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A realistic, efficient and robust technique for the control of amplifier flows has
been investigated. Since this type of fluid system is extremely sensitive to upstream
environmental noise, an accurate model capturing the influence of these perturbations
is needed. A subspace identification algorithm is not only a convenient and effective
way of constructing this model, it is also realistic in the sense that it is based on
input and output data measurements only and does not require other information
from the detailed dynamics of the fluid system. This data-based control design has
been tested on an amplifier model derived from the Ginzburg–Landau equation, and
no significant loss of efficiency has been observed when using the identified instead
of the exact model. Even though system identification leads to a realistic control
design, other issues such as state estimation, have to be addressed to achieve full
control efficiency. In particular, placing a sensor too far downstream is detrimental,
since it does not provide an estimate of incoming perturbations. This has been
made clear and quantitative by considering the relative estimation error and, more
appropriately, the concept of a visibility length, a measure of how far upstream a
sensor is able to accurately estimate the flow state. It has been demonstrated that a
strongly convective system is characterized by a correspondingly small visibility length.
In fact, in the latter case the optimal sensor placement has been found upstream
of the actuators, and only this configuration was found to yield an efficient control
performance. This upstream sensor placement suggests the use of a feed-forward
approach for fluid systems with strong convection. Furthermore, treating upstream
sensors as inputs in the identification procedure results in a very efficient and robust
control. When validated on the Ginzburg–Landau model this technique is effective, and
it is comparable to the optimal upper bound, given by full-state control, when the
amplifier behaviour becomes convection-dominated. These concepts and findings have
been extended and verified for flow over a backward-facing step at a Reynolds number
Re = 350. Environmental noise has been introduced by three independent, localized
sources. A very satisfactory control of the Kelvin–Helmholtz instability has been
obtained with a one-order-of-magnitude reduction in the averaged perturbation norm.
The above observations have been further confirmed by examining a low-order model
problem that mimics a convection-dominated flow but allows the explicit computation
of control-relevant measures such as observability. This study casts doubts on the
usefulness of the asymptotic notion of observability for convection-dominated flows,
since such flows are governed by transient effects. Finally, it is shown that the feed-
forward approach is equivalent to an optimal linear–quadratic–Gaussian control for
spy sensors placed sufficiently far upstream or for sufficiently convective flows. The
control design procedure presented in this paper, consisting of data-based subspace
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identification and feed-forward control, was found to be effective and robust. Its
implementation in a real physical experiment may confidently be carried out.

Key words: control theory, flow control, instability control

1. Introduction
In this paper, different approaches for the control of amplifier flows are presented

and compared. A technique consisting of a data-based feed-forward controller is
designed and evaluated. It is shown to be at the same time realistic, efficient and
robust.

Flow control aims at acting on a fluid system at a few selected locations to
induce and enforce a predefined, desired behaviour. Research in this area has received
increasing interest fuelled by a large number of potential technological applications
in science and engineering. Areas of interest include, among others, drag reduction,
control of separation or reattachment, mixing enhancement and the delay of transition
to turbulence. Since the way of controlling a fluid critically depends on specific details
of the system, a large number of strategies have been designed to manipulate fluid
flows. To give a few examples: the actuation may be steady, for instance, constant
suction through a flat surface as presented in the review of Joslin (1998), or harmonic,
for instance, periodic excitation at a very specific mode frequency as in Greenblatt &
Wygnanski (2000), or it may be based on sensor measurements via a direct feedback,
in the simplest case, specified by proportional control.

More generally, a successful control strategy depends equally on the control
objective and on the intrinsic flow dynamics. Two flow classes have to be
distinguished. Fluid systems known as oscillators are characterized by a periodic
behaviour at a sharply defined frequency that is unresponsive to environmental
noise sources. Typical examples of this sort of behaviour can be found in hot or
swirling jets, mixing layers with sufficiently large counter-flow or flow around a
cylinder for a sufficiently high Reynolds number. In contrast, if the flow is strongly
influenced by the external disturbance environment, the fluid system is referred to
as an amplifier. Pipe or channel flows, co-flowing mixing layers, and boundary
layers on a flat plate represent typical examples. If the external noise that drives
an amplifier flow is sufficiently small, the fluid system can be described within a linear
framework. The classification of fluid flows according to their amplifier or oscillator
behaviour was introduced in Huerre & Monkewitz (1990). The one-dimensional
Ginzburg–Landau equation was used as a convenient surrogate for the Navier–Stokes
equations. This particular model equation has been popular in addressing a range of
related phenomena in fluid mechanics and in flow control, such as in Chomaz, Huerre
& Redekopp (1987) and Lauga & Bewley (2004).

Within the range of active control strategies, a model-based approach has been
prevalent in the flow control literature (see e.g. Kim & Bewley 2007; Noack,
Morzynski & Tadmor 2011). Its underlying premise is to determine a mathematical
model that accurately describes the system dynamics and to subsequently use it to
design an optimal control law. Several strategies are available to arrive at such a
model. For sufficiently simple systems, a model equation can be deduced directly
from physical principles (Bewley & Liu 1998). For more complex problems, numerical
simulations offer an alternative to obtain this model (Semeraro et al. 2011). Both
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approaches provide valuable insight into the physical mechanisms of instability and
flow control. However, both approaches also suffer from the need to accurately
describe the external disturbance environment. In many previous studies (Lauga &
Bewley 2004; Bagheri, Brandt & Henningson 2009a; Chen & Rowley 2011; Ma,
Ahuja & Rowley 2011; Semeraro et al. 2011; Barbagallo et al. 2012), a simplified
model for the disturbance environment is assumed in the control design. The resulting
control performance is somewhat contrived, since it is closely tailored to the postulated
noise model. A similar approach is inconceivable in an experimental setting. Another
approach resorts to system identification theory in order to generate a model. In
particular, this technique has been successfully applied experimentally with several
goals such as the suppression of flow-induced cavity tones (Cattafesta et al. 2003;
Kegerise, Cabell & Cattafesta 2004), the reattachment of a separated boundary layer
over a pitched aerofoil (Tian, Song & Cattafesta 2006), the manipulation of the
reattachment point downstream of a backward-facing step (Henning & King 2007)
or the control of lift of an aerofoil in the presence of gusts (Kerstens et al. 2011).
A rather recent approach consists of using system identification techniques to obtain
a model that directly approximates the linearized Navier–Stokes equations. In this
context, promising results have been found by Hervé et al. (2012). The principal
advantage of this approach lies in the fact that the model is directly derived from
experimental, and thus noise-contaminated, data. In this sense, such a technique may
provide a better description of a realistic (experimental) fluid system. However, a
physical interpretation of the identified model may prove to be rather challenging.

System identification is concerned with building input–output models for dynamical
systems directly from input–output observations. Even though this field of research
comprises a wide range of techniques and applications, we restrict our attention to
algorithms developed for the identification of stable linear time-invariant (LTI) systems.
Applying these techniques to fluid systems may be justified in the case of amplifier
flows if they are excited by small perturbations. In that case, the flow dynamics can
be decomposed as a sum of a steady base flow (time-invariant) and a perturbation flow
field. For sufficiently small perturbations, the amplifier behaviour is then accurately
described by the Navier–Stokes equations linearized around the base flow, and system
identification techniques therefore aim at constructing a model that accurately captures
any input–output behaviour of the linearized Navier–Stokes operator.

If the underlying model is specified – for instance, as an autoregressive model
with exogenous inputs (ARX), or as an autoregressive moving-average model with
exogenous inputs (ARMAX) – the identification technique proceeds by matching
the input–output behaviour of the model to the observed data in a least-squares
sense (Ljung 1999). An alternative is to identify the discrete linear system matrices
by computing estimates of the state vector over many consecutive time steps.
This technique is referred to as subspace identification; the main idea stems from
Kalman (1960) and the method has been formalized by Larimore (1983). Commonly
used subspace identification algorithms include the canonical variate analysis (CVA)
algorithm (Larimore 1983, 1990), the multiple-inputs and multiple-outputs output-error
state-space algorithm MOESP (Verhaegen & Deprettere 1991) and the numerical
algorithms for subspace state-space system identification N4SID (Van Overschee &
De Moor 1994). A comprehensive description of these techniques, within a unified
framework, is given in Van Overschee & De Moor (1996); for a more recent review
on the subject, see for instance Qin (2006). In addition to the linear system matrices,
subspace identification techniques provide an approximation of the noise covariances,
which are required for a subsequent control design based on linear–quadratic–Gaussian
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(LQG) theory. In fact, subspace identification and LQG control design are two
intimately related procedures, and the corresponding approaches can be combined
into a single technique that produces an optimal control strategy directly from the
input–output data sequences (Favoreel et al. 1998).

Over the last two decades, the LQG framework has provided the central component
of many flow control studies, as in Bewley & Liu (1998), Bewley (2001), Högberg &
Henningson (2002), Chevalier et al. (2007), Bagheri et al. (2009a) and Semeraro et al.
(2011). The appeal – and thus widespread use – of this technique lies in its theoretical
optimality. A great many other alternatives are, however, available, and even preferred
in robust control applications for industrial problems; this over-emphasis on LQG
control has also been noted by Qin & Badgwell (2003).

This paper consists in a presentation and evaluation of a combined approach
involving subspace identification and optimal control design. In particular, we are
interested in a design that is not only efficient in reducing noise amplification, but also
robust in its performance and realistic with respect to available system information.
The successful application of flow-altering momentum or energy sources necessarily
relies on efficient strategies and control laws. These control laws, in turn, have to be
insensitive to small variations in the underlying assumptions, to model approximations
or to parameter uncertainties. Only schemes that exhibit this property, i.e. robust
schemes, will be able to perform under a range of environmental conditions, rather
than at a narrowly defined or idealized design point. Effective control strategies
also have to be realistic in a sense that their design only relies on quantities that
are readily available in numerical simulations as well as in physical experiments;
this precludes the use of purely mathematical quantities such as system matrices or
prescribed stochastic disturbance environments. In this paper we propose and analyse a
feed-forward design procedure that accomplishes these three objectives. Feed-forward
control is not a new approach and it has been used intensively in other fields of
research such as in automatics (see e.g. Meckl & Seering 1986), in chemistry (see
e.g. Calvet & Arkun 1988) or in noise cancellation application (see e.g. Zeng &
de Callafon 2003) or temperature control (see e.g. Thomas, Soleimani-Mohseni &
Fahln 2005). A recent and successful numerical application of such a strategy for the
control of flow over a backward-facing step can be found in Hervé et al. (2012). The
main purpose of the present paper is to identify and understand the strengths and
weaknesses of the feed-forward approach when applied to amplifier flows. In particular,
it will be seen that convection plays a crucial role in the relative efficiency of the
technique.

The paper is organized as follows. In § 2, subspace identification techniques are
introduced and the LQG framework is briefly discussed. Based on these techniques,
a standard control approach is applied to the linear Ginzburg–Landau equation in
§ 3 and its limitations are pointed out. In particular, the relative estimation error and
the introduction of the concept of a visibility length are shown to provide valuable
tools in analysing the strengths and weaknesses of standard feedback control in
convection-dominated flows (§ 3.4). In this respect, it is advantageous to place sensors
further upstream in the flow domain. The resulting feed-forward approach leads to the
design of a realistic, robust and efficient control scheme (§ 4). The technique is then
validated on a more realistic fluid system, namely flow over a backward-facing step
at a Reynolds number Re = 350 (§ 5). Finally, this successful feed-forward strategy is
further explored and analysed in mathematical terms and it is compared to the optimal
LQG control design (§ 6). A discussion of the main conclusions is given in § 7. For the
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sake of clarity, the details of the presentation of the subspace identification algorithm
have been relegated to the appendix A.

2. System definition and control performance
2.1. System definition

The one-dimensional linear Ginzburg–Landau equation (see e.g. Bagheri et al. 2009b)
is selected as a model problem. It reads

∂q

∂t
=−(Ur + iUi)

∂q

∂x
+ (1+ icd)

∂2q

∂x2
+ µ(x)q, (2.1)

where q(x, t) denotes the state, which is assumed bounded as |x| tends to infinity.
This equation is widely used as a model in fluid mechanics due to its convectively
or absolutely unstable characteristics (Huerre & Monkewitz 1990; Lauga & Bewley
2004). It contains convective and diffusive/dispersive terms, as well as a local
instability governed by the parameter µ(x). In the present case, the latter function
is chosen as µ(x) = µ1 − (Ui/2)

2+µ2x2/2, with µ1 = 0.38, µ2 = −0.01 and Ui = 0.4,
such that only a finite region, given by |x| < √2µ1/|µ2| ≈ 8.72, is locally unstable.
The parameters of the Ginzburg–Landau equation are the same as in Bagheri et al.
(2009b) and Chen & Rowley (2011); only the convection coefficient Ur may differ
when specified. More precisely, the dispersion coefficient cd is equal to −1 and two
different values of the convection speed Ur are selected. To model a fluid system
in the presence of moderate convection, the value Ur = 2 is chosen, whereas Ur = 3
corresponds to a case of large convection. With this choice of parameters, the flow
is always globally stable, even though a sizable absolutely unstable region is present
in the case of moderate convection Ur = 2, a feature that can be attributed to the
non-parallel nature of the flow stemming from the µ(x) term (Chomaz et al. 1987;
Huerre & Monkewitz 1990; Bagheri et al. 2009b). Systems of this type are referred
to as amplifiers, i.e. any perturbation moving into the unstable region is convected,
filtered and amplified.

It is further assumed that the governing equation is excited by a noise source that
is localized inside the upstream locally stable domain, at xw = −14. The response
to an impulse from this noise location gives insight into the system dynamics. It
is displayed in figure 1(a) with isocontours of |q| in an x–t diagram. For moderate
convection speed Ur = 2, the impulse decays initially (in the stable region) but grows
rather rapidly as it moves into the convectively unstable region. More quantitatively,
the maximum value of q is less than 0.01 as the perturbation enters the unstable
region (at t ≈ 2), but it is amplified by a factor of more than four at t = 20 before
it slowly decays for t > 20. This is in contrast to the impulse response for a large
convection speed Ur = 3 displayed in figure 1(b). In this case, a similar, initially
convected pattern is observed, but the slowly decaying quasi-stationary perturbation
is conspicuously absent. This strong difference in the behaviour of the two systems
(Ur = 2 and Ur = 3) is attributed to the presence of an absolutely unstable region in
the moderate convection case (Ur = 2).

Hence, within the family of amplifier flows, very different behaviours are observed,
and it will be seen in the next section that this has a direct impact on the efficiency
of any control strategy. More precisely, two cases are distinguished, one with moderate
convection and one with large convection. In fact, convection is a central component
of amplifier flows. From a local point of view, a parallel flow is an amplifier if it
is convectively unstable, that is, if, for infinitely large times, any unstable wave is
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FIGURE 1. Response to an impulse from the noise location shown as |q| contours in an
x–t diagram: (a) for a moderate convection speed Ur = 2 and (b) for a large convection
speed Ur = 3. The absolutely unstable (AU), convectively unstable (CU) or stable (S) spatial
domains are marked.

associated with a non-zero group velocity (Huerre & Monkewitz 1990). From a global
point of view, convection is responsible for the non-normality of the linear operator
in globally stable open flows, which, consequently, results in an amplifier behaviour
(Chomaz 2005). Hence, it is clear that amplifier flows are necessarily associated with
a non-negligible convection. The moderate convection Ur = 2 corresponds to a case
where convection is sufficiently high for the flow to be globally stable and to be
classified as an amplifier. Yet this convection is relatively small and, as illustrated
in figure 1(a), the competition between local instabilities and convection has a very
strong impact on the intrinsic global flow behaviour.

Thus, within the set of amplifier flows, a flow is convection-dominated if its
behaviour is mainly governed by convective processes. For instance, pipe or channel
flows, homogeneous jet flows, or flows over streamlined aerofoils at small angles
of attack are examples of convection-dominated flows. In the present study, as seen
in figure 1, the large convection case Ur = 3 has a convection-dominated behaviour
whereas the moderate convection case Ur = 2 does not. It will be seen in § 4.2 that
the technique developed in this paper is particularly efficient for convection-dominated
flows.

To complete the specification of the control set-up, a sensor and an actuator are
placed at xy = 7 and xu = 0, respectively, with a Gaussian shape function of width
s = 0.4 (figure 2). In fact, the sensor placement corresponds to the position where the
impulse response is largest (figure 1). Hence this sensor provides direct information on
the maximum amplification within the flow.

Following Bagheri et al. (2009b), the Ginzburg–Landau equation is discretized in
space using a pseudo-spectral method based on Hermite functions where n = 220
nodes are distributed within the interval −85 < x < 85. The discrete state vector is
advanced in time by a Crank–Nicolson scheme with a constant time step 1t = 0.1.
The spatio-temporal discretization then yields the discrete state-space formulation

qk+1 = Aqk + Buk + Bwwk, (2.2a)
yk = Cqk + vk, (2.2b)

where qk is a column vector with n components describing the state at time t = k1t, A
is the state matrix of size n× n, B is the actuator input matrix of size n× 1, Bw is the
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FIGURE 2. Sketch of the control set-up for the linear Ginzburg–Landau equation, showing
the noise source w at xw = −14, the actuator u at xu = 0 and the sensor y at xy = 7 for
(a) moderate convection Ur = 2 and (b) large convection Ur = 3.

noise input matrix of size n×1 and C is the output matrix of size 1×n. In addition, wk

is a stochastic, normally distributed, white-in-time noise of standard deviation σW = 1,
uk is the actuator input, yk is the sensor output and vk is the measurement noise (again,
normally distributed and white-in-time of standard deviation σV equal to 10 % of the
output standard deviation when the system is excited by w only). From the stochastic
terms of the above system, noise covariances R, S and Q can be defined according to

E

(Bwwk

vk

)(
Bwwp

vp

)H
=( Q S

SH R

)
δpk, (2.3)

where E (a) ≡ limN→∞(1/N)
∑N

k=1ak denotes the expected value and the superscript H

symbolizes the conjugate transpose. In practice, v and w are uncorrelated such that S
is identically zero. Recall that σW ≡ 1 and σV ≡

√
R.

2.2. Control performance
We next design a control scheme based on the set-up above and determine its
effectiveness in reducing the upstream noise w. Ideally, the norm of the state vector,
‖q‖, is to be minimized. In practice, however, the state vector cannot be measured
directly; instead, only information from the sensor is available. Since the measurement
is performed at xy = 7, where the impulse response amplitude is largest (figure 1a), it
is reasonable to assume that by reducing the output y a commensurate reduction of the
state vector q can be accomplished. We thus formulate the cost functional J as

J ≡ E (‖y‖2+l ‖u‖2)→min, (2.4)

where l is a positive parameter that penalizes the exerted control effort and thus
prevents excessive input amplitudes, and ‖ · ‖ represents the Euclidean norm. In what
follows we set l= 0.001. The state-space system (2.2) and the cost functional (2.4) are
augmented by an optimal control law (LQG) based on the measurement y. The results
are presented in figure 3(a) for a moderate convection speed Ur = 2. The full-order
system (A,B,C) as well as the noise covariances (Q,R,S) are assumed to be given.
The quantity Jk = ‖yk‖2+l ‖uk‖2 is represented as a function of time, together with its
expected values for an active and inactive control u. At t = 400 the control is switched
on, and the cost functional rapidly decreases by nearly two orders of magnitude,
settling down to an expected value J = 0.0064 from an uncontrolled value J = 0.25,
i.e. a reduction by a factor of 38.
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FIGURE 3. (Colour online) Cost functional J = E (y2+ lu2) with control (in grey; blue online)
and without control (in black), for (a) moderate convection Ur = 2 and (b) large convection
Ur = 3. In addition the quantity Jk = y2

k + lu2
k is plotted as a function of time. The control is

turned on at t = 400. The LQG controller has been designed based on the full-order system
(2.2) and the full-order noise covariances (2.3).

The same control design procedure has also been applied to the case of the large
convection speed Ur = 3. The control performance measure is shown in figure 3(b).
The optimal control in seen to achieve a reduction in the cost functional of only
a factor 2.6. This decreased performance results from two considerations. First, for
Ur = 2 the perturbation remains in the unstable region for more than 1500 time
steps (figure 1a), and the control can be applied over this entire time span, while
for Ur = 3 the perturbation decays substantially more rapidly (figure 1b), and the
control has a very limited ‘window of opportunity’ (when the perturbation passes the
actuator location) to accomplish its objective. The second observation is related to
the efficiency of the estimation process. For a large convection speed (in our case
Ur = 3), the information from the sensor downstream fails to sufficiently capture
the upstream dynamics of the incoming perturbation, which is essential for effective
control.

In the previous computation, the LQG framework was chosen to probe the optimal
control performance for a given actuator–sensor set-up and to quantify the control
efficiency that may be expected, in the best case. The disappointing reduction in
performance for convection-dominated flows (Ur = 3) cannot be attributed to the
control technique, but rather it has to be related to the control set-up. This first issue is
dealt with in § 3.4. Furthermore, it has to be kept in mind that, while establishing
an upper bound for control performance, the LQG design involves mathematical
quantities such as A, B, C, Q, R and S that are generally not available in physical
experiments. To address this issue, a technique that only depends on realistically
available quantities is introduced in the next section. It extracts the system matrices
and noise covariances directly from measured data sequences. The efficiency of this
scheme will then be compared with the optimal (but unrealistic) LQG standard.

3. Towards a realistic LQG control scheme based on subspace identification
3.1. System identification by subspace techniques

System identification is a well-established technique for the recovery of deterministic
and/or stochastic dynamical systems from their response to input signals. It comprises
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FIGURE 4. (Colour online) Procedural steps of control design based on system identification.
Step 1: excitation of the system with a known input signal and simultaneous measurement of
the output. Step 2: subspace identification of the model. Step 3: design of the LQG regulator
and compensation of the system.

numerous methods of varying applicability and complexity (Ljung 1999). In the
present case, we are interested in extracting the system matrices (A, B, C) together
with the noise covariances (Q,R,S) by processing measured data sequences for
u and y. The identification of noise covariances is particularly important for flow
amplifiers where the response to noise plays a crucial role. For this reason, a subspace
identification technique, which provides approximations of the noise covariances
(Q,R,S), is chosen. A comprehensive description of these techniques can be found in
Van Overschee & De Moor (1996) or Qin (2006). The procedural steps of subspace
identification and control design are sketched in figure 4. First, the system is excited
by an arbitrary, but frequency-rich input signal u and by unknown disturbances w;
meanwhile, the output signal y is recorded. In a second step, the known input
and output signals are processed and a subspace identification algorithm provides
a linear model (A, B, C) together with the noise covariances (Q,R,S). In a final
step, an LQG regulator is designed based on this model. The subspace identification
algorithm constitutes a central element in the entire analysis. The reader is referred
to appendix A for its detailed presentation. The paper may be read independently of
appendix A.

3.2. Linear–quadratic–Gaussian (LQG) framework
Once input–output data sequences have been used to identify the system matrices and
noise covariances, we are in a position to design an estimator and controller using the
LQG framework and to compensate the identified system (step 3 in figure 4). This
design step is well covered in the flow control literature (Friedland 1986; Skogestad &
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Postlethwaite 1996; Zhou, Doyle & Glover 1996; de Larminat 2002) and thus it will
be only briefly reviewed for completeness.

The objective of the control is to find a sequence uk such that the cost functional J
given by

J = E (‖y‖2+l ‖u‖2) (3.1)

is minimized, where y is governed by the state-space system

qk+1 = Aqk + Buk + Bwwk, (3.2a)
yk = Cqk + vk, (3.2b)

with given system matrices A, B, C, known noise covariances and measured output yk.
In a first step, the full-state control problem is solved, which assumes that the state
qk is entirely known. With a linear optimal control law, i.e. uk = Kqk, the full-state
control problem can be expressed in the form of an optimization problem: find a
constant gain matrix K such that the cost functional

J = E (qH(CHC + l K HK )q) (3.3)

is minimized, where q solves (3.2a). If (A,B) is stabilizable, i.e. there exists a matrix
M such that A − BM is stable, and (C,A) is detectable, i.e. there exists a matrix
M such that A − MC is stable, a symmetric, positive semi-definite matrix T can be
uniquely determined (Zhou et al. 1996; de Larminat 2002) as a solution of the discrete
algebraic Riccati equation:

T = AHTA− AHTB (l + BHTB)
−1

BHTA+ CHC. (3.4)

The optimal control gain K is then given by

K =− (l+ BHTB)
−1

BHTA, (3.5)

and the controlled system is stable.
In practice, the state q is not available and an estimator has to be designed that

approximately, but optimally, recovers the state from measurements yk only. The
estimation problem reads

q̃k+1 = Aq̃k + Buk + L(yk − ỹk), (3.6a)
ỹk = Cq̃k, (3.6b)

where the Kalman gain L has to be optimized so that the estimation error, i.e. the
difference between the true state qk and the estimated state q̃k, is minimized. Under
the assumption that (C,A) is detectable and (A,Bw) is stabilizable, this optimization
problem again leads to a discrete algebraic Riccati equation for a unique, symmetric,
positive definite matrix P according to

P = APAH + Q − APCH (R + CPCH)
−1

CPAH. (3.7)

The optimal Kalman gain L then follows as

L= APCH (Q + CPCH)
−1
. (3.8)

Combining the controller and estimator yields a compensator, which produces an
optimal control strategy uk directly from measurements yk. Even though the control
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FIGURE 5. (Colour online) Sample of the (a) input and (b) output signal used for the
subspace identification for the large convection case Ur = 3. The full signal is over 500
time units, i.e. 5000 time steps long. The input signal (a) is chosen to be Gaussian and white;
the measured signal (b) is coloured by the system.

gain K has been designed under full-state assumptions, it still remains optimal when
used with the estimated (rather than the exact) state. This fact is a consequence of the
separation theorem (Friedland 1986; Skogestad & Postlethwaite 1996), which states
that the design of the optimal controller and the optimal estimator can be performed
independently.

3.3. A first attempt at LQG control design
The identification technique, introduced in § 3.1 and presented in appendix A,
produces all the necessary system and noise information from measured data. It
ensures the applicability of the overall control design to experimental data. In this
respect, the subspace identification technique guarantees the realistic aspect of the
control design. In the following, the efficiency and robustness of the approach are
evaluated.

From the identified system matrices A,B,C and noise covariances R,S,Q, we
follow the classical control design within the LQG framework, the third and final
step in figure 4. We choose a large convection speed Ur = 3, starting with the
sensor–actuator configuration shown in figure 2. A set of input–output samples
consisting of 5000 discrete values is generated from a Gaussian, white input signal.
A representative sample of input and output signals is shown in figure 5. We observe
that, as the Gaussian, white input signal passes through the linear system, it retains
some frequencies while attenuating others, thereby resulting in a coloured signal for
the output. From these signals a reduced-order model of order four is identified using
the subspace identification algorithm MOESP (see § 3.1 and appendix A).

The impulse response of the identified model is compared to the impulse response
of the true system in figure 6. We note an overall satisfactory match, despite small
discrepancies for larger times, which can be attributed to the appreciable level of
environmental noise in the output signal. It is still remarkable for a model of order
four to reproduce the response behaviour of a system of order n= 220.

The optimal control gain K is then obtained, for the large convection case Ur = 3,
by solving the appropriate discrete algebraic Riccati equation (3.4) using the identified
system matrices. The optimal estimation (Kalman) gain L is determined by using the
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FIGURE 6. (Colour online) Impulse response (from u to y) of the full-order system (thin line;
blue online) compared to the impulse response of the identified system (circles; red online).

identified system matrices and noise covariances in a second discrete algebraic Riccati
equation (3.7). In figure 7 the quantity Jk = ‖yk‖2+l ‖uk‖2 is presented as a function
of time, and the control is turned on after 4000 time steps. Three cases are considered.
The most effective, but idealistic, control strategy (in blue) is based on full-state
control, as it assumes knowledge of the full system matrices A,B,C and even access
to the state vector q. The second case (in green) reproduces the results displayed in
figure 3. This still unrealistic control strategy relies on the system matrices A,B,C
but substitutes an estimated state q̃ for the true state q. The only realistic, third, case
assumes no prior knowledge of the system matrices, but extracts all the necessary
information from measured data. The identified matrices and noise covariances are
then used to design a compensator. The terms full-state control, full-order control and
identified-model-based control will be used throughout the paper to designate these
three distinct control approaches.

From figure 7 we conclude that the loss of control performance cannot be attributed
to the identification step, as it does not appear to significantly degrade the efficiency of
the control strategy. For this reason, we can safely rely on subspace identification as a
crucial step towards realistic control applications. Rather, the comparison of the three
cases points towards the estimation process as the component that deteriorates the
control performance. This is reflected in the marked gap between the cost reduction,
by a factor of 166, for the estimation-free (full-state) control and the disappointing low
cost reduction, by a factor of 2.6, for the estimation-based (full-order) control.

3.4. Visibility and optimal placement of a ‘spy’ sensor
A closer look at the estimation process is now taken by computing the standard
deviation of the estimation error, in the statistically stationary limit, for each position
in x. More precisely, the standard deviation of the estimation error is defined as
std(e) ≡

√
diag(E ((q̃− q) · (q̃− q)H)), where diag(A) is the vector constructed with

the diagonal elements of any square matrix A, the state q and the estimated state q̃ are
defined in (3.2) and (3.6), respectively, and E is the expected value as defined in (2.3).
Similarly the standard deviation of the state is defined as std(q) ≡√diag(E (q · qH)).
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FIGURE 7. Cost functional J = E (y2 + lu2) as a function of time without control (in black)
and with control applied (in green, red and blue). The blue line represents full-state control
designed from knowledge of all full-order system matrices as well as q. The green line
represents LQG control designed from the full-order system matrices and noise covariances
(same as in figure 3b). The red line is the cost functional based on LQG control designed from
the identified model and the identified noise covariances. In addition to the cost functional J
the quantity Jk = y2

k + lu2
k is displayed. The control is switched on at t = 400, and a convection

velocity of Ur = 3 is chosen.

In figure 8, these two quantities are plotted as functions of x, as the dashed and full
line, respectively. The main estimation error occurs upstream of the sensor, a region in
which the two curves coincide. Physically, this corresponds to the failure of the sensor
to accurately estimate information from upstream; the state downstream of the sensor,
however, can be more easily estimated. In more quantitative terms, we introduce the
ratio of the estimation-error standard deviation to the state standard deviation as a
performance measure of the sensor. A ratio of 0 % indicates an exact estimation of
the state, whereas a value of 100 % corresponds to the case where the estimator only
returns the zero solution. This ratio is depicted in figure 9 for the two cases of
moderate convection Ur = 2 and large convection Ur = 3, and it is evident that the
state estimation becomes increasingly difficult upstream of the sensor. Based on these
curves, we introduce the visibility length of the sensor as the maximum upstream
distance from the sensor for which the relative estimation error is less than 50 %.
Physically, this length gives a measure of how far upstream state information can be
estimated within a reasonable tolerance. For Ur = 2 this length is equal to 9.8, whereas
for Ur = 3 it is nearly half this value at 5.2. Figure 10 extends the visibility concept to
even higher convection speeds and confirms the fact that estimation of upstream state
information deteriorates rapidly as the convection speed increases.

This clearly demonstrates that state estimation in convection-dominated flows
requires particular attention. To this end, we introduce an additional sensor ys, referred
to as a ‘spy sensor’, in an attempt to reduce the estimation error upstream. Since this
is its only purpose, this additional sensor will not be included in the cost functional,
in contrast to the first sensor. Its best placement is investigated by designing an
optimal LQG control strategy based on the full-order system for each streamwise
sensor position. The results of this parameter study are shown in figure 11, where
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FIGURE 8. (Colour online) Standard deviation of the estimation error (dashed line) as a
function of streamwise position x and standard deviation of the state (full line) as a function
of x. For both curves, the convection speed is Ur = 3.
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FIGURE 9. (Colour online) Ratio of the standard deviation of the estimation error to the
standard deviation of the state as a function of streamwise position x for a convection speed of
(a) Ur = 3 and (b) Ur = 2. In both figures, the visibility length (see text) has been added.

the control efficiency, i.e. the ratio of the cost functionals with and without applied
control, is evaluated for various spy sensor positions. The highest values of the control
efficiency are achieved for a sensor placement upstream of the actuator, in accordance
with figure 9, which showed poor state estimation in this region. In Hervé et al.
(2010) a similar upstream sensor was used and referred to as a ‘spy sensor’. In the
present paper, this terminology is adopted and extended to the case of any convection-
dominated system controlled by use of an upstream sensor. In addition, any sensor
located sufficiently far downstream is referred to as an ‘objective sensor’. In physical
terms, the improvement in control efficiency from this spy sensor can be related to the
more accurate estimation of incoming external noise. In other words, the spy sensor
provides valuable information to the estimator on the incoming perturbations. Knowing
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configuration displayed in figure 2.
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FIGURE 11. (Colour online) Efficiency of the optimal LQG control (based on the full-order
system) as a function of the spy sensor position for the case of large convection Ur = 3. The
locations of the objective sensor and actuator are given in figure 2.

these perturbations, it is then a lot easier to control them. Our findings are consistent
with the studies of Barbagallo et al. (2012), who found that the best estimation results
were obtained for the farthest upstream sensor.

3.5. Failure and lack of robustness of the method
So far, we have addressed the issues of a realistic control design (via subspace
identification) and of an efficient control performance (via placement of a spy sensor).
We now combine these two approaches into an identified control design using a spy
sensor and consider the remaining issue of its robustness.
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FIGURE 12. (Colour online) Control efficiency based on identified model versus position
of the spy sensor ys for the case of large convection Ur = 3. The identification follows
the classical approach. Fifty realizations of identification and control were performed, and
the average and one standard deviation are indicated. In practice, some unstable control
cases were encountered. These curves are compared with the optimal LQG control designed
from the full-order system (full line with plus symbols; red online) and the full-state control
(horizontal line; green online). The actuator is located at xu = 0.

The control efficiency based on full-order LQG control, as shown in figure 11, will
serve as the reference solution for the upper-bound or best-case control performance of
our scheme. We therefore repeat the computations of the control efficiency based
on the subspace identified system matrices and noise covariances. A remarkable
sensitivity of the control performance to external noise sources, but also to user-
defined parameters, such as the shift i (see appendix A), the choice of subspace
algorithm (MOESP, CVA or N4SID), the order of the identified model and the
position of the spy sensor has been found. In practice, a small change in one of
these parameters may even lead to an unstable control. A representative sample of
our studies is shown in figure 12, where the average control efficiency over 50
realizations is displayed together with error bars. A marked drop in efficiency and
sizable variations can be observed, yielding rather disappointing results compared to
the reference full-order LQG case.

A possible reason for this sensitivity may be a weak and inaccurate link between
the noise source very far upstream and the objective sensor downstream; this is
sketched in figure 13. In general, the identification process establishes linear relations
between inputs and outputs. In particular, the transfer function connecting known
inputs and known outputs is rather easy to identify, for instance u→ y (red online)
in figure 13. Even an accurate model for w→ ys (blue online) can be found due
to the stochastic nature of the subspace identification. The main difficulty, however,
lies in the link between this upstream stochastic model w→ ys and the perturbation
dynamics measured by the objective sensor w→ y (dashed; green online). Identifying
a model by subspace identification is akin to designing an estimator and it is therefore
subject to the same visibility restrictions as discussed earlier. This also conforms with
our intuition that, in convection-dominated flows, it becomes increasingly difficult to
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FIGURE 13. (Colour online) Sketch of the identification mechanism. Non-robustness stems
from inaccuracies in the long-distance stochastic identification, shown dashed (green online).

estimate the perturbation dynamics when the unknown input (w) moves further and
further apart from the measured output y, as already demonstrated by introducing the
concept of visibility. In fact, the success or failure of control depends on the long-
distance stochastic identification represented as dashed (green online) in figure 13.

In summary, for convection-dominated flows the classical set-up, combining
subspace identification and LQG control, results in a lack of robustness that renders
this approach unusable for real-life applications.

4. The feed-forward approach, a robust and efficient method for convection-
dominated flows

In this section a solution for the control of convection-dominated flows is presented.
The approach is similar to the one developed in Hervé et al. (2012), although the
practical implementation details are different. The general method is referred to
as feed-forward in the control literature (Skogestad & Postlethwaite 1996; Qin &
Badgwell 2003). The idea is to place a sensor ys sufficiently upstream to measure the
incoming perturbations. This measurement ys is then used as a representation of the
exact noise source w. As we will see, for convection-dominated flows this procedure
is very robust with respect to system identification and it is close to the optimal LQG
performance limit. Its realistic and robust characteristics should make it applicable to
real experimental settings.

4.1. Feed-forward identification and control
We start by assuming that the noise perturbation wk is known. In this hypothetical
situation, all inputs and outputs of the system are known, and a complete model can
be identified by using data sequences of the input and output signals together with
subspace identification techniques. From this model, the state vector can be accurately
estimated at any time by simply exciting the model by known inputs.

In mathematical terms, an input–output model in state-space form is formulated
according to

qk+1 = Aqk + Buk + Bwwk, (4.1a)
yk = Cqk + vk, (4.1b)

and the system matrices are determined by resorting to the MOESP identification
technique. Based on this identified model, a full-state control may then be determined.
At this point, the input w is not taken into consideration for the design of the
controller K . The noise source w is assumed to be known but it is not a control input.
Rather, the control gain K is computed according to

K =− (l+ BHTB)
−1

BHTA, (4.2)
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FIGURE 14. Sensor and actuator placement. The symbol w represents the noise source at
xw =−14, u is the actuator (the control) at xu = 0, y is the objective sensor at xy = 7 and ys is
the spy sensor placed at xs =−7.

where T satisfies the discrete algebraic Riccati equation

T = AHTA− AHTB (l + BHSB)
−1

BHTA+ CHC. (4.3)

The subspace identification process produces noise covariances Q, R, S (see § 3.1)
related to potentially unidentified input sources. In feed-forward mode for convectively
dominated flows, this aspect of the estimation process is not exploited. With all input
variables known, the estimator simply reads

q̃k+1 = Aq̃k + Buk + Bwwk, (4.4a)

and there is no need to compute and use the Kalman gain L.
The feed-forward approach consists in adding a new spy sensor upstream of the

actuator to measure the incoming noise (figure 14). Assuming that this measurement
provides an accurate description of this noise, we may replace the true noise w by
the spy measurement ys in the above identification and control design algorithm. After
substitution of the true noise w by the proxy measurement ys from the spy sensor, the
identified model reads

qk+1 = A′qk + Buk + Bsys,k, (4.5a)
yk = Cqk. (4.5b)

(The matrix A′ in (4.5) differs from the matrix A in (4.1) due to the subtitution of
w by ys. More details on this are given in § 6.2). Note that all inputs to this model
are known and it is therefore directly used to estimate the state. Based on this model,
an optimal control gain can be computed by using the discrete Riccati equation given
in (4.3).

4.2. Efficiency of the method
The feed-forward technique may then be implemented and evaluated. In figure 15 the
efficiency of this control is plotted as a function of the spy sensor position xs. First,
a significantly improved robustness, as evidenced by the reduced standard deviation
of the individual realizations, can be observed when compared to the stochastic
identification and LQG control (figure 12). This improvement can be attributed to
the absence of stochastic noise identification due to the substitution of w by ys. Any
system identification algorithm would be able to produce a model linking known
inputs (u and ys) to a known output y. Even though subspace algorithms were found
to be very robust and efficient, they do not constitute the only possible choice. In
addition, the control based on the spy model is nearly as efficient as the optimal
control based on the full-order matrices A, B, C, Q, R, S (given by the full line
with plus symbols; red online) and even close to full-state control (horizontal full
line; green online). Figure 15 also illustrates that the control performance drops
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FIGURE 15. (Colour online) Control efficiency based on identified models versus position
of the spy sensor ys for the case of large convection Ur = 3. The identification follows
the spy approach whereby the upstream sensor ys is considered as an input in the model.
Fifty realizations of identification and control were performed, and the average and one
standard deviation are indicated. In practice, all the controllers were stable. These curves
are compared with the optimal LQG control designed from the full-order system (full line
with plus symbols; red online) and the full-state control (horizontal line; green online). The
actuator is located at xu = 0.

precipitously as the spy sensor approaches the actuator location xu = 0. Indeed, the spy
sensor should provide upstream noise information and thus should not be corrupted by
any action of the actuator u (see § 6.2).

4.3. Influence of convection
The feed-forward identification and control are now applied to the Ginzburg–Landau
equation for variable convection speeds Ur. For this model, the efficiency of the
control, i.e. the relative reduction in the cost functional, is presented as a function
of Ur in figure 16. Two control design strategies are compared. The first strategy
(lower full line with error bars; blue online) uses the feed-forward (spy) approach.
In the identification process, the spy and the actuator are treated as inputs while
the objective sensor downstream is taken as an output. In the control application,
the objective sensor downstream is no longer needed and only the measurement
from the spy is considered. The second strategy (full line with plus symbols; red
online) is an LQG control based on the full-order system, with both sensors and the
actuator. This strategy provides the best possible control for a given configuration and
furnishes an upper bound for the system identified feed-forward control. As previously
mentioned in § 2.2, the control performance becomes increasingly inefficient as the
system becomes more convection-dominated. This appears clearly in the figure when
considering the strong decrease in optimal efficiency (full line with plus symbols;
red online) when the convection speed Ur is increased. This is a general tendency,
which holds true for any control strategy. In addition, by comparing the feed-forward
control efficiency (full line with error bars; blue online) with this optimal upper
bound, it is confirmed that the spy technique is almost optimal for large convection
speed Ur = 3. In contrast, although the feed-forward control is surprisingly effective
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FIGURE 16. (Colour online) Control efficiency of the feed-forward approach as a function
of the convection speed Ur for the complex Ginzburg–Landau model. Fifty realizations of
identification and control were performed; the average (full line with error bars; blue online)
and one standard deviation are plotted. These curves are compared to the optimal LQG
control designed from the full-order system (full line with plus symbols; red online). The spy
sensor is placed at xs =−7.

(with an efficiency of 500), it is far from optimality for moderate convection speed
Ur = 2. Two reasons for this non-optimality may be put forward. First, within the
feed-forward control, the objective sensor downstream is not used for the estimation.
However, it was shown in § 3.4, using the associated visibility length, that for Ur = 2
this sensor provides meaningful information regarding the state estimation. In addition,
for moderate convection Ur = 2, the theoretical upper bound of efficiency (full line
with plus symbols; red online) is so high that the identification accuracy may become
a limiting factor.

Hence, it has been seen that the feed-forward approach applied to amplifier flows is
realistic, robust and efficient. In addition, the technique is close to optimal for noise
amplifiers with sufficiently high convection. In the following, the technique is validated
on a two-dimensional flow over a backward-facing step.

5. Application to the flow over a two-dimensional backward-facing step
The design of feed-forward control strategies based on subspace system

identification has been introduced, illustrated and justified on the complex
Ginzburg–Landau equation. It is now applied to the flow over a backward-facing
step at Re = 350. The three-dimensional stability of this flow was studied by Barkley,
Gomes & Henderson (2002) and a critical Reynolds number of 748 was found beyond
which the flow becomes unstable. The first unstable mode is three-dimensional and
localized in the recirculation bubble. More recently, this study has been extended to
different step heights and the physical mechanisms leading to instability have been
identified (Lanzerstorfer & Kuhlmann 2012). In this investigation, it was also shown
that the instability properties depend on the entrance length, and as a result the critical
Reynolds number given by Barkley et al. (2002) was corrected from 748 to 714. In
Blackburn, Barkley & Sherwin (2008) the optimal disturbance and the transient growth
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indicated.
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FIGURE 18. Base flow over a backward-facing step at Re= 350. Colours correspond to the
kinetic energy levels.

were examined. For a Reynolds number of 500, the maximum transient energy growth
is 80× 103.

Since a feed-forward controller has recently been applied and discussed in detail by
Hervé et al. (2012) for the flow over a backward-facing step, the present section is
kept brief. Its main objective is to validate the control technique developed in § 4, to
naturally extend it to the case of several spy sensors and to demonstrate its efficiency
in the presence of multiple noise sources.

5.1. System description
A sketch of the configuration is presented in figure 17. The flow separates at the

step corner and reattaches downstream at a distance equal to about nine step heights,
in accordance with the computations of Barkley et al. (2002) and Blackburn et al.
(2008). Under the selected flow conditions, a smaller recirculation bubble is also
observed on the upper wall. These two bubbles induce strong shear stresses in the
middle of the channel downstream of the step; this feature causes amplification of
incoming perturbations via a Kelvin–Helmholtz instability. The objective of the control
is to reduce this amplification. Although at Re = 350, the flow is locally unstable, it
is globally stable, since the local instability is convective in nature and any growing
perturbation is rapidly transported downstream.

The steady base flow presented in figure 18 was obtained via a Newton–Raphson
technique. The corresponding linear Navier–Stokes equations were then solved
numerically with the finite-element software FreeFEM++. A linearized version of
the Taylor–Hood algorithm was implemented. The domain was discretized in 42 656
triangles, and a time step 1t = 0.03 was chosen. No-slip boundary conditions at the
wall, a parabolic velocity profile at the inlet and standard outflow boundary conditions
were imposed. Three independent upstream noise sources (figure 17) were introduced
and modelled by localized volumetric forces. The white noise was chosen to have
a zero-mean unit-variance Gaussian probability density function. In order to control
the incoming perturbations, an actuator was placed just upstream of the step corner
(x= 1, y= 0.12). The entire success of the feed-forward technique relies on the ability
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FIGURE 19. Comparison of the exact impulse response between the actuator u and the
objective sensor y (diamonds) and the same impulse response determined from the identified
model (full line). The identified impulse responses from the spy sensors to the objective
sensor are also represented (dashed lines).

to accurately describe this complex noise structure. For that purpose two shear-stress
spy sensors were introduced just upstream of the actuator, one on the upper wall and
one on the lower wall. Since the flow over a backward-facing step is known to be
particularly sensitive to any perturbation close to the step corner, one of the two spy
sensors was placed close to this point. In addition, the second spy sensor, on the
opposite wall, is able to capture incoming information that is not accessible to the
first spy sensor. In general, for effective control the number of spy sensors depends
on the complexity of the incoming perturbations that are to be modelled. Finally, the
objective sensor was placed downstream near the lower reattachment point. All sensor
measurements were corrupted by 10 % of white noise.

5.2. System identification
Following the algorithm outlined in § 3.1 and in appendix A, a linear model is
generated by subspace identification techniques. There are many possible choices for
the actuator signal. In this work, the fluid is excited by two Gaussian white signals
exiting from the actuators; other, more physical, choices are discussed in appendix B.
At the same time, disturbances are generated by the noise sources, and the amplitudes
of the actuator signals are chosen such that both the actuator signals and disturbances
invoke about the same order of magnitude in the objective sensor signal. All signals
used in the subspace identification algorithm have a length of 8000 time steps, and the
shift parameter i is 200. A model of order 19 is identified. This model expresses a
causal link between the three upstream signals (two spy sensors and one actuator) and
the objective sensor downstream. From this model, the three corresponding impulse
responses can be determined and are displayed in figure 19 (full and dashed lines). For
comparison, the exact impulse response from the actuator to the objective sensor is
also displayed (diamonds). It is evident that the identified model captures very well the
true system behaviour between the actuator and the objective sensor. From this model,
the feed-forward compensator is designed as explained in § 4.1.
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FIGURE 20. (Colour online) Signal measured at the objective sensor y. The control is
activated at t = 600.

5.3. Results

In figure 20, the signal measured by the objective sensor is plotted as a function of
time. After 5000 time steps the control is activated, and an output reduction by a
factor of approximately 10 is observed. In addition, this local reduction at the objective
sensor location also results in a pronounced reduction of the flow perturbation energy
downstream of the step. In figure 21(a,b), the time average of the perturbation norm is
represented without and with control, respectively.

These results corroborate and further support the use of a feed-forward approach
for convection-dominated systems. Based on the study of § 6.2, we expect this
control approach based on subspace identification to be nearly optimal. Moreover,
the use of identification techniques makes the entire compensator design amenable to
implementation in a real experiment.

6. Theoretical basis of the feed-forward (spy) approach
6.1. A simple convection model

We use a simplified model to further explain the optimal placement of the second
sensor selected in § 4.2 in the context of the Ginzburg–Landau equation. It was
observed in § 3.4 that state estimation and control efficiency improve significantly
when the second sensor is placed upstream of the actuator. The model introduced
below is intended to illustrate and clarify this finding. In addition, it will be
demonstrated that the concept of observability is based on an asymptotic notion and it
is thus inappropriate for describing sensor placement in convection-dominated flows.

To model convection-dominated phenomena in a small-order system, we base our
model on a 6 × 6 shift operator, which, over each time step, advances the state vector
X = (x1, x2, x3, x4, x5, x6)

T into a shifted vector (0, x1, x2, x3, x4, x5)
T. Note that this type

of system can be obtained by discretizing an advection equation and choosing a unit
Courant–Friedrichs–Lewy (CFL) number. A noise source is placed at the extreme
upstream location, and an actuator is placed downstream. In mathematical terms, the
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FIGURE 21. Time average of the perturbation norm for both (a) the uncontrolled and (b) the
controlled cases.

full system is described by

Xk+1 = AXk + Buuk + Bwwk, (6.1a)
yk = CXk + Nvk, (6.1b)

where Xk is the state vector, uk denotes the actuator input, yk stands for the sensor
output, wk represents the stochastic excitation of the system (noise source) and vk is
the measurement noise. We model wk and vk as uncorrelated Gaussian, white-noise
sources of unit amplitude. In the above equation, N is a scalar that represents the
measurement noise amplitude and it is assumed that ‖N‖ � 1. According to this
model, the system matrices are given as

A=



0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0


, Bw =



1
0
0
0
0
0


, Bu =



0
0
1
0
0
0


, (6.2)

and C is left to be defined later. As a prerequisite for efficient control, we proceed
by computing an accurate estimate of the above system. For a given matrix C, the
governing equation for an estimator reads

X̂k+1 = AX̂k + Buuk + L(yk − ŷk), (6.3a)

ŷk = CX̂k, (6.3b)

where L is the optimal Kalman gain. The estimation error ek ≡ Xk − X̂k then satisfies

ek+1 = (A− LC)ek + Bwwk − LNvk. (6.4)

In the following we wish to determine an optimal sensor placement that minimizes this
estimation error.

6.1.1. Sensor placement
Two possible choices for the sensor placement are considered. The first one

corresponds to a sensor located far downstream, i.e.

C = C1 ≡
(

0 0 0 0 0 1
)
. (6.5)
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This choice (downstream of the actuator) is often preferred in the flow control
literature (Bagheri et al. 2009b; Barbagallo 2011; Barbagallo et al. 2012), and may
be justified by the argument that it yields high observability. In addition, if the
control objective is to minimize the norm of y, which is often the case in practice,
placing the sensor downstream of the actuator appears intuitive, since it guarantees
a non-zero transfer function from u to y. However, it will be seen below that, for
convection-dominated systems, this choice is extremely disadvantageous for the state
estimation.

It can be easily verified by computing the rank of the observability matrix Ob1 that
the system (A,C1) is observable (Zhou et al. 1996). We obtain the full-rank matrix

Ob1 =



C1

C1A

C1A2

C1A3

C1A4

C1A5


=



0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0


. (6.6)

Recall that a system is observable if and only if all the eigenvalues of the matrix
A − LC can be placed arbitrarily by choosing the coefficients of L. Defining
L = (l1, l2, l3, l4, l5, l6)

T in the system above, we arrive at det(λI − A + LC) =
λ6 + l6λ

5 + l5λ
4 + l4λ

3 + l3λ
2 + l2λ + l1, which shows that we have full control over

the eigenvalues of A− LC and therefore over the long-time dynamics of the estimation
error, governed by (6.4). However, a performing estimator should also provide an
approximation of the state on a short time scale – in particular, in strongly convective
systems where perturbations are quickly swept downstream and measured information
quickly becomes non-pertinent. Tuning the eigenvalues is insufficient for guaranteeing
optimal estimator performance on account of the presence of transient effects; we also
have to consider the corresponding eigenvectors of A − LC. This is due to the fact
that the matrix A describes a convective process and is therefore highly non-normal
(Chomaz 2005).

From a physical point of view, it is clear that information from a downstream
sensor is futile since it is immediately swept away. This is further corroborated when
computing the Kalman gain L1 in the presence of stochastic noise. This gain is
governed by the discrete Riccati equation

P = APAT − APCT
1 (N + C1PCT)

−1
C1PAT + BwBT

w, (6.7a)

L1 = APCT
1 (N + C1PCT

1 )
−1
. (6.7b)

For a far-downstream sensor location C1, it can be verified that the optimal Kalman
gain L1 tends to zero for vanishing N, i.e.

lim
N→0

L1 = 0. (6.8)

This limit supports mathematically the intuitive argument above, namely, that input
from y does not enter the estimation of the state given by (6.3). In other words, this
downstream sensor could simply be removed without any consequences for the control
performance.
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In contrast, we now consider a configuration where the sensor is placed at a very
upstream position so that

C = C2 ≡
(

0 1 0 0 0 0
)
. (6.9)

Note that the system (A,C2) is clearly not observable, since

Ob2 =



C2

C2A

C2A2

C2A3

C2A4

C2A5


=



0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


. (6.10)

Nonetheless, this sensor placement can lead to a very accurate state estimation.
Intuitively, for a sensor placed sufficiently upstream, all components of the current
state vector Xk have previously been measured by the sensor before being convected
downstream. As before, the Kalman gain may be obtained from a discrete Riccati
equation, with C = C2. It now reads

lim
N→0

L2 =



0
0
1
0
0
0


. (6.11)

Consequently, the estimation error given by (6.4) is

ek =



wk−1

wk−2

0
0
0
0


. (6.12)

We observe that the estimated state vector is exact (zero estimation error) everywhere
downstream of the sensor location. This demonstrates that, in convection-dominated
flows, valuable information on the future downstream state can be obtained from an
upstream sensor; this is also consistent with our earlier study of the visibility length
in § 3.4. Even though the system becomes more observable by placing the sensor
further downstream, the drastic decrease in control performance makes this choice
highly ineffective. This also confirms that conventional observability measures yield
misleading suggestions regarding optimal sensor placement, especially in convection-
dominated (and, more generally, non-normal) systems.

6.2. LQG control design and feed-forward approach: a comparison
In this section a theoretical comparison between the feed-forward approach and the
optimal LQG framework is presented, and conditions are derived under which these



548 F. Juillet, P. J. Schmid and P. Huerre

u

w

A, B, C
ys
y

y

The system matrices and the
noise covariances are assumed to
be known.

An optimal Kalman gain L is
computed for the state estimation.

An optimal control gain K is
designed based on the exact system
matrices.

An optimal control gain K is
designed based on the identified
model only.

To estimate the state, the model is
simply excited with inputs u and ys.

A model is identified where the spy
sensor ys is treated as an input.

ys
u

A, B, C

FIGURE 22. Computational steps of the LQG and feed-forward procedures. Section 6.2 gives
a theoretical comparison of these two control frameworks.

two control strategies are equivalent. In this manner, we establish situations for which
the feed-forward technique is optimal. The configuration under study is very general;
the flow is convection-dominated with one actuator u, one upstream spy sensor ys and
one downstream objective sensor yob. Flow over a backward-facing step, as in § 5,
is a typical example, but more generally we consider any convection-dominated flow
such as channel flows, homogeneous jet flows or flows over streamlined aerofoils. The
optimal, but unrealistic, LQG algorithm is described in the left column of figure 22.
It is compared with the realistic feed-forward technique summarized in the right
column of figure 22. Rather than focusing on the very specific accuracy of the system
identification stage, which might be improved by simply increasing the length of the
input–output data sequences, it is assumed that the systems are identified exactly.
Hence, the last two steps of the techniques are compared and the analysis naturally
divides into the study of estimation processes and of control gains.

6.2.1. Estimation
In this section, the state estimation stages of both techniques are compared. It has

already been argued in §§ 3.4 and 6.1 that the downstream measurement from the
objective sensor does not contribute to state estimation in convection-dominated flows.
The optimal Kalman gain L is therefore designed assuming an estimation from the spy
sensor ys only. As detailed in § 3.2, the Kalman estimator of the optimal LQG method
reads

X̃k+1 = (A− LCs)X̃k + Buk + Lys,k, (6.13a)

ỹk = CobX̃k, (6.13b)

where Cs and Cob are respectively the spy and objective measurement matrices and X̃
is the estimated state. The first equation (6.13a) has been generated from system (3.6)
by adding an s subscript (for spy) to y, ỹ and C. The second equation (6.13b) is a
measurement equation that provides an estimate of the objective sensor measurement
from the estimated state. The equivalent measurement equation for the spy sensor
is not explicitly written. The Kalman estimator written in (6.13) is a linear system
with two inputs u and ys and one output ỹ. In the following, it is claimed and
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FIGURE 23. (Colour online) Impulse response generated from (a) an impulse applied to ys
and measured in ỹ and (b) an impulse applied to u and measured in ỹ. The full lines (red
online) pertain to the optimal Kalman estimator, whereas the circles (blue online) pertain to
the feed-forward identified model.

numerically verified that this Kalman estimator is precisely the identified model of the
feed-forward method outlined on the right of figure 22.

In the feed-forward identification procedure (stage one in the right column of
figure 22), a linear system is sought with inputs u and ys and output ỹ such that
the output error ‖ỹ − y‖ is minimized. This property is already verified by the
estimator (6.13). Assuming that the Kalman estimator is the only system minimizing
the output error ‖ỹ − y‖, we may conclude that the feed-forward procedure aims at
identifying the Kalman estimator. In other words, the identification procedure consists
in identifying the matrices A′ = A − LC, B, L and Cob, which precisely coincides
with the determination of the Kalman estimator. Note that a similar property is the
basis of other control schemes such as the observer/Kalman filter identification (OKID)
procedure (Juang et al. 1991).

At this point, it is worth comparing the input–output dynamics of the feed-forward
identified model and of the Kalman estimator, as displayed in figure 23. The system
under consideration is the Ginzburg–Landau model for large convection Ur = 3, as
described in § 2, with the sensor–actuator configuration sketched in figure 14. The
impulse responses of each system are represented in figure 23: it is clear that the
feed-forward model is identical to the optimal Kalman estimator. Hence, treating the
measurement ys as an input in the identification stage coincides with the computation
of the Kalman estimator, and thus the estimation stages in the two techniques are
identical.

6.2.2. Control gain
The equivalence of the estimation process is now contrasted with the design of the

control gain for the two methods, because, in the end, the product of control gain and
estimated state will determine the final control law. The difference in control gains
stems from the fact that in the feed-forward approach the gain K is determined from
a discrete Riccati equation involving A′ = A − LCs, whereas in the LQG approach a
discrete Riccati equation involving A is used. The consequences of such an observation
are given below. In terms of equations, if the objective to be minimized is given by
E (‖y‖2+l ‖u‖2), the LQG control gain K is given by the discrete Riccati equation
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involving A,

S = AH(S − SB (l+ BHSB)
−1

BHS)A+ Cob
HCob, (6.14a)

K =− (l+ BHSB)
−1

BHSA, (6.14b)

while the feed-forward (spy) control gain K is determined by the discrete Riccati
equation based on A′ = A− LCs,

S = (A− LCs)
H(S − SB (l+ BHSB)

−1
BHS)(A− LCs)+ Cob

HCob, (6.15a)

K =− (l+ BHSB)
−1

BHS(A− LCs). (6.15b)

Based on these two equations, we proceed by comparing the two control signals
uk = K X̂k and uk = K X̂k.

To this end, the estimator (6.13a) is rewritten in canonical Kalman form (Zhou et al.
1996). This form is obtained via a change of variables, and it can be shown that it is
mathematically equivalent to (6.13a). This canonical Kalman form reads:

X̂co/k+1

X̂co/k+1

X̂co/k+1

X̂co/k+1

=


Aco 0 A13 0
A21 Aco A23 A24

0 0 Aco 0
0 0 A43 Aco




X̂co/k

X̂co/k

X̂co/k

X̂co/k

+


Bco Lco

Bco Lco

0 0
0 0


(

uk

ys,k − ŷs,k

)
(6.16a)

ŷs,k =
(

Cs,co 0 Cs,co 0
)


X̂co/k

X̂co/k

X̂co/k

X̂co/k

 . (6.16b)

The second equation (6.16b) gives an optimal estimate of the spy sensor
measurement. The equivalent equation for the objective sensor is not considered.
The subscript co denotes controllable and observable components, co stands for
controllable but unobservable components, co represents uncontrollable but observable
components, and co means both uncontrollable and unobservable components. By
definition the observability and controllability matrix of the canonical Kalman form,
i.e.

Ob =



(
Cs,co Cs,co

)
(

Cs,co Cs,co

)(Aco A13

0 Aco

)
...(

Cs,co Cs,co

)(Aco A13

0 Aco

)n−1


(6.17)

and

Ctr =
((

Bco Lco

Bco Lco

) (
Aco 0
A21 Aco

)(
Bco Lco

Bco Lco

)
. . .

(
Aco 0
A21 Aco

)n−1(
Bco Lco

Bco Lco

))
(6.18)

have full column and row rank, respectively. The same decomposition into
(un)controllable and (un)observable components can be applied to both control gains K
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and K according to K = (Kco Kco Kco Kco

)
and K = (K co K co K co K co

)
. In

what follows we compare the individual components of the two control gains and
interpret their significance. Without loss of generality, we choose X̂0 = 0 as the initial
estimated state, from which it follows that both X̂co/k and X̂co/k are zero for all k. As a
result, the control inputs may be expanded as

uk = KcoX̂co/k + KcoX̂co/k + KcoX̂co/k + KcoX̂co/k =
(

Kco Kco 0 0
)
X̂k, (6.19)

uk = K coX̂co/k + K coX̂co/k + K coX̂co/k + K coX̂co/k =
(

K co K co 0 0
)
X̂k. (6.20)

Note that neither the LQG control uk nor the feed-forward (spy) control uk depend
on the uncontrollable part c of the estimator. This uncontrollable part of the estimator
represents the subspace of the state that cannot be estimated at all, and it appears
appropriate that neither control depends on this input. What remains to be seen is
whether

(
Kco Kco

)
is equivalent to

(
K co K co

)
.

The following analysis rests on the assumption that there is no influence of the
actuator on the upstream spy sensor. This may be expressed by a zero impulse
response from u to ys, which appears reasonable for convection-dominated flows.
Under this assumption, we form the product of the observability matrix Ob and
the control input matrix

(
BT

co 0
)T

to obtain

Ob

(
Bco

0

)
=



(
Cs,co Cs,co

)
(

Cs,co Cs,co

)(Aco A13

0 Aco

)
...(

Cs,co Cs,co

)(Aco A13

0 Aco

)n−1


(

Bco

0

)
=


Cs,coBco

Cs,coAcoBco

...

Cs,coAn−1
co Bco

 . (6.21)

Since the elements Cs,coBco,Cs,coAcoBco, . . . ,Cs,coAn−1
co Bco represent the first n values of

the discrete impulse response (Markov parameters) from u to ys, and since this impulse
response is assumed to be identically zero, we conclude that

Ob

(
Bco

0

)
= 0. (6.22)

Owing to the full column rank of Ob, one has Bco = 0. A careful reorganization and
partitioning of the two discrete Riccati equations (6.14) and (6.15), using Bco = 0 as
well as the block structure of (6.16), yields

Kco =− (l+ BH
coScoBco)

−1
BH

coScoAco, (6.23a)

K co =− (l+ BH
coScoBco)

−1
BH

coScoAco (6.23b)

where Sco and Sco are solutions of

Sco = AH
co

(
Sco − ScoBco (l+ BH

coScoBco)
−1

BH
coSco

)
Aco + Cob

HCob, (6.24a)

Sco = AH
co

(
Sco − ScoBco (l+ BH

coScoBco)
−1

BH
coSco

)
Aco + Cob

HCob. (6.24b)

It then follows that Kco = K co.
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FIGURE 24. (Colour online) The control gains K and K designed from A (full line; red
online) and from A − LCs (crosses), respectively, are compared, as a function of x. On the
same plot the relative estimation error is presented as a dashed line. Panel (b) is a zoom of
panel (a), focusing on the spy sensor location.

In our quest to compare the two control gains K and K , we still have to assess
the equivalence of the observable and controllable parts, Kco and K co. For the case
of a convection-dominated flow, the observable part of the estimated state is mainly
upstream of the spy sensor, while the controllable part of the estimated state (non-zero
components of the estimated state) is downstream of it. The part of the state that
is simultaneously controllable and observable, denoted by Xco, is thus located in the
vicinity of the upstream spy sensor.

From this situation, two cases arise. For convection-dominated flows, the
controllable–observable region is rather small, and, in the limit of pure convection,
Kco and K co have zero dimension. Then, the two control gains K and K coincide. In
a second case, consider the situation where the spy sensor is sufficiently upstream
such that the estimation of the state in the region near ys has no influence on the
control u further downstream; consequently, Kco as well as K co are small or negligible.
This is exemplified in figure 24 where the control gains K and K are compared
for the complex Ginzburg–Landau equation with the high convection speed Ur = 3.
Equivalence is observed throughout the computational domain, except for a small
region near the spy sensor location. When placing ys even further upstream (not
shown), the control gain in this small region drastically diminishes. For comparison,
the relative estimation error is also included in the figures.

In conclusion, we observe that, for convection-dominated flows with a spy sensor
placed sufficiently upstream, the two control strategies are equivalent and the feed-
forward control set-up inherits the optimality property of LQG control. This study
explains the remarkable efficiency of the feed-forward controller observed previously
in figure 15 and in the backward-facing step geometry.

7. Discussion and conclusions
In this paper, the control of convection-dominated amplifier flows has been

investigated. It was observed that using a feedback control strategy becomes
significantly less efficient when applied to convection-dominated situations. The
reason is that, in such flows, information mainly travels downstream. Hence, sensors
essentially describe the future flow state downstream but provide only limited
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knowledge of the flow upstream. Therefore any feedback information from a sensor
located too far downstream is useless. To quantify this observation, the concept of
visibility length was introduced in order to measure how far upstream a sensor is able
to accurately estimate the flow. Not surprisingly, the visibility length was observed
to decrease when the flow became more convection-dominated. These findings
suggested the use of a feed-forward approach for the control of amplifier flows.
Many approaches for the design of feed-forward controllers have been developed in
the control literature, as noted in Qin & Badgwell (2003). When applied to fluid
flows, the procedure relies on the addition of spy sensors introduced upstream in
order to measure the perturbations ahead of time. In this paper, the technique was
based on subspace system identification followed by optimal controller design. System
identification provided a model derived from sensor and actuator signals only. Such
an approach is realistic since all these data are accessible in real experiments. In
addition, when applied to a flow model based on the Ginzburg–Landau equation,
the feed-forward control efficiency was found to be comparable to the optimal full-
state control. The technique was then validated on the two-dimensional flow over
a backward-facing step at Re = 350. The system was excited by three independent
noise sources. Two spy sensors, one actuator and one objective sensor were used. The
application of the present feed-forward control led to the reduction of the perturbation
norms by a factor of 10. The feed-forward method presented in this paper has the
advantage of being amenable to direct numerical and theoretical comparison with the
LQG control framework commonly used in fluid mechanics. It was observed on the
Ginzburg–Landau model that the feed-forward control is almost as efficient as the
optimal LQG control. The main advantage of the present technique, however, is that it
only relies on experimentally accessible data. More generally, it was demonstrated that
the two techniques are equivalent for sufficiently upstream spy sensor locations or for
sufficiently convective flows. Under these conditions the feed-forward approach was
proved to be optimal.

In contrast to the LQG and linear–quadratic regulator (LQR) formulations, feed-
forward techniques have rarely been used for the control of flow instabilities, with
the exception of the numerical study of Hervé et al. (2012) and the experimental
investigation of Rathnasingham & Breuer (2003). Several reasons may explain this
observation. In the plane Poiseuille flow amplifier, the translational invariance in
the streamwise direction is often exploited to impose streamwise periodicity (Joshi,
Speyper & Kim 1997). In such a case, perturbations at the outlet are re-introduced
at the inlet and the distinction between upstream and downstream becomes elusive.
Furthermore, in most theoretical studies, sensors (shear stress gauges) and actuators
(blowing or suction devices) are assumed to be continuously distributed along the
wall, whereas in real flows only a discrete set of localized sensors and actuators
is feasible. In all these instances, the relative positions of sensors and actuators are
difficult to define. In order to remedy this lack of realism, the present work could
be extended to the application of the feed-forward identification and feed-forward
control to plane Poiseuille flow. It should be noted that feed-forward control has
already been applied successfully numerically on a flat-plate boundary layer (Bagheri
et al. 2009a; Semeraro et al. 2011). Although the method was referred to as feedback
control by the authors, the approach was essentially feed-forward since upstream spy
sensors were used and the feedback information provided by the downstream objective
sensors was clearly negligible in both studies. More generally, the feedback control
terminology is often used in fluid mechanics to designate an optimal LQR or LQG
control, independently of the relative positions of sensors and actuators. According to
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the theoretical study presented in § 6.2 and the numerical evidence given in § 4.2, one
may expect the realizable feed-forward technique of the present study to be equivalent
to and as efficient as the traditional LQG control.

The control of the backward-facing step performed by Barbagallo et al. (2012) may,
at first sight, be considered as a counter-example to the above conclusions: based
only on the knowledge of a downstream sensor, the controller was able to achieve a
sufficiently accurate state estimation in order to efficiently control the flow. However,
among the four sensor positions considered in Barbagallo et al. (2012), the best results
were obtained for the most upstream sensor placement. This finding confirms our
intuition, based on the concept of visibility length, that a sensor provides accurate
upstream estimation only in its own immediate neighbourhood.

The successful validation of the feed-forward approach in amplifier flows gives
us confidence that an experimental implementation is feasible. In order to do so, a
few conceptual and experimental issues will have to be addressed. In particular, the
analysis relies on the linearity of the fluid flow, and this property may not be preserved
when large transient growth (Blackburn et al. 2008) may be expected. Linear control
in flows governed by the nonlinear Navier–Stokes equations has, however, been the
subject of many numerical studies, and adequate robustness has usually been obtained
(Högberg, Bewley & Henningson 2003; Kim & Bewley 2007; Sharma et al. 2011;
Hervé et al. 2012). In addition, although sensors may be faithfully represented in
numerical simulations, modelling actuators by simple localized volume forces is a
convenient but strongly idealized representation. In practice, most realistic actuators
are directly mounted on the walls and behave nonlinearly. Finally, a strong limiting
feature of the present analysis is its two-dimensional nature. The previously cited work
of Semeraro et al. (2011) gives us confidence that the application of the technique
to three-dimensional observations is possible. The experimental implementation of the
feed-forward control procedure is currently under way for the backward-facing step
configuration.
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Appendix A. Subspace identification algorithm

In its general form, a linear time-invariant (LTI) system with m inputs and l outputs
may be written in state-space form as

qk+1 = Aqk + Buk + Bwwk, (A 1a)

yk = Cqk + Duk + vk. (A 1b)

If the system order is n, then the state matrix A is n × n, the input matrix B is n × m,
the output matrix C is l × n and the direct matrix D is l × m. In practice, the direct
matrix D is often either negligible or equal to zero. In addition, the noise covariances
Q, R and S are defined as in § 2. The purpose of the subspace identification algorithm
is to recover the system matrices A, B, C, D and the noise covariances Q, R, S from
the knowledge of input–output data sequences only. In order to describe the technique,
preliminary mathematical manipulations of the system (A 1) have to be performed.
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A.1. Reformulation of the discrete state-space system
It is convenient to rearrange the discrete state-space system (A 1) into several
equivalent formulations that emphasize either prediction or estimation (Qin 2006).

A central concept in subspace identification is the innovation form of the original
system (A 1) defined by

qk+1 = Aqk + Buk + Lek, (A 2a)
yk = Cqk + Duk + ek, (A 2b)

where L is the steady Kalman gain obtained from the solution of a discrete Riccati
equation and ek is a Gaussian white noise with second-order moment E (ekeH

p ) = Rδpk.
This formulation, which is based on the same Kalman gain as in the familiar
estimation problem (§ 3.2), is equivalent to (A 1) in the sense that the deterministic
parts of the outputs are identical while the stochastic parts of the output show the
same statistical moments.

Alternatively, one may easily recast the state-space system (A 2) into the predictor
form (Qin 2006)

qk+1 = ALqk + BLzk, (A 3a)
yk = Cqk + Duk + ek, (A 3b)

where zk = (uk yk)
T,AL = A−LC and BL is the block matrix (B−LD, L). The advantage

of this formulation is that the (unknown) noise ek does not appear explicitly in
the state equation (A 3a) but is accounted for in the known (noise-contaminated)
measurement yk. It should be stressed again that systems (A 1)–(A 3) are all equivalent
in the above-defined sense. They will be used interchangeably in the analysis that
follows.

In the next step, the above one-step vector-based linear difference equations are
reformulated into multi-step matrix-based expressions. Two extended states Xp =
(qk, qk+1, . . . , qk+j−1) and Xf = (qk+i, qk+i+1, . . . , qk+i+j−1) are introduced by stacking
vector states qk. The subscript p in Xp stands for past states; the subscript f in Xf

denotes future states. Both state sequences, Xf and Xp, contain j columns describing
the state at j consecutive time steps and are shifted by i time steps, where i� j
(figure 25). In addition, the shift i is chosen to be larger than the system order n.
Starting with the predictor form (A 3a) of the dynamical system, the matrix form of
the state equation is sought by recursive iteration, which results in

Xf = Ai
LXp +∆cZp, (A 4)

where

∆c =
(

BL ALBL . . . Ai−1
L BL

)
, Zp =


zk zk+1 . . . zk+j−1

zk+1 zk+2 . . . zk+j

...
...

. . .
...

zk+i−1 zk+i . . . zk+j+i−2

 , (A 5)

and Ai
L represents AL applied i times. In addition, a similar recursive iteration

technique, this time applied to the innovation form (A 2), yields the matrix form
of the measurement equation,

Yf = ΓiXf + HiUf + GiEf , (A 6)
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qk qk + 1

One time step
i time steps

System equations in VECTOR form System equations in MATRIX form

FIGURE 25. (Colour online) Comparison of the system equations in vector form (A 3) and in
matrix form (A 4) and (A 6).

with

Γi =


C

CA
...

CAi−1

 , (A 7a)

Hi =


D 0 0 . . . 0

CB D 0 . . . 0
CAB CB D . . . 0
...

...
...

. . .
...

CAi−2B CAi−3B CAi−4B . . . D

 , (A 7b)

Gi =


I 0 0 . . . 0

CL I 0 . . . 0
CAL CL I . . . 0
...

...
...

. . .
...

CAi−2L CAi−3L CAi−4L . . . I

 , (A 7c)

Yf =


yk+i yk+i+1 . . . yk+i+j−1

yk+i+1 yk+i+2 . . . yk+i+j

...
...

. . .
...

yk+2i−1 yk+2i . . . yk+j+2i−2

 . (A 7d)

The quantities Uf and Ef are identical in structure to Yf : they are characterized by
a Hankel matrix pattern where y is changed into u or e, respectively. Combining the
state equation (A 4) and the measurement equation (A 6) in their matrix form yields
the final equation

Yf = Γi∆cZp + ΓiA
i
LXp + HiUf + GiEf , (A 8)

which plays a central role in system identification by subspace techniques (Qin 2006).
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A.2. Extraction of the system matrices by subspace projections

Before proceeding to the solution algorithm for (A 8), the following assumptions
are introduced, which will prove advantageous for the procedural extraction of the
system matrices and noise covariances. The matrix AL, which describes the estimator
dynamics, is taken as strictly stable, with all eigenvalues confined inside the unit
disk, under mild assumptions. Furthermore, the input uk is uncorrelated to the noise
ek, which is a consequence of the open-loop nature of our identification method.
Moreover, the input uk is taken as sufficiently rich in temporal behaviour to excite all
the observable dynamics of the system. These reasonable assumptions will be brought
to bear step-by-step in the further development of the identification algorithm.

A.2.1. Extraction of the extended observability matrix Γi

For convenience, we take the limit i→∞ and, recalling the contractive property of
the matrix AL, we obtain Ai

L→ 0. However, the final results obtained below may be
shown to be valid even for finite i (Van Overschee & De Moor 1994, 1996). In the
asymptotic limit, (A 4) and (A 8) simplify to

Xf =∆cZp, (A 9a)

Yf = (Γi∆c Hi)

(
Zp

Uf

)
+ GiEf . (A 9b)

In the above equations, the quantities Zp and Uf , which involve u and y only, are
known since they are either imposed or measured. The remaining variables, except Ef ,
implicitly contain the unknown system matrices.

The purpose of the next few steps is to recover the matrices Γi∆c, and then
Γi. We proceed by right-multiplying equation (A 9b) by (Z T

p UT
f ). We then use the

previous assumptions that past measurements Zp as well as future control Uf are
uncorrelated with the white noise Ef . This manipulation eliminates the term GiEf from

the above equation. In the remaining terms, the expression
(

Zp
Uf

)
(Z T

p UT
f ) is known,

as is Yf (Z T
p UT

f ), from which the unknowns Γi∆c and Hi can now be determined by
a straightforward least-squares technique followed by matrix partitioning in order to
isolate Γi∆c.

At this point, we have determined the quantity Γi∆cZp, which, using (A 9a), is
equivalent to ΓiXf . The splitting of this matrix product relies on the last of our
assumptions (excitation of all dynamical states), which ensures a full row rank of Xf .
In addition, Γi also has full column rank under the assumption of full observability.
These properties suggest an application of a singular value decomposition: (i) to
determine the order of the identified system as the rank of ΓiXf ; and (ii) to isolate Γi

from the product ΓiXf . Mathematically, this amounts to

ΓiXf =
(

U1 U2

)(Σ1 0
0 Σ2

)(
V H

1

V H
2

)
, (A 10)

where the diagonal matrix Σ has been partitioned so that ‖Σ2‖ is negligible compared
to ‖Σ1‖. The size of Σ1 then represents the order of the identified system. In addition
we obtain the extended observability matrix Γi as

Γi = U1Σ
1/2
1 . (A 11)
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Even though this result has been derived under the assumption i→∞, it can be
shown (Van Overschee & De Moor 1996) that Γi is still equal to U1Σ

1/2
1 when i is

finite.
Based on the knowledge of Γi, two different approaches may be adopted. If the

noise covariances are not needed, then a simple algorithm can be used for the
computation of the system matrices A, B, C, D only. This approach is referred to
as ‘simulation focus’, because the identified model is particularly accurate for the
simulation of unknown outputs from known inputs, without taking into account the
noise sources. In particular, this approach is relevant for the feed-forward identification
presented in § 4.1. However, if the noise covariances are sought, then a second
technique consists in identifying the system in its innovation form. This approach
is referred to as ‘estimation focus’, because it directly provides an approximation of
the Kalman gain used in optimal estimation processes. Both procedures are outlined
below.

A.2.2. A first technique: ‘simulation focus’
The first step consists in deriving the system matrices A and C from Γi. To this end,

we repeat the above procedure to obtain Γi−1, which, by definition, is related to Γi via(
I 0
0 Γi−1

)(
C

A

)
= Γi. (A 12)

This system can easily be solved for A and C by least-squares techniques. To
determine the remaining matrices B and D, one observes that the problem is linear
in these matrices, and a matching to the output data may be used to find them
(McKelvey 1994; Van Overschee & De Moor 1996).

A.2.3. A second technique: ‘estimation focus’
The general idea behind the technique presented below is to identify the matrices A,

B, C, D based on the system written in its innovation form. For this, two consecutive
estimations of the extended state are obtained. Then, the system matrices are computed
by least-squares technique and the residual provides an approximation of the noise
covariances.

In the previous derivation of Γi, we took advantage of the limit i→∞, which
corresponds to an infinite shift between the past and future extended states, and we
eliminated the dependence on the matrix AL. Consequently, we could express the
future extended state Xf as a function of the (known) past data Zp and the (known)
future input Uf ; see (A 9a). This relation no longer holds for a finite shift i, and the
best we can do, using the available data, is to replace the true state by an optimal
(Kalman) estimate (see Van Overschee & De Moor (1994, 1995) for a rigorous proof).
Following the same least-squares technique that has been applied to (A 9), we may
then compute the intermediate quantity defined as

Ri ≡ ΓiX̂f ,i + HiUf , (A 13)

where X̂f ,i denotes an i-step Kalman estimate of the future extended state Xf starting at
index i. Repeating the same computation for a shifted index i+ 1, we obtain

Ri+1 ≡ Γi−1X̂f ,i+1 + HiU
−
f , (A 14)

where U−f is defined from Uf by removing the first m rows, m being the number of
inputs.
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Since X̂f ,i and X̂f ,i+1 are consecutive estimates of the same unsteady Kalman filter,
they are governed by (

X̂f ,i+1

Yi

)
=
(

A B

C D

)(
X̂f ,i

Ui

)
+
(

LiEi

Ei

)
, (A 15)

where Yi =
(
yk+i yk+i+1 . . . yk+i+j−1

)
and Ui =

(
uk+i uk+i+1 . . . uk+i+j−1

)
. By

definition of the Kalman filter, the quantity Ei is orthogonal to Uf and X̂f ,i. If the
estimated extended states X̂f ,i and X̂f ,i+1 were known, we could use this orthogonality
in (A 15) to solve for (A,B,C,D) by least-squares techniques. However, because X̂f ,i

depends on Hi (see (A 13)), which in turn depends on the system matrices, we have to
use in (A 15) the expressions deduced from (A 13) and (A 14),

X̂i = Γ †
i (Ri − HiUf ), (A 16)

X̂i+1 = Γ †
i−1(Ri+1 − HiU

−
f ), (A 17)

in order to extract the unknown system matrices (A,B,C,D). In the above expressions,
the pseudo-inverse Γ †

i satisfies Γ †
i Γi = I and it exists since Γi has full column rank.

Substituting (A 16) and (A 17) into (A 15) and rearranging the terms yields(
Γ †

i−1Ri+1

Yi

)
=
(

A K1

C K2

)(
Γ †

i Ri

Uf

)
+
(

LiEi

Ei

)
, (A 18)

with (
K1

K2

)
=
((

B Γ †
i−1Hi−1

)− AΓ †
i Hi(

D 0
)− CΓ †

i Hi

)
=
((

0 Γ †
i−1

)− AΓ †
i(

Il 0
)− CΓ †

i

)
Hi. (A 19)

We can now easily determine the matrix
(

A K1
C K2

)
in (A 18) by least-squares methods.

As before, the system matrices A and C follow directly from the least-squares solution
by appropriate matrix partitioning. The matrices B and D are implicitly, but linearly,
contained in K1 and K2 and can be factored out and solved for. The algebraic
manipulations are rather cumbersome and omitted here; for details see Van Overschee
& De Moor (1996).

In a final step, the noise covariances R,Q and S are determined by processing the
residual of (A 18) with all system matrices A,B,C,D determined. We have(

LiEi

Ei

)
=
(
Γ †

i−1Ri+1

Yi

)
−
(

A K1

C K2

)(
Γ †

i Ri

Uf

)
, (A 20)

from which the noise covariances follow according to(
R S

SH Q

)
=
(

LiEi

Ei

)(
LiEi

Ei

)T

. (A 21)

This step concludes the identification of the system matrices and noise covariances
from input and output sequences. This procedure eliminates the need to rely on
specific system matrices. As a component in the full control design, it ensures a
realistic approach that is also applicable in experiments.
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Note that the general subspace identification procedure may be further modified
by introducing weight matrices W1,2 into the left-hand side of (A 10) in the
form W1ΓiXf W2 and by performing the singular value decomposition on the latter
expression. Several special choices of W1 and W2 correspond to well-known
algorithms, such as CVA (Larimore 1983, 1990), MOESP (Verhaegen & Deprettere
1991) and N4SID (Van Overschee & De Moor 1994), and more details on the
derivation of these schemes may be found in Van Overschee & De Moor (1995).
In this paper, the implementation of the MOESP weighting has been chosen; but it
was verified that all three algorithms give comparable results.

Appendix B. Choice of user parameters for subspace identification
Before applying any system identification technique, several parameters have to be

chosen. In particular, the number of samples, the type of input signal, the order of the
model and the shift parameter i are of crucial importance in subspace identification
techniques. These user-specified parameters are studied in this appendix using the
same configuration as in figure 16, but the convection speed is kept constant at Ur = 3
and the above identification parameters are successively varied while their effect on
control efficiency is monitored. It is useful to define the characteristic time of the
system τ as the time for a wave packet to travel from the most upstream input (spy
sensor at xs = −7) to the most downstream output (objective sensor xy = 7). More
precisely, the group velocity is Ur + cdUi (Bagheri et al. 2009b), and thus we obtain

τ ≡ xy − xs

Ur + cdUi
≈ 5.4 (B 1)

for our configuration.

B.1. Number of samples
The quality of the input and output signals used for the identification has a direct
impact on the quality of the resulting model. In particular, any system identification
algorithm should give better results as the length of the input and output signals
increases. This is verified in figure 26, where the efficiency of the feed-forward
controller is represented as a function of the number of samples used in the
identification step. It is observed that the efficiency of the control (full line with
error bars; blue online) approaches the optimal LQG upper bound (full line with plus
symbols; red online) as the number of samples increases. In this study, the order of the
model and the shift parameter are kept constant and equal to 6 and 67, respectively.
The input signal u is white noise. Throughout this paper, the number of samples is
chosen as 5000 (i.e. 500 time units). This value is represented by a vertical dotted
line in figure 26. In practice, the length of the signals used for identification has to be
significantly larger than any characteristic time scale of the system. The value used in
this paper is nearly 100 times the characteristic time scale τ .

B.2. Identified model order
In this section the choice of model order is analysed. In figure 27(a), the efficiency
of the feed-forward controller is shown as a function of the model order. It appears
that the control (and, consequently, the identification) is optimal for a model order
between six and eight. Surprisingly, the performance of models decreases beyond this
point. This can be explained by the fact that all accessible dynamics of the system
has already been captured by eight modes, and that the remaining dynamics is not
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FIGURE 26. (Colour online) Control efficiency of the feed-forward approach as a function
of the number of samples for the complex Ginzburg–Landau model. Fifty realizations of
identification and control were performed; the average (full line with error bars; blue online)
and the standard deviation are displayed. These curves are compared to the optimal LQG
control designed from the full-order system (full line with plus symbols; red online).
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FIGURE 27. (Colour online) (a) Control efficiency of the feed-forward approach as a
function of the identified model order for the complex Ginzburg–Landau model. Fifty
realizations of identification and control were performed; the average (full line with error
bars; blue online) and one standard deviation are plotted. These curves are compared to the
optimal LQG control designed from the full-order system (full line with plus symbols; red
online). (b) Singular values from (A 10) of the subspace identification process.

accessible and is essentially hidden within the measurement noise. Trying to extract
additional information by increasing the model order only degrades the quality of the
model. This is illustrated in figure 27(a) by the increasing standard deviation observed
for higher-order models. In practice, however, the present parameter study may not
be available a priori. Similar to many other system identification techniques, subspace
identification relies on a singular value decomposition for the truncation of the order.
This corresponds to (A 10) in the description of the technique. In figure 27(b) the
singular values are represented in decreasing order. A sensible procedure is to select
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FIGURE 28. Samples of the random binary signal and of the random triangular signal. Both
signals have the same standard deviation.

the order as the number of singular values above a given threshold. In this paper,
better results were obtained by detecting a sudden drop in singular values; for our
configuration, this technique gives an order of six. Except when specified otherwise, an
automatic order detection is performed in this paper.

B.3. Type of input signal
In this paper, a white-noise signal is used as an input at the system identification stage.
This signal has the advantage of exciting all frequencies of the system; however,
in practice, real actuators are not capable of accomplishing such an excitation.
Furthermore, it might be advantageous to tune the frequency content of the input
signal to better force the dynamics of interest in the system. To this end, a random
binary signal is often used as input signal. It is constructed by low-pass filtering a
white-noise signal and by applying the sign function to the result; in this way, a
random binary signal is generated. Its frequency content can be tailored to better excite
the dynamics of the system. Similarly, a random triangular signal can be constructed
by replacing the squares of the random binary signal by triangles. A representative
sample of these two signals is shown in figure 28, and the corresponding control
efficiency is given in table 1. We conclude that the random binary input signal
produces a better control efficiency. In Ljung (1999) criteria for the choice of the
input are given. In particular, it is argued that a proper input signal should have
a standard deviation as close as possible to its maximum. This may be the reason
why the random binary signal gives better performances than the other input signals.
Other possible choices comprise, among others, chirp signals, sum of sinusoids or
pseudo-random binary signals.

B.4. Shift parameter
In subspace identification the shift between the past extended state and the future
extended state is a user-specified parameter. During the first projection step of the
subspace algorithm, the future objective sensor measurements are described as a linear
combination of the past spy and actuator signals. Hence, to be able to find any
correlation between these quantities, it is imperative that the shift parameter i is larger
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FIGURE 29. (Colour online) Control efficiency of the feed-forward approach as a function
of the shift parameter i for the complex Ginzburg–Landau model. Fifty realizations of
identification and control were performed; the average (full line with error bars; blue online)
and one standard deviation are plotted. These curves are compared to the optimal LQG
control designed from the full-order system (full line with plus symbols; red online).

White
noise

Random binary
signal

Random triangular
signal

Mean efficiency 147.1 150.5 145.4
Standard deviation 4.3 2.5 5.6

TABLE 1. Performance measures of the feed-forward control for the Ginzburg–Landau
model for three different input signals.

than the number of time steps needed for the information to travel from the spy
sensor to the objective sensor. In other words, the shift i must be larger than τ/1t.
In this paper, except when specified otherwise, we chose i ≡ 1.25τ/1t. In figure 29,
the control efficiency is represented as a function of the shift parameter i. The vertical
dotted line indicates the parameter i used in our study.
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LAUGA, E. & BEWLEY, T. R. 2004 Performance of a linear robust control strategy on a nonlinear

model of spatially developing flows. J. Fluid Mech. 512, 343–374.
LJUNG, L. 1999 System Identification: Theory for the User, 2nd edn. Prentice-Hall PTR.
MA, Z., AHUJA, S. & ROWLEY, C. 2011 Reduced-order models for control of fluids using the

eigensystem realization algorithm. Theor. Comput. Fluid Dyn. 25, 233–247.
MCKELVEY, T. 1994 On state-space models in system identification. PhD thesis, Department of

Electrical Engineering, Linköping University, Sweden.
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