressions for the local
hydrodynamic and chemical fields generated by other par-
ticles. Specifically, the chemical concentration C is given by
Eq. (34) and the hydrodynamic flow field u by Eq. (43). Here,
we drop the H-S superscript with the understanding that all
quantities are in Hele-Shaw confinement. Put together, we get
that, at the leading order,

C(x) =
a3A1

Dh

∑
k

pk · (x − xk)

‖x − xk ‖
2

, (50)

∇C(x) = −
a3A1

Dh

∑
k

G(x, xk) · pk, (51)

and

u(x) = −
a3A1M0

2Dh

∑
k

G(x, xk) · pk

−
5ha2κA1M1

9

∑
k

∇G(x, xk) : (3pkpk − I), (52)

with

G(x, xk) =
2(x − xk)(x − xk)

‖x − xk ‖
4

−
I

‖x − xk ‖
2
· (53)

We evaluate the above expressions at particle j and
substitute the result into Eqs. (47) and (48), noting that the sec-
ond term in the hydrodynamic flow field [Eq. (52)] should only
be included for particles when |(xj − xk)| / h2/a. For dilute sus-
pensions, where the volume fraction of particles is such that
|(xj − xk)| � h2/a, the contribution of the force dipole is sub-
dominant. In this case, we note that the hydrodynamic and
chemical translational drifts on particle j take the exact same
form given by u(xj) and −M0∇C(xj) = −2u(xj), but act in opposite
directions, with the latter being dominant (and exactly twice
as large). The equations of motion for the phoretic particles
then simplify to

ẋj = −
A1M0

3D
pj +

a3A1M0

2Dh

∑
k,j

G(xj, xk) · pk, (54)

ṗj =
3a2M1A1

4Dh
(I − pjpj)

∑
k,j

G(xj, xk) · pk. (55)

We note that these equations take a particularly simple form:
they are equivalent to the interaction of hydrodynamic source
dipoles with a reversed hydrodynamic drift, leading to a nega-
tive effective hydrodynamic mobility coefficient. That is to say,
particles tend to drift in the opposite direction of the local flow
due to the dominance of the chemical drift.

It is convenient to rewrite Eqs. (54) and (55) in non-
dimensional form. To this end, we assume without any
loss of generality that A1M0 > 0 so that the direction of

self-propulsion is q = −p (the case A1M0 < 0 could be treated
similarly); we then use the characteristic length scale a and
a characteristic time scale 3Da/A1M0 based on the nominal
swimming velocity. Equations (54) and (55) become

ẋj = qj + µ
∑
k,j

G(xj, xk) · qk, (56)

q̇j = ν(I − qjqj)
∑
k,j

G(xj, xk) · qk, (57)

respectively, where µ = −3a/2h and ν = 9aM1/4hM0 are the
translational and rotational mobility, respectively, with the
understanding that all variables in Eqs. (56) and (57) are non-
dimensional (here and thereafter µ is the translational mobility
coefficient not to be confused with µ = cos θ in Sec. II). From
a chemical point of view, the sign of ν is directly related to the
reorientation of the particle in the direction of or opposed to
its chemical drift.

It should be noted here that the mobility coefficient
µ = −3a/2h is negative. That is, in contrast with the standard
micro-swimmers,61–64 weakly confined phoretic particles drift
in the opposite direction to the local flow induced by other
particles, instead following their chemical drift. This, in turn, is
the result of phoretic and hydrodynamics interactions having
the same dependence but opposite behavior in this Hele-Shaw
limit.

V. COLLECTIVE DYNAMICS AND PAIR INTERACTIONS
In Sec. IV, the leading order dynamics for phoretic par-

ticles in weak Hele-Shaw confinement was shown to take
the form of interacting potential dipoles, similarly to other
categories of confined micro-swimmers, but for a reverse
translational mobility.

A. Suspension dynamics
To analyze the interplay between this negative transla-

tional motility and the orientational dynamics within a suspen-
sion of phoretic particles, we numerically solve Eqs. (56) and
(57) for a population of particles in a doubly-periodic domain.
We account for the doubly infinite system of images using the
Weiestrass-zeta function.62,65,66 To avoid collision, we intro-
duce a Lennard-Jones repulsion potential to the translational
equation [Eq. (56)].62 The resulting steric forces act locally
and decay rapidly such that they do not affect the long-range
chemical and hydrodynamic interactions among the particles.
We use a standard time stepping algorithm to solve for the
evolution of a population of N = 100 particles that are ini-
tially spatially distributed at random orientations in a doubly-
periodic square domain of size D/a = 19.5.62 The aspect ratio
is fixed to h/a = 5 so that the translational mobility coeffi-
cient is µ = −0.3 and the orientational coefficient is varied,
ν ∈ [−5, 5].

Three distinct types of global behaviors emerge depend-
ing on the sign of the rotational mobility ν: (i) a swirling
behavior where particles form transient chains that emerge,
break, and rearrange elsewhere for ν > 0, (ii) random particle
motions for ν = 0, and (iii) aggregation and clustering for ν < 0.
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Representative simulations are shown in Fig. 2. These col-
lective phenomena are reminiscent to those observed in the
motion of hydrodynamic dipoles,62,67 but bear distinctive fea-
tures due to the negative translational motility, as discussed
next.

The large-scale phenomena are dictated by the orienta-
tional dynamics of the particles. The swirling phenomenon can
be readily understood by examining the orientational inter-
action of two particles, as depicted schematically in Fig. 3(a).
For ν > 0, a particle aligns with the drift created by another
particle. That is to say, it reorients towards the tangent to
the streamlines of the potential dipole created by the nearby
particle, causing it naturally to follow that particle. As a
result, particles of positive ν tend to form chains. However,
given the negative motility coefficient µ < 0, as particles
align into such chain-like structures, their forward transla-
tional motion is slowed down by the dipolar flow field of
their neighbors, resulting in a decrease in the particles’ veloci-
ties, as evidenced from the probability distribution function in
Fig. 2(a).

When the orientational interactions are suppressed
(ν = 0), particles do not change orientation, except to avoid
collisions when other particles are sufficiently close to trig-
ger steric interactions. In other words, the long-range inter-
actions among particles can at most slow down the particle
translational velocities due to the negative motility coefficient,
without introducing bias in the particles’ orientation and posi-
tion relative to each other. The reduction in the translational

FIG. 3. Schematic depiction of the orientation interaction of two phoretic particles:
(a) for ν > 0, a particle reorients to align with the dipolar flow field created by the
other particle, leading the two particles to “tail gate” each other; (b) for ν < 0, it
reorients opposite to the dipolar field created by the other particle, leading the two
particles to aggregate head on.

velocity depends on the particles’ location, which is initially
random and remains random under subsequent interactions
between particles [see Fig. 2(b)]. As a result, the translational

FIG. 2. Collective behavior of auto-phoretic particles in doubly periodic domain exhibiting (a) chain-like formation and swirling behavior for ν = 5; (b) advection and steric
interaction for ν = 0; and (c) aggregation for ν = −5. Snapshots are shown at t = 1750, 1000, and 15, respectively. The unit vector p is directed from red to blue, as indicated
in Fig. 1. Parameter values are set to N = 100, U = 1, a = 1, and µ = −0.3. The domain size is D = 19.5. The bottom row shows the probability distributions of the particle
velocities in the three cases. In all cases, the average velocity is smaller than the self-propelled velocity of an individual particle U = 1.
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velocities follow a somewhat broad-band distribution of values
below U = 1 (i.e., their self-propulsion velocity), as depicted in
the bottom row of Fig. 2(b).

The clustering behavior observed for ν < 0 can be
explained by recalling that, in that case, particles reorient in
the opposite direction of the local drift resulting from the
chemical and hydrodynamic interactions with the other par-
ticles. Therefore, a particle travels in the opposite direction
to the streamlines created by a nearby particle, as illustrated
in Fig. 3(b), which leads to aggregation. The particles begin
to aggregate at a relatively short time scale, as indicated by
the time of the snapshot in Fig. 2(c), and lead to the formation
of clusters. Some of these clusters are unstable, while others
form stable aggregates that attract each other and slow down
considerably as they coalesce to form larger aggregates. The
velocity distribution function on the bottom row of Fig. 2(c)
has a strong peak around zero velocity because most particles
are attached to stable clusters, with a few particles moving at
unit speed.

B. Pair interactions and stability
The orientational interactions underlying these large-

scale phenomena can be examined analytically in more detail
in the special case of pairs of phoretic particles. In particular,
the observations that for ν > 0, particles tend to follow each
other and form quasi-stable chainlike structures, whereas for
ν < 0, particles tend to collide head-on and form clusters
are rooted in two-particle interactions: for ν < 0, chainlike
structures are unstable while side-by-side motions that lead
to head-on collisions are unstable for ν > 0, as discussed
next.

First, we rewrite Eqs. (56) and (57) for two particles to get
that

ẋ1 = q1 +
µ

d2

(
2dd − I

d2

)
· q2, (58)

ẋ2 = q2 +
µ

d2

(
2dd
d2
− I

)
· q1, (59)

q̇1 =
ν

d2
(1 − q1q1) ·

(
2dd
d2
− I

)
· q2, (60)

q̇2 =
ν

d2
(1 − q2q2) ·

(
2dd
d2
− I

)
· q1, (61)

where d = x2 − x1 is the relative position vector and d = ‖d‖ is
the relative distance between the two particles. We reformu-
late these equations in terms of d and the relative orientation
angles αj of qj (j = 1, 2) with respect to d. To this end, we intro-
duce the unit vector e = d/d ≡ (cos θ, sin θ), where θ is the
orientation of d in the fixed inertial frame. The relative angles
αj of qj with respect to e satisfy the identities e · qj = cosαj and
e × qj = sinαj. The global translational velocity of the two par-
ticles can be omitted here due to the fact that the system is
invariant under translational symmetry. Expressing Eq. (61) in
terms of (d, θ, α1, α2), we get that

ḋ =
(
1 −

µ

d2

)
(cosα2 − cosα1), (62)

θ̇ =

(
1
d

+
µ

d3

)
(sinα2 − sinα1), (63)

α̇1 = α̇2 = −
ν

d2
sin(α1 + α2) −

(
1
d

+
µ

d3

)
(sinα2 − sinα1). (64)

This leads to the surprising result that the relative orientation
α2 − α1 of the two swimmers is a constant of motion. Further-
more, θ does not influence (d, α1, α2) because the system is
invariant under rotational symmetry; we could thus solve for
(d, α1, α2) independently. It is more convenient to introduce
δ = (α2 − α1)/2 and γ = (α1 + α2)/2 such that

ḋ =
(
1 −

µ

d2

)
sinγ sin δ, (65)

δ̇ = 0, (66)

γ̇ = −
ν

d2
sin 2γ − 2

(
1
d

+
µ

d3

)
cosγ sin δ. (67)

There are two configurations that lead to relative equilibria of
this system of equations (δ̇ = γ̇ = 0): (i) follower configuration:
δ = 0, γ = 0, and (ii) Side-by-side configuration: δ = 0, γ = ±π/2,
as depicted in Fig. 4.

In the follower configuration, both particles have the same
orientation aligned with their relative distance e. The solu-
tion corresponds to a translation of the two particles at the
same velocity (1 + 2µ/d2

o)e, where do is constant. Linearizing
Eq. (67) around the equilibrium (do, 0, 0) provides at leading
order

ḋ = 0, δ̇ = 0, γ̇ = −2
ν

d2
o
γ − 2*

,

1
do

+
µ

d3
o

+
-
δ, (68)

and this equilibrium is linearly unstable for ν < 0. For ν ≥ 0,
the system is neutrally stable and weakly nonlinear analysis
should be performed to analyze its stability. These findings
are consistent with the observations that chainlike structures,
which are reminiscent of the follower configuration, are not

FIG. 4. Relative equilibria of pairs of particles in (a) follower configuration and (b)
side-by-side configuration, both at a constant separation distance do. The follower
configuration is unstable for ν < 0, while the side-by-side configuration is unstable
for ν > 0.
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observed for ν < 0. Physically speaking, the follower configu-
ration is unstable for ν < 0 because particles tend to align in
the opposite direction to the ambient flow. Therefore, a slight
perturbation away from the equilibrium, say of the follower
particle, would cause it to move opposite to the streamlines
of the leader particle, which drives it further away from the
equilibrium.

In the side-by-side configuration, both particles are paral-
lel to each other and perpendicular to e. They undergo a trans-
lational motion with velocity (1 − µ/d2

o)e, where do is constant.
Linearizing around (do, 0, ±π/2) provides at leading order

ḋ = ±
(
1 −

µ

d2
o

)
δ, δ̇ = 0, γ̇ = 2

ν

d2
o
γ, (69)

and this equilibrium is linearly unstable for ν > 0 and neu-
trally stable otherwise. These results are consistent with the
intuitive analysis presented in Fig. 3. Side-by-side particles
pointing in the same direction are unstable for ν > 0 because
they will want to reorient in the direction of the dipolar field
of the other particle.

Taken together, the results from the numerical simula-
tions for a population of weakly-confined particles and the
linear stability analysis for a pair of particles indicate that the
collective behavior is dominated by the orientational dynam-
ics and by the orientational mobility coefficient ν. The negative
translational mobility coefficient slows down the particles but
does not affect the modes of collective behavior.

VI. CONCLUSIONS

In this work, a first-principle approach was presented for
deriving the equations governing the interactions of a popu-
lation of auto-phoretic Janus particles under weak Hele-Shaw
confinement. The goal was to analyse the effects of confine-
ment on the interactions of many phoretic particles, and, in
particular, on the relative weight of the hydrodynamic and
chemical (phoretic) couplings. Both effects take the same form
within this particular limit, but act in opposite directions, with
the magnitude of phoretic interactions being exactly twice
as large and, therefore, driving the collective dynamics of
weakly-confined Janus particles. Yet, hydrodynamic interac-
tions are not negligible and in fact account for a reduction by
50% in the effective translational and rotational drifts when
compared to pure phoretic interactions. This analysis further
provides a detailed insight on the relative weight of hydrody-
namics and phoretic drift by obtaining precise and compara-
tive scalings for the two routes of interactions in unbounded
and confined geometries.

In the Hele-Shaw limit considered, the leading order
dynamics takes the form of interacting potential dipoles, sim-
ilarly to other categories of confined micro-swimmers62–64

but with a reverse translational mobility due to the phoretic
coupling. The reverse translational motility slows down the
particles but does not affect the emergent collective modes,
which are governed by the sign of the orientational mobil-
ity coefficient ν. Particles that align with the drift created
by the other particles (ν > 0) exhibit global swirling and
chaotic-like behavior, while particles that align opposite to the

induced drift (ν < 0) tend to aggregate and form stationary
clusters.

These collective modes were previously analyzed, albeit
for micro-swimmers with positive translational mobility
coefficient, showing that the transition from swirling to clus-
tering and aggregation as ν decreases from positive to nega-
tive occurs systematically over the phase space consisting of
ν and the particles’ area fraction Φ (with Φ being the ratio
of the area of all particles to the area of the doubly peri-
odic domain) taken to lie in the dilute to semi-dilute range
Φ ∈ [0.1, 0.3].62 Therefore, we expect the global swirling and
aggregation modes in the weakly confined auto-phoretic par-
ticles, and the transition between them as ν decreases, to be
robust to changes in the number of particles in this range
of Φ. Furthermore, these global modes were shown to be
robust to rotational Brownian noise for a range of rotational
diffusion coefficients with Péclet numbers of order 1.62 We
thus expect rotational diffusion in this range of Péclet num-
bers to have a small effect on the collective modes of weakly
confined auto-phoretic particles. In fact, the framework pre-
sented here purposely neglects the influence of thermal fluc-
tuations and the Brownian nature of the dynamics of small
Janus colloids, as our focus was on understanding the role of
confinement in screening and tuning each route of determin-
istic interactions between chemically active colloids. Future
studies will address in detail how such screening is poten-
tially influenced by stochastic fluctuations in the particles’
dynamics.

These findings, albeit in the context of a simplified model,
may have profound implications on understanding and con-
trolling the collective behavior of active films by auto-phoretic
particles. They demonstrate that, in weak Hele-Shaw confine-
ment, the emergent phase is controllable by the surface prop-
erties of the individual Janus particles. The surface chemistry
dictate the ability of a Janus particle to drive surface slip from
local concentration gradients, which, in turn, dictates the sign
and value of ν. Therefore, the mobility and chemical activity (M
and A) can be viewed as control parameters to systematically
and predictably engineer active films with distinct emergent
properties, from spontaneous large-scale swirling motions to
stationary clusters and aggregates.
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