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The nature of the fluctuations of the dissipation rate in fluid turbulence is still under
debate. One reason may be that the observed fluctuations are strong events of dissipation,
which reveal the trace of spatiotemporal singularities of the Euler equations, which are
the zero viscosity limit of ordinary incompressible fluids. Viscosity regularizes these
hypothetical singularities, resulting in a chaotic fluctuating state in which the strong events
appear randomly in space and time, making the energy dissipation highly fluctuating.
Yet, to date, it is not known if smooth initial conditions of the Euler equations with
finite energy do or do not blow up in finite time. We overcome this central difficulty
by providing a scenario for singularity-mediated turbulence based on the self-focusing
nonlinear Schrödinger equation. It avoids the intrinsic difficulty of Euler equations since
it is well known that solutions of this NLS equation with smooth initial conditions do
blow up in finite time. When adding viscosity, the model shows (i) that dissipation takes
place near the singularities only, (ii) that such intense events are random in space and time,
(iii) that the mean dissipation rate is almost constant as the viscosity varies, and (iv) the
observation of an Obukhov-Kolmogorov spectrum with a power-law dependence together
with an intermittent behavior using structure function correlations, in close correspondence
with the one measured in fluid turbulence.

DOI: 10.1103/PhysRevFluids.5.054607

I. INTRODUCTION

One of the long-standing problems of classical physics is a thorough understanding of fully
developed turbulence. More specifically, with regard to the properties of fluid equations, there is still
no explanation for the observed intermittency in flows at high Reynolds number. This phenomenon
displays sharp fluctuations in the velocity and acceleration fields [1–3], fluctuations that seem to
preclude any theoretical description based on mean-field theory, even a modified one, so that the
link between these intermittencies and the turbulent spectrum remains unclear [4].

A possible explanation is that intermittent fluctuations are a consequence of spatiotemporal
singularities of the incompressible Euler equations [5]. The addition of dissipation, i.e., viscosity,
would regularize these singularities, resulting in a chaotic fluctuating state in space and time, making
the energy dissipation rate a highly fluctuating quantity. The problem of the existence of singular
solutions of incompressible Euler equations, interesting on its own, dates back at least to the 1920s
[6,7]. Several years later, Leray introduced the possibility of the existence of finite-time singularities
for the velocity field in the incompressible Navier-Stokes equation, which are pointlike singularities
in space-time [8,9]. In contrast with Leray, Onsager later conjectured about the existence of a
velocity field as a Weierstrass-like function of space variables [10,11], implying that the velocity
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is not smooth (i.e., not differentiable) almost everywhere and at almost all times. This assumption
is not linked to the fluid equations or even to the existence of finite-time localized singularities.
Recently, however, the statistical properties of the velocity field were investigated experimentally
and numerically in the context of this Onsager conjecture [12,13].

The existence of finite-time localized singularities in incompressible fluids was a subject
of renewed interest in the 1980s because of improvements in computers. Since then, different
configurations have been investigated to determine if they exhibit possible singular behaviors, e.g.,
vortex filaments [14–18] or vortex sheets [19], and Taylor-Green flows [20] (see Ref. [21] for a
recent review). In real flows, these singularities, if they exist, could be smoothed by viscosity close
to the singularity.

Scenarios of dissipation caused by singularity events have been proposed in different physical
contexts: for instance, it is believed that the formation of steep slope deformations on the surface
of the sea, leading to “white caps,” is responsible for energy dissipation [22,23]. Similarly, ridges,
folds, and conical singularities are good candidates for dissipating the energy of strongly vibrating
elastic plates [24]. The same is true for the focusing of light in nonlinear media [25] and strong
turbulence in plasmas [26–30] and related contexts [31]. Those nonlinear systems share the role of
singularities in effective dissipation.

Here we focus on the possible role of Leray-type finite-time singularities in a simpler model of
turbulence. One of us (Y.P.) [5,32] has considered such singularities occurring at single points in
space and time in a turbulent fluid (assumed to be inviscid), thus having no obvious effect on the
time-averaged velocity field. Leray’s explicit equations for singularities lead to a very challenging
problem that is far from being fully understood. Furthermore, the effect of such singularities on
the large-scale dynamics of turbulent flows is still unclear, although it is nicely consistent with
the famous Newton v2-drag law in that it excludes the effect of molecular dissipation in terms
of scaling laws [33]. Even though it seems well understood now that these singularities are local
sinks of energy, it is still not clear what their role is in the exchange of momentum [3]. In the
present paper, we study a model of turbulence in which singularities are present in the inviscid
limit in order to shed light on the role of such singularities in the turbulence and the observed
intermittency. The motivation, at least for the moment, is therefore to circumvent the difficulty posed
by the solutions of the incompressible Euler/Navier-Stokes equations, which makes it difficult to
carry out a thorough analytical study of those equations. Over the years, it has been suggested
that turbulence should be studied with the help of equations that are simpler than fluid equations.
Three famous examples are the Burgers equation [34], the Kuramoto-Sivashinsky (KS) equation
[35,36], and the complex Ginzburg-Landau (CGL) [37–39] equation. Each of these equations leads
to specific turbulent characterizations. The first one is for a velocity depending on one coordinate
and time. Riemann’s method of characteristics shows that a smooth initial condition leads to
finite-time singularities. Once a small viscosity term is added, this singularity becomes a finite
amplitude moving jump [34]. The Burgers equation is thus a fair model for the compressible fluid
equations, but not for the incompressible case: there is nothing resembling shock waves in the
latter because one does not expect that the three-dimensional (3D) incompressible Navier-Stokes
(NS) equations have solutions with stable discontinuities of the velocity gradient. Another model of
turbulence in one space dimension is the KS equation, which generates a turbulent state through
coupling between the large-scale linear instability and the nonlinearity. However, the dynamics
exhibits smooth solutions, and one cannot find a limit where finite-time singularities would play
any significant role in its solutions [35,36]. Finally, the complex Ginzburg-Landau equation has
been used for modeling turbulence, on the one hand, through the topological defects inherent in this
equation, leading to the so-called defect-mediated turbulence [37]. On the other hand, in the same
vein as our approach, the CGL equation has been used in the case of the focusing nonlinearity (see
the definition below) to mimic some highly fluctuating dynamics [38,39]. However, in these works,
only the temporal growths of characteristic quantities were estimated, with no direct links to the
statistical properties of the fields, such as a turbulent spectrum and structure functions in particular.
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In this paper, we examine the self-focusing nonlinear Schrödinger (NLS) equation, which is
a partial differential equation whose behavior resembles what we expect to happen in three-
dimensional Euler equations for fluids. However, it is much easier to deal with the numerics and
to check various theoretical ideas related to turbulence, particularly those concerning intermittency
and dissipation. Our simplified model exhibits well-understood singularities in the inviscid limit,
and one can investigate how such singularities are related to the large-scale dynamics. Therefore,
universal features in common with fluid turbulence as described by the NS equations may appear
and pave the way toward a better understanding of turbulence. In fact, our approach suggests that
there is a distinction between the two classes of dynamical systems in that the conserved quantity
(mass in NLS, energy in perfect fluids) produced at large scales is dissipated at small scales. In the
first class (our NLS model and potentially NS), this quantity is dissipated in the core of singularities
by higher-order effects not accounted for at large scales, whereas in the other (typically the KS
equation) it cascades smoothly to small scales without finite-time blow-up.

The paper is organized as follows: Section II summarizes the basic model, i.e., we introduce
the damped and forced nonlinear Schrödinger equation. In particular, we review the inviscid and
unforced limit, which is the usual focusing NLS and the well-understood existence of self-similar
finite-time singularities. Section III presents the main results of the turbulent, intermittent behavior
of this NLS model, before ending with concluding remarks.

II. THEORETICAL MODEL

We consider the focusing NLS equation with small damping and small forcing:

i
∂ψ

∂t
= −α

2
∇2ψ − g|ψ |2nψ − iν�2ψ + fk0 (x, t ). (1)

Here ψ (x, t ) is a complex field defined in space of dimension D. The parameter α > 0 quantifies
the dispersion and g > 0 quantifies the nonlinear strength. They can be scaled out so that we
will use for numerical simulations α = g = 1. Without “viscosity” ν and forcing fk0 , one recovers
the conservative and reversible NLS equation. Indeed, taking, for instance, a periodic box, it is
straightforward to show that the quantities

N =
∫

|ψ |2dDx, (2)

H =
∫ (

α

2
|∇ψ |2 − g

n + 1
|ψ |2(n+1)

)
dDx, (3)

are conserved in time. Notice that while the “mass” N is positive, the sign of the “energy” H is not
prescribed for this focusing NLS equation.

The term −iν�2ψ in Eq. (1) denotes damping, which we have chosen to bear two orders of
derivation higher than the conservative case (ν = 0), by contrast with the usual CGL equation
investigated earlier [38,39]. Finally, fk0 (x, t ) is a complex force acting at large scales of order ∼1/k0

(called the integral scale hereafter). Equation (1) is complemented with a smooth initial condition.
Figure 1(a) shows a typical x-t diagram of |ψ (x, t )|2 obtained by numerical simulations of Eq. (1):
a turbulent regime is observed with large amplitude events localized in space and time. These
events display strong gradients with very strong local dissipation [defined below (12)], as displayed
in Fig. 1(b). We solve the nonlinear Schrödinger equation (1) with a standard pseudospectral
scheme, where the nonlinear term is solved in real space, while the linear terms (Laplacian and
bi-Laplacian) are solved in Fourier space. All simulations presented in the paper are for n = 3 in
a one-dimensional domain of size L with periodic boundary conditions. The forcing fk0 is a white
noise in time of amplitude a and a variance a2/6 acting only for wave numbers |k| � k0. Typically
the runs correspond for 2048 allocation points and a system size of L = 307.2, k0 = 0.3, a = 0.01,
and dx = 0.15. Finally, the viscosities vary from ν = 2.5 × 10−3 up to ν = 2.5 × 10−6. We have
checked that higher resolutions in space and time do not change quantitatively the results.
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FIG. 1. x-t diagram for numerical simulations of (1) for D = 1 and n = 3. (a) |ψ (x, t )|2 and (b) the local
and instantaneous dissipation ε(x, t ). The dissipation is strong near the large density events displayed in
(a) and negligible otherwise. As a scale reference, the maximum value of max {|ψ (x, t )|2} ≈ 6.67, while for
the dissipation max {ε(x, t )} ≈ 600. The simulations use a pseudospectral method with 1024 modes, a mesh
size dx = 0.05 (the periodic domain is of size L = 51.2), dt = 10−6, ν = 2.5 × 10−5, and g = α = 1, using a
time-splitting scheme: the nonlinear term is solved in real space, while the derivative is solved in the Fourier
space. Finally, the random forcing acts for wave numbers k < k0 = 0.3 with a forcing amplitude a = 0.01, and
is added in the Fourier space integration step.

A. The inviscid case: Wave collapse

One exciting feature of the model (1) is that in this conservative limit ( fk0 = 0 and ν = 0), the
solutions of (1) may display a finite-time singularity at a point (a position and a time that are hard to
predict). More precisely, if 2 � nD < 2(n + 1) and for smooth initial conditions such that initially
H < 0, then the solution of (1) blows up at a point (the solution and its gradient become infinite) in
finite time, the case nD = 2 representing a critical collapse. Moreover, the singularity formation is
self-similar so that its amplitude increases while the size of the blow-up region decreases [40,41].
In our model, Eq. (1), this singularity is avoided thanks to the viscous term, and a turbulent regime
appears where forcing and dissipation balance each other. Although the structure of this singular
dynamics was studied earlier, we recall in this section the main arguments and results for the sake
of consistency (for more details, see [40–44]).

The argument for a finite-time singularity follows from Refs. [43,44]: let us define 〈|x|2〉 =∫ |x|2|ψ (x, t )|2dDx. Then we obtain (here α = g = 1)

d2

dt2
〈|x|2〉 = 8

(
H − nD − 2

2(n + 1)

∫
|ψ (x, t )|2(n+1)dDx

)
,

therefore if nD > 2 one has d2〈|x|2〉
dt2 � 8H . Moreover, because H is constant, 〈|x|2〉 � 4Ht2 + c1t +

c0, thus, if initially H � 0, then a critical time tc exists such that 〈|x|2〉 → 0 as t → tc. Because
of the Cauchy-Schwartz inequality applied to

∫ |ψ |2dx = (1/D)
∫

(∇ · x)|ψ |2)dx = −(1/d )
∫

x ·
∇|ψ |2dx, this result implies that

∫ |∇ψ |2dDx → ∞ as t → tc, indicating a finite-time singularity.
Moreover, it can be argued that the Hamiltonian of the singularity solution must vanish at the
collapse in order to ensure conservation of energy for this solution.

There is clear evidence of the existence of self-similar finite-time blow-up solutions with an
amplitude that increases in a contracting region that is uniformly narrow just before the collapse time
[40,41]. Indeed, following [40,41], we can seek a self-similar radially symmetric solution (r = |x|)
in the form

ψ (r, t ) = 1

(tc − t )1/2n
�

(
r

(tc − t )1/2
,− ln(tc − t )

)
. (4)
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FIG. 2. Numerical calculation of the ordinary differential equation (5) with the boundary conditions (6) for
the parameters (i) ϕ0 = 0.975 and λ = 0.3598; (ii) ϕ0 = 0.8675 and λ = 0.707; and (iii) ϕ0 = 1.035 and λ =
1.4175. The calculated solutions represent an example of nonoscillatory solutions of (5) with the boundary
conditions (6), however only (i) satisfies the energy condition H0 = 0 discussed below.

The function �(ξ, τ ) depends then only on the stretched variable ξ = r/(tc − t )1/2 and the log-time
τ = − ln(tc − t ), and it is a solution of the partial differential equation:

i
∂

∂τ
�(ξ, τ ) + i

2

(
1

n
+ ξ

∂

∂ξ

)
� = −1

2

(
∂2�

∂ξ 2
+ D − 1

ξ

∂�

∂ξ

)
− |�|2n�.

This equation admits “oscillatory” solutions in τ of the form �(ξ, τ ) = eiλτϕ(ξ ), where ϕ(ξ )
satisfies the ordinary differential equation

−λϕ + i

2

(
1

n
ϕ + ξϕ′

)
= −1

2

(
ϕ′′ + D − 1

ξ
ϕ′

)
− |ϕ|2nϕ, (5)

which is complemented by the boundary conditions

ϕ(0) = ϕ0, ϕ′(0) = 0, and ϕ(ξ ) ∼ ξ−1/n, ξ → ∞. (6)

Because of the phase invariance of (5), one can set ϕ0 real, and integrating Eq. (5) for any given
pair of (λ, ϕ0) generates in general oscillatory functions (in ξ ) in the limit ξ → ∞. The selection
mechanism of the solutions follows by simply eliminating the functions that are oscillating in this
asymptotic limit ξ → ∞, leading to a family of solutions associated with each pair of (λ, ϕ0).

Generally speaking for this class of problems, the set of pairs (λ, ϕ0) satisfying both Eq. (5) and
the boundary conditions (6) is infinite but countable, and Fig. 2 shows three of these solutions.

Near the wave collapse, the conserved quantities become N = (tc − t )D/2−1/nN0. Because nD >

2, N → 0 as t → tc, implying that the mass or wave action converges to zero at the singularity. On
the other hand, H scales as H = (tc − t )D/2−1/n−1H0, hence it may diverge for 2 < nD < 2(n + 1),
and in this case it is necessary to impose the supplementary condition

H0 =
∫ ∞

0

(
1

2
|ϕ′|2 − 1

n + 1
|ϕ|2(n+1)

)
ξD−1dξ ≡ 0. (7)

Therefore, the solution selected by the dynamics must not only satisfy Eq. (5) with the boundary
condition (6), but also the important restriction (7), which limits strongly the number of acceptable
solutions. For instance, for the numerical solutions shown in Fig. 2, only the first case (i) satisfies
this condition (7).
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FIG. 3. Time evolution of |ψ0(t )|2 = maxx (|ψ (x, t )|2), solution of (1) with zero forcing and starting at
t = 0 with a smooth initial condition ψ (x, 0) = 1 + 0.1cos( 2πx

L ), where L = 51.2 is the size of the periodic
box, g = α = 1, for various ν. The dynamics shows a peak reminiscent of the self-similar singular dynamics
of the inviscid case (the peak is located earlier and its amplitude is larger as ν decreases). The mesh size has
been adapted in order to solve the high-density peaks, and the case ν = 2.5 × 10−4 has been slightly shifted in
time for clarity.

B. Basic linear instability mechanism

The formation of the finite-time singularity discussed in the previous section is preceded by a
long-wave instability mechanism that in the end cannot be saturated by the nonlinearities, so that
the dynamics end because of the singular behavior. Indeed, in the absence of forcing, fk0 = 0, the
model (1) admits uniform solutions

√
�0eig�n

0t , where
√

�0 is constant. The linear stability analysis
of periodic perturbations leads to the following dispersion relation:

σ
(±)
k = −νk4 ±

√
αng�n

0k2 − α2k4/4. (8)

In the long wave limit, the eigenvalue

σ
(+)
k ≈ −νk4 + |k|√gαn�n

0

develops a long wave modulation instability for all ν > 0. Therefore, the uniform solution is linearly
unstable for any smooth initial condition, and it can trigger the self-focusing mechanism for wave
collapse as described above. As the solution becomes narrow and broad in amplitude, the viscous
dissipation becomes more efficient and, eventually, avoids the inviscid blow-up. This instability
mechanism can be seen in numerical simulations by following the time evolution of the equation,
starting from a smooth bump initial condition. Although the model exhibits singularities for any
space dimension, we will focus next on the 1D version since it displays the essence of the dynamics
and allows for high accuracy numerical simulations (we take the supercritical regime D = 1 and
n = 3 for all the numerical results shown below). Figure 3 plots the maxima: |ψ0(t )|2 =
maxx(|ψ (x, t )|2) as functions of time for different viscosities ν: we observe that the smaller the
viscosity, the sooner and the higher is the peak of |ψ0(t )|2. This indicates that the viscosity indeed
cures the singularity of the inviscid equation in such a way that the peak intensity diverges as the
viscosity vanishes.
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FIG. 4. (a) Numerical calculation of the wave spectrum of the self-similar solution of Fig. 2 for the solution
(i) of the ordinary differential equation (5) already plotted in Fig. 2. Note the k−4/3 spectrum for the long-wave
behavior. (b) Plots of the instantaneous 1D average spectrum Sk as a function of k for times near the peak
for the smallest viscosity ν = 2.5 × 10−6 shown in Fig. 3. From bottom to top, the blue curve is the available
time-step just before, t = 2.546, the purple one is on the peak, t = 2.547, and the green is for the time-step just
after the peak, t = 2.548. The straight line indicates the slope k−4/3 that can be deduced from the self-similar
structure of the singularity.

C. Wave collapse spectrum

We define the instantaneous Fourier spectrum Sk (t ) by

Sk (t ) ≡ 〈|ψ̂k|2〉, (9)

where the Fourier transform reads

ψ̂k(t ) = 1

LD/2

∫
ψ (x, t )e−ik·xdx,

and the brackets 〈· · · 〉 stand for a mean angular average [45]. The Fourier transform of the self-
similar solution (4) reads

ψ̂k (t ) ∼ (tc − t )D/2−1/2n−iλϕ̂(k(tc − t )1/2). (10)

In the limit t → tc, |ϕ̂(u)| ∼ u−(D−1/n) so that the full spectrum is time-independent: |ψ̂k|2 ∼
k−2(D−1/n), leading to the observed spectrum |ψ̂k|2 ∼ k−4/3 (for D = 1 and n = 3) in Fig. 4(a).

This dynamical spectrum is observed in numerical simulations of Fig. 3. Indeed, as shown in
Fig. 4(b), we observe that the spectrum just before the peak and the one on the peak present a
smooth behavior compatible with the scaling law k−4/3 that can be deduced from the self-similar
regime. However, the spectrum for the time step just after the peak exhibits a different behavior
with the rapid formation of small-scale (large k) fluctuations, as demonstrated by the oscillations
observed after the peaks in Fig. 1.

III. TURBULENT BEHAVIOR

Given the dynamics of the NLS equation, it is tempting to investigate the existence of a turbulent
regime that would arise as a balance between the singular dynamics and the dissipation. By
“turbulence,” we mean a disordered or chaotic spatiotemporal behavior given by the solutions of
partial differential equations [like (1)] starting from a smooth initial condition. In this turbulent
regime, mass (N) and energy (H) are injected at large scale by a forcing term fk0 (x, t ), while the
viscous term dissipates at small scales.
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FIG. 5. (a) Time evolution of the mean density N̄ (t ) for three different values of ν = 10−5 (black curve),
ν = 2.5 × 10−4 (green curve), and ν = 2.5 × 10−2 (red curve); (b) the mean mass dissipation ε̄(t ) is also
computed and plotted as a function of time for the same values of the viscosity (same curve color). The
numerics is for the same parameters as Fig. 1 but for L = 307.2, dx = 0.15. We have checked that higher
resolutions in space and time do not change qualitatively the results.

A. Dissipation rate

Since the energy may be positive or negative, the interesting quantity to investigate in this
turbulent process is the mass N (2), which is positively defined. Following the NLS equation (1),
the time variation of N reads

dN

dt
= −

∫
ε(x, t ) dDx + i

∫ (
ψ f ∗

k0
− ψ∗ fk0

)
dDx, (11)

with
ε(x, t ) = 2ν|�ψ |2. (12)

Therefore, in strong analogy with fluids, the dissipation density −ε(x, t ) is strictly negative while
the forcing can be positive or negative. On the contrary, time derivatives of Eq. (3) can also be
developed, but it does not display a simple form such as (11). Thus, in what follows we will focus
on N (t ) and its dissipation balance (11) and (12).

Numerical simulations in 1D show the existence of a permanent turbulent regime as illustrated
in Fig. 5. More precisely, it shows the (space)-averaged density and dissipation

N̄ (t ) = 1

L

∫ L

0
|ψ |2dx, (13)

ε̄(t ) = 2ν
1

L

∫ L

0
|∂xxψ |2dx (14)

as a function of time for three different values of the viscosity ν. Throughout the paper, we denote
the spatial average of a quantity q by q̄, and the temporal averages by 〈q〉, so that 〈ε̄〉 denotes the
spatiotemporal average. Figure 5(a) shows that a stationary statistical regime is rapidly reached
where N̄ (t ) fluctuates around a mean value that is not strongly dependent on the viscosity. The
mean (in space) dissipation, Fig. 5(b), exhibits a (statistically steady) randomly distributed sequence
of peaks, in close correspondence with turbulent dissipation [2]. These peaks correspond to the
formation of singularities stopped by the viscosity. Indeed, it is possible to estimate the dissipation
rate for the singular solution (4), yielding

ε̄(t ) = 2ν(tc − t )D/2−1/n−2
∫ ∞

0
|�ξϕ|2ξD−1dξ .
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FIG. 6. (a) Mean dissipation rate 〈ε̄〉 as a function of viscosity. One notices that the mean dissipation rate
is 〈ε̄〉 = (4.87 ± 0.40) × 10−5 and almost independent of viscosity. (b) Mean peak dissipation created by the
intermittent events, normalized by the mean dissipation rate, as a function of viscosity. One observes that
the peak events may be as large as 2000 times the mean dissipation rate. The inset suggests a power law
εpeak/〈ε̄〉 ∼ A±|νc/ν|η± , with η+ ≈ −0.91 for νc/ν > 1, η− ≈ 0.86 for νc/ν < 1, and νc ≈ 6.56 × 10−4.

That is, ε̄(t ) ∼ (tc − t )−11/6 for D = 1 and n = 3 as studied here, consistent with the sharp peak of
dissipation observed in the numerics. The total dissipation rate would diverge in time as t → tc,
the viscosity regularizing this singular behavior. Remarkably, in our numerics we observe that
the dissipation peak decreases with the viscosity, while the peak frequency increases so that the
spatiotemporal averaged dissipation remains finite as ν → 0.

As ν varies, keeping all the other parameters constant, we observe that the overall picture is
preserved. In particular, the mean dissipation rate, 〈ε̄〉 (averaged in time and space), varies only
slightly with the viscosity, as shown in Fig. 6(a). This indicates that the injection determines this
quantity while the dissipation process adapts automatically as ν varies. It corresponds to the ideal
situation expected in fully developed turbulence of anomalous dissipation, where it converges to a
constant value as the viscosity decreases [46]. On the other hand, the amplitude of the dissipation
peaks exhibits a nonmonotonic dependence with the viscosity, as shown in Fig. 6(b), where the
average of the dissipation peaks normalized by the mean dissipation rate 〈ε̄〉 is plotted as a function
of 1/ν. As ν → 0, the dissipation peaks decrease, as displayed in Fig. 5(b).

B. Kolmogorov-Obukhov spectrum

In the current scenario, Eq. (1) displays a turbulent behavior in the sense that the injected mass
at large scales is eventually dissipated at the small ones. However, as seen above, the dissipation
mechanism does not a priori appear as a cascade regime with a constant mass flux since it depends
on random peaks reminiscent of the singular behavior of the inviscid model. It is interesting to
measure the spectrum (9) that will be obtained for this intermittent spatiotemporal turbulence. The
spectrum Sk evolution is ruled by the general transport equation (in Fourier space):

∂Sk

∂t
= −∂Qk

∂k
− 2νk4Sk + Fk, (15)

which relates the flux Qk , the dissipation −2νk4Sk , and the injection Fk = Im[2iψk f̄−k]. Dissipation
acts mostly on the small scales (large k such that νk4 � αk2) while injection acts only on the
large scales (|k| < k0) defining an inertial window where dissipation and injection are negligible.
Similarly to what has been observed for the spectrum variation near a peak [see Fig. 4(b)] and
because of the existence of intermittent collapses, the instantaneous spectrum Sk (t ) fluctuates
significantly with time at short scales, while the large-scale part of the spectrum is roughly
independent of time. It is thus more relevant to investigate the temporal averaged spectrum 〈Sk〉
in the statistically steady regime, which will play the role of the Kolmogorov spectrum in fluid
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FIG. 7. (a) Time-averaged spectra 〈Sk〉 for 18 different values of the viscosities, ranging from ν = 2.5 ×
10−6 up to ν = 0.25. The spectra seem to follow the same scaling law 〈Sk〉 ∼ k−1/3 over a range that goes
from the injection scale toward a scale that depends on ν. (b) The rescaled spectra �−1/3

ν 〈Sk〉 as a function
of the rescaled wave number k�ν , where �ν ∼ (ν/ε̄)3/14 is the Kolmogorov dissipation scale. The dashed line
indicates the k−1/3 and k−9/2 behavior, respectively.

turbulence. Thus 〈Sk〉 is time-independent and the averaged flux 〈Qk〉 becomes constant in the
inertial window in k. Finally, the behaviors at large and small k impose 〈Qk〉 = −2ν

∫ ∞
k k4〈Sk〉dk ≡

−〈ε̄〉. This statistically constant mass flux suggests that a cascade process is at play in the averaged
dynamics, while the high fluctuations of the instantaneous spectrum Sk (t ) witness the intermittent
structure of this cascade.

Figure 7(a) displays such Kolmogorov spectra obtained from numerical simulations of (1) with
varying ν, the other parameters being the same as in Figs. 5 and 6. We observe that these spectra
are almost similar for small k while their extension in k increases as the viscosity decreases. It
draws an asymptotic master curve that exhibits a scaling consistent with 〈Sk〉 ∼ k−1/3 at a small
k corresponding to the inertial range. As ν decreases, the size of this inertial range expands.
Remarkably, when the amplitude of the forcing a is varied at fixed viscosity, changing 〈ε̄〉, we
observe the same independence of the spectra with 〈ε̄〉.

A Kolmogorov-like argument is not sufficient to predict such a spectrum because Eq. (1) has
two distinct conservation laws, leading to another dimensionless number. By dimensional analysis
and according to the numerical observation that the final spectrum does not depend on 〈ε̄〉, one
concludes that the spectrum

〈Sk〉 ∼ (α/g4)1/3k−1/3.

It is worthwhile to emphasize that this final argument is different from that for wave turbulence
so that our spectrum is not at all of this type [47]. More importantly, classical arguments of wave
turbulence would suggest an inverse cascade of mass for the NLS equation, while the singular
collapse presented here induces an effective cascade of mass toward small scales. This k−1/3 scaling
is eventually different from that of the singularity observed in Fig. 4, suggesting a subtle average of
the singularity spectrum that might be similar to the one proposed in vortex bursting [48,49].

This scaling is well defined in the inertial range k until a critical scale �ν , at which the local
dissipation rate balances the mean one: 〈ε̄〉 ∼ ν|�ψ |2, leading to

�ν ∼
[(

g

α

)1/3
ε̄

ν

]− 3
14

.
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This provides an estimate of the scale extent of the spectrum for our 1D problem suggesting the
general shape

〈Sk〉 =
(

α

g4

)1/3

�1/3
ν G(k�ν ). (16)

The master scaling relation (16) is tested in the inset of Fig. 7 where all rescaled spectra �−1/3
ν 〈Sk〉

are plotted as a function of the rescaled wave number k�ν for different values of the viscosities.
Numerically, we observe a reasonable collapse of the spectra for the smallest values of the
viscosities, where G(η) ∼ η−1/3 in the inertial range, showing the self-similar structure of the
turbulence. In addition, the small-scale spectra (large k) follow a power-law behavior G(η) ∼ η−9/2.
Therefore, the shape of this turbulent spectrum is consistent with a Kolmogorov-type cascade
spectrum and does not put in evidence the genuine singular dynamics of Eq. (1).

C. Structure functions and intermittency

Intermittency of the dynamics can usually be characterized using high-order structure functions
gp(r), defined here thanks to the second-order difference δ2ψ (x, r) = ψ (x + r) + ψ (x − r) −
2ψ (x), following [50,51]

gp(r) = |δ2ψ (x, r)|p = |ψ (x + r) + ψ (x − r) − 2ψ (x)|p. (17)

As defined, the structure functions are particularly sensitive to the high amplitude field at large p.
Eventually, the narrow peaks of the dynamics should dictate the properties of the structure functions
at high p. From the spectrum we can infer that the second-order structure function g2(r) ∼ r7/2 for
small r (where dissipation dominates) since

g2(r) = 1

L

∫ L

0
dx|ψ (x + r) + ψ (x − r) − 2ψ (x)|2

= 4

L2

∫
dx

∑
k,k′

ei(k−k′ )xψ̂kψ̂
∗
k′ [cos(kr) − 1][cos(k′r) − 1],

= 4

L

∑
k

|ψ̂k|2[1 − cos(kr)]2 ∼ r7/2
∫

(kr)−9/2d (kr) ∼ r7/2,

where we have used the inverse Fourier transform relation ψ (x, t ) = 1√
L

∑
k ψ̂keikx, where the sum

is for k = 2π i
L , with i ∈ Z . The r7/2 is deduced using the behavior at large k of 〈Sk〉 ∼ k−9/2 for

|ψ̂k|2 and by taking the integral limit of the sum in k for simplicity. Figure 8 shows the structure
functions for p = 2, 6, 8 and 10 for a small value of the viscosity ν = 10−5. The scaling behavior
for g2(r) is observed at small scales, while the structure function saturates at large r, reminiscent of
the random fluctuations of the wave function. Indeed, at large r, the wave functions separated by the
distance r are totally uncorrelated so that |δ2ψ (x, r)|2 converges to a constant value related to the
mean density of the solution |δ2ψ (x, r)|2 ∼ 6|ψ (x)|2. More interestingly, the short-scale behavior
of the structure functions varies abruptly for large p showing a peak that grows as p increases (see
the inset of Fig. 8). We interpret this peak as the signature of the existence of quasisingularity events
in space and time which create large and narrow density peaks. Indeed, in principle, the measure
of large-order structure functions may be useful to identify singularities in high Reynolds number
fluid motion [32].

D. The pertinence of this scenario with turbulence in real fluids

Along the same lines as the original ideas of Kolmogorov on turbulence in fluids [52], our model
displays a set of hierarchical “pulsations” or fluctuations and instabilities at a given length scale, �,
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FIG. 8. Structure function gp(r) as function of r for ν = 10−5. Part (a) shows, in a log-log plot, the function
g2(r) where the short-scale behavior g2(r) ∝ r7/2 is reminiscent of the viscous behavior of the spectrum
Sk ∝ k−9/2. Part (b) shows the higher-order structure functions gp(r) in a linear plot for p = 2, 6, 8, and
10, normalized by their asymptotic values reached for large r. A peak emerges at small r for p = 8 and more
clearly for p = 10.

that dominate the statistical behavior of the turbulent fluid motion. Equation (8) suggests a possible
picture for the growth of instabilities and quasisingularities in conditions of a random distribution
of the field |ψ |2. Indeed, the scaling law for the local growth of the instability must be such that
the wave number k <

√
nαg|ψ |2n. Therefore, whenever |ψ |2 fluctuates in space, the instability can

grow if its wavelength satisfies � > 1/
√

nαg〈|ψ |2n〉�, where 〈|ψ |2n〉� stands for the average value of
|ψ |2n over a volume (of linear size �) where the instability grows. This instability reaches rapidly
a strongly nonlinear regime that would yield a finite-time singularity without the viscosity term.
With viscosity this growth is stopped, and mass, 〈|ψ |2〉�, is locally lost on a short time scale ∼�4/ν.
As a consequence of this loss of mass in the unstable domain, 〈|ψ |2n〉� will decrease to a smaller
value bringing ψ back to the stable domain. Afterward, following the dynamics of (1), |ψ |2 will
start again to grow either by neighboring diffusion (as is likely to occur in real turbulence) and/or
by external forcing.

This mechanism may be amplified in the large-n limit, whereas in Eq. (1) the nonlinear term
may be neglected for |ψ | < 1, but the nonlinear focusing mechanism becomes stronger whereas
|ψ | > 1 (even for the smallest possible wavelength). The physics behind this limit resembles an
activation process: if the forcing is large enough such that |ψ | > 1, the local value of |ψ | increases
dramatically, but diffusion acts to decrease the local value of |ψ |, reestablishing a permanent
dynamics of diffusion-regularized singularities, an idea that we plan to explore in the future.

To adapt this discussion to real fluid turbulence, one should examine the deep differences between
our NLS-focusing inviscid unforced model (1) and the equations of inviscid fluid mechanics. As
already said, in the case of the NLS-focusing model, if the amplitude of the fluctuations is above a
certain value over a sufficiently large coherent domain, the instability sets in and leads to self-similar
blow-up. In the case of the incompressible Euler equations for fluids, we suggest that the role of
this instability is played by the Rayleigh instability of shear flows [53]. As is well known, this
Rayleigh instability requires that, in a parallel flow, the velocity field presents an inflection point in
its dependence with respect to the normal coordinate to the velocity. If this happens, an instability
can develop. Because the Euler equations are formulated without any intrinsic scales of space and
of velocity, the existence of an instability relies only on the local properties of the flow and not
on external parameters or other quantities. Therefore, the onset of instability in a turbulent flow
can depend only on dimensionless combinations built with local parameters of the velocity field. In
fluids, the instability follows a Rayleigh-like criterion that involves second derivatives of the main
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velocity field with respect to a coordinate (or coordinates) locally perpendicular to this field. For
a random velocity field, this yields in principle a two-dimensional manifold that defines the local
instability. Because the criterion is defined on surfaces, the growth of local singularities in turbulent
fluids occurs with finite probability and depends on the local geometry of the velocity fluctuations in
the flow. This implies that incoming singularities fill a finite proportion of the probability distribution
functions of fluid acceleration signals, as is observed in turbulent flows [5]. This also agrees with
the long observed, but as far as we know unexplained, sensitivity of real turbulent flows to detailed
macroscopic features, such as changes in boundary conditions in the von Karman flow [54], for
instance, something we interpret as also changing the geometry of those large-scale features and
finally the probability of the occurrence of singularities.

IV. DISCUSSION

We have presented a model equation with many remarkable properties, making it a promising
template for investigating the role of intermittencies in real fluid turbulence. The fluctuations of
the solutions of Eq. (1) display indeed strong analogies with real fluid turbulence. In particular,
they exhibit a well-defined Kolmogorov spectrum in an “inertial range” between the injection at
large scales and dissipation at small scales. Moreover, the model shows a phenomenon of strong
intermittency that results from the random occurrence of quasisingularities that are stopped before
the final blow-up by a viscouslike term present in the model. This shows well that the occurrence
of singularities for the “inviscid” part of the equation of motion is a way to explain how both
dissipation and intermittency occur in such a turbulent system. The flux of a conserved quantity
from large to small scales can somehow be linked to the random occurrence of coherent structures,
the quasisingularities, with a well-defined time dependence, which is hard—if not impossible—to
find by looking only at space- and time-averaged quantities. Preliminary numerical studies in two
and three space dimensions support the present scenario positively. More specifically, for two space
dimensions and a nonlinearity n = 2, one observes the phenomenology of Figs. 4 and 6 qualitatively.
Nevertheless, for three space dimensions and n = 1, a slight difference occurs: in some situations,
the intermittent behavior of the mean dissipation rate is missing because at almost every time the
probability of observing an event is close to 1; thus a continuous curve replaces the intermittent
behavior of Fig. 5(b). These results will be presented in detail elsewhere. We emphasize that in the
current inviscid model, the space dimensions may be arbitrarily chosen as long as D > 2/n, while
the fluid case is usually restricted to the pertinent three-dimensional situation.

Finally, to make a more specific connection between our model and real fluid turbulence, we
notice that if intermittency is linked to finite-time singularities in both cases, the relevant fluctuations
must exhibit a tight relationship between large amplitudes and short time. This kind of relationship
does appear in the short-range behavior of the structure functions: such functions show the same
change of qualitative behavior at a small radius both for NLS and recorded data in large wind
tunnels, a subject that we plan to discuss in a separate publication.
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