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The temporal growth of Gortler vortices and the associated secondary instability 
mechanisms are investigated numerically in the case of an asymptotic suction 
boundary layer on a curved plate. Highly inflectional velocity profiles are generated in 
both the spanwise and vertical directions. The inflectional velocity profile develops 
earlier in the spanwise direction. There exist two distinct modes of instability that 
eventually lead to the breakdown of Gortler vortices: the sinuous mode and the 
varicose mode. The temporal secondary instability analysis of the three-dimensional 
inflectional velocity profile reveals that the sinuous mode becomes unstable earlier than 
the varicose mode. The sinuous mode is shown to be primarily related to shear in the 
spanwise direction, aU/az, and the varicose mode to shear in the vertical direction, 
a ulay.  

1. Introduction 
For nearly a century, hydrodynamic stability and transition have been recognized as 

a central problem of fluid mechanics. Understanding of laminar-turbulent transition 
is very crucial and essential to the improvement of modern technology. Flow over a 
concave wall, known as Gortler flow, is susceptible to a centrifugal instability due to 
the streamline curvature. Counter-rotating streamwise vortex pairs are created when 
the radial pressure gradient can no longer balance the centrifugal force as shown 
schematically in figure 1. The presence of such vortices is important in flows over a 
turbine blade or on the lower surface of airfoils since streamwise vortices can 
drastically change the heat transfer rate and the skin friction characteristics. 

Rayleigh (1916), using an inviscid analysis, derived a simple condition for the 
occurrence of an instability with respect to rotationally symmetric disturbances. This 
condition, known as the Rayleigh circulation criterion for the stability of an inviscid 
fluid, states that, if the circulation decreases in the radial direction, the flow is inviscidly 
unstable. According to this theory, the boundary layer over a concave wall is unstable 
on inviscid grounds. Gortler (1940) then deduced theoretically that the effect of the 
centrifugal force due to the streamline curvature of the boundary layer gives rise to the 
formation of streamwise vortices. This mechanism is analogous to the Taylor-Couette 
flow instability investigated by Taylor (1923). The Gortler number G as first 
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1 
FIGURE 1. Sketch of the streamwise vortices developing on a concave wall due to the Gortler 

instability (from Swearingen & Blackwelder 1987). 

formulated by Gortler (1940) is the most important parameter in this problem and it 
is defined by 

where RE is the Reynolds number based on the free-stream velocity Urn and the 
momentum thickness 0 of the boundary layer and R is the radius of curvature of the 
wall. Peerhosaini (1984) showed that the Gortler number is essentially the ratio of a 
stabilizing timescale due to viscous diffusion and a destabilizing timescale due to the 
centrifugal force. Therefore, when the Gortler number exceeds a critial value G,, the 
flow becomes unstable. 

It is appropriate to briefly discuss relevant experimental and theoretical results 
concerning the growth and the breakdown of Gortler vortices. Bippes (1972) produced 
an isotropic field of disturbances with screens in the oncoming flow. Out of the entire 
spectrum of disturbances, only those corresponding to the longitudinal vortex 
component at a certain wavelength were excited. His hydroden bubble visualizations 
reveal that the vortices grow, meander and, then, break down. Aihara (1979) and 
Winoto & Crane (1980) observe low-frequency vortex meandering in the spanwise 
direction and Aihara & Koyama (1981) suggest that this meandering motion may 
result from the production of a normal component of vorticity. Ito (1980) also reports 
a low-frequency motion before the appearance of the horseshoe-type vortices. 

Gortler vortices in spatially growing boundary layers have been extensively studied 
analytically by Hall and his co-workers. Hall (1982b, 1983) has emphasized that it is 
not legitimate to consider the basic velocity profile as locally parallel unless one 
restricts attention to the high-wavenumber limit. This peculiar situation seriously 
complicates the analytical investigation of the Gortler instability. Considerable 
progress has been made nonetheless : the nonlinear spatial evolution of Gortler vortices 
at high wavenumbers has been described analytically in the weakly nonlinear regime 
by Hall (1982~)  and in the strongly nonlinear regime by Hall & Lakin (1988). The 
corresponding numerical study for arbitrary wavenumbers has been performed by Hall 

G = R , ( I ~ / R ) ~ ” ,  (1) 
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(1988). One of the salient features of these analyses is that the dominant nonlinear 
effect involves a strong interaction between the mean flow and the fundamental. 
Moreover, the downstream flow development leads to the formation of highly 
inflectional velocity profiles that could support rapidly growing inviscid modes of 
instability. According to classical instability theory, two-dimensional inflectional 
profiles are unstable to wavelengths of the same order as the shear layer thickness, their 
growth rate being much larger than in the case of viscous Tollmien-Schlichting-type 
instabilities. The emergence of an inflectional velocity profile has been carefully 
documented in the experiments of Swearingen & Blackwelder (1987). In particular, 
these investigations demonstrated that time-dependent fluctuations appearing in the 
flow are more closely correlated with shear in the spanwise direction than in the vertical 
direction. This observation is at variance with the idea that breakdown first takes place 
in the region of high inflectional shear in the vertical direction. The same phenomena 
are also prominent in the recent numerical investigation of temporally evolving Gortler 
vortices performed by Sabry & Liu (1991) and in direct numerical simulations of 
transition to turbulence in Gortler flow by Liu & Domaradzki (1990) and Liu (1991). 

The secondary instabilities arising on the primary Gortler vortices have only recently 
been examined theoretically. Hall & Seddougui (1989) and Bassom & Seddougui 
(1990) have shown that, in the high-wavenumber limit, Gortler vortices can support 
neutrally stable three-dimensional disturbances giving rise to wavy vortex boundaries. 
However, the secondary inviscid instabilities associated with the development of 
inflectional profiles in the spanwise and vertical directions appear to be the most likely 
sources of strongly amplified three-dimensional disturbances. Their study is one of the 
main objectives of this paper. 

Part of our analysis is conducted in the same spirit as the recent study by Hall & 
Horseman (199 1) on the linear secondary instability properties of longitudinal vortex 
structures in boundary layers.? These authors derive the counterpart of the usual 
Rayleigh equation for a class of three-dimensional spatially periodic flows consisting 
of streamwise vortices. They demonstrate that such flows can give rise to amplified 
secondary perturbations. Their work will be referred to during the course of the 
discussion. 

The first goal of our study is to document numerically the nonlinear temporal 
growth of the primary Gortler vortices arising on a concave wall which, prior to 
instability onset, supports an asymptotic suction boundary layer. This particular 
configuration has been deliberately chosen so as to obtain a basic flow that is 
independent of the streamwise distance along the curved wall at leading order in the 
small parameter O/R. In this manner, the issue of non-parallelism raised by Hall 
(1982b) does not arise and the problem is well-posed. It cannot be claimed that the 
situation is identical to the usual Gortler flow in a growing boundary layer, but it is felt 
that the main features of the instability evolution have been preserved. The second and 
more important objective of the study is to determine the secondary linear instability 
properties of the resulting temporally evolving Gortler vortices. Instead of solving an 
eigenvalue problem as in Hall & Horseman (1991) we have chosen to integrate 
numerically the Navier-Stokes equations linearized about the time-dependent Gortler 
state. In this procedure, we take advantage of the fact that the secondary instability 
timescale is much shorter than the Gortler evolution timescale. The Gortler evolution 
time can therefore be legitimately used as a parameter. The secondary instability 
properties are determined, at various stages of the Gortler vortex growth, by examining 

7 The present paper was being prepared while the study of Hall & Horseman (1991) appeared in 
this journal. 
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the long-time exponential behaviour of the solutions of the linearized Navier-Stokes 
equations. 

2. Problem formulation 
Consider flow over a concave wall with constant radius of curvature R, the free- 

stream velocity being U ,  and the kinematic viscosity of the fluid being Y .  The Reynolds 
number based on the momentum thickness B of the undisturbed asymptotic suction 
boundary layer is defined as 

We choose dimensionless space variables x, y ,  z (see figure 1) scaled with respect to B 
and a dimensionless time variable t scaled with respect to O/U,. The velocity 
components U, V,  W and pressure field P for the basic flow as well as corresponding 
quantities u, v, w and p for the disturbance field are made dimensionless with the 
velocity scale U, and the dynamic pressure pUk, where p denotes the density of the 
fluid. 

The basic flow is assumed to be composed of the asymptotic suction boundary layer 
and temporally growing Gortler vortices. Its velocity and pressure fields are defined as 
follows : 

RE = U,B/v. (2) 

+ Ug<Y, z ,  T) ,  (3) 
(4) 

( 5 )  
(6) 

where P,(y) is the pressure field that balances the centrifugal effect. Note that Gortler 
vortices evolve on the slow time variable T = RE1 t. The Gortler field quantities are 
obtained by solving the following nonlinear partial differential equations : 

u = 1 -e-O.5Y 

V = Ri'{ - 0.5 + V,(y,  Z, T)}, 
w = RE1 W,<Y, 2 7  T ) ,  

p = Ri21PB(Y) + Pg<Y, 2, TN, 

where 

av aw 
4+2 = 0, ay aZ 

a a ug.vg = v-+ w- 
gay gaz7 

and U,(y) represents the asymptotic suction velocity profile introduced in (3). The 
associated boundary conditions are 

U g = V , = W g = O  at y=O,oo. (12) 
The derivation of these equations in the limit of RE 9 1, B/R < 1, G = 0(1), and the 
justification for the choice of scales is given in Hall (1982~) and Floryan & Saric (1979). 

We wish to consider the linear stability of the Gortler flow defined above with respect 
to infinitesimal three-dimensional disturbances evolving on the fast timescale t and 
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characterized by a velocity field u(x, y, z, t )  and a pressure field p(x,  y, z, t). The 
equations to be solved are the Navier-Stokes equations linearized about the basic state 
V( y, z, T) = (U,  V,  W )  and P( y, z ,  T) : 

(13) 

v * u  = 0, (14) 

u = v = w = O  at y=O,m.  (15) 

au 1 -+(u.v)u+(u.v) u= -Vp+-V%, 
at RE 

where u = (u, v, w) and the associated boundary conditions are 

It must be emphasized that the slow time variable T only appears as a parameter in 
the above system. This is because the Gortler evolution time scale is T,  - B 2 / v ,  whereas 
the expected evolution timescale of the secondary inflectional instabiity is’Ti - 01 U,. 
Thus 

r i / rg  - RE’ 4 1, (16) 
which is strictly equivalent to the relation T = RE1 t between the Gortler time variable 
T and the inflectional instability variable t. In the secondary instability analysis, it is 
therefore justified to consider the basic Gortler flow as quasi-steady and to treat T as 
a parameter. The Reynolds number RE will be chosen to be 1000, which is well below 
the critical Reynolds number for the onset of a viscous Tollmien-Schlichting instability 
in the asymptotic suction boundary layer (Drazin & Reid 1981). Therefore, if 
instabilities are present, it is clear that they do not originate from a viscous instability 
mechanism. 

The basic flow possesses the following invariance properties in the spanwise 
direction : 

(z,  u, V,  W)’(-z, u, v, - W).  (17) 
From this, one can easily see that there are two independent instability modes. The first 
one is the sinuous mode, which has the following invariance properties: 

(z,~,v,w,P)+(-z, -u, -v ,w,  -PI. (18) 
The second one is the varicose mode which has the following invariance properties: 

(19) (2% u, 0, w , p )  --f (- z, u, 0, - w, PI. 

3. Numerical method 
The time-dependent Gortler equations (7)-( 1 1) are solved by means of a pseudo- 

spectral scheme whereby the variables U,, V,, Wg and Pg are expanded into finite 
Fourier series in the spanwise direction so that 

(20) 
M 

Cug, V,, Pg) = C (um(y, ‘1, vm(y, ’1, pm(y, T))cosmkzz, 
m=O 

M 

W, = C Wm(y, T)sinmk,z. 
m=O 

An exponentially stretched grid is generated in the vertical y-direction so as to 
accommodate high gradients near the wall. This is achieved by introducing the 
exponential mapping 

where 01 = 0.04, y,, = 200. With this choice of parameter values, 33 % of the grid points 
lie within a boundary layer thickness. Temporal evolution over an interval of time AT 
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G kz ~ 1 0 0  u z o o  u'lt7I 

5 0.5 0.9044 0.9020 0.9027 
8 0.5 1.7653 1.7611 1.7633 

10 0.5 2.3483 2.3429 2.3463 
5 0.8 0.7553 0.7533 0.7530 
8 0.8 1.7751 1.7793 1.7811 

10 0.8 2.4682 2.4736 2.4771 

TA~LE 1. Comparison between computed primary instability growth rates ulo0 and vto0 for 100 and 
200 grid points in the y-direction respectively and growth rates clCP predicted from the linear stability 
eigenvalue problem, for different Gortler numbers G and spanwise wavenumbers k, 

is accomplished in three steps. The first one is a nonlinear step which accounts for the 
effects of curvature and the convective terms. The second one is a pressure step 
associated with the pressure gradient terms and where the divergence-free condition is 
applied. The final updated values at time T +  AT are then obtained in a third implicit 
viscous step in which the viscous diffusion terms are calculated and the no-slip 
condition is enforced. 

Extensive numerical resolution studies have been performed to test the accuracy of 
the numerical scheme. In table 1, the computed growth rates glo0 and gzo0 pertaining 
to 100 and 200 grid points in the y-direction are compared, for different Gortler 
numbers G and spanwise wavenumbers k,, to the growth rates rrlin predicted by solving 
the linear stability eigenvalue problem. The number of Fourier modes M and the time 
step AT are held fixed at M = 16 and AT = 0.01. Doubling the number of grid points 
in the y-direction is seen to change the growth rates by only 0.2 %. We note that the 
initial growth rate is not sensitive to the number of spanwise Fourier modes M since 
most of the perturbation energy is contained in the fundamental mode. To access the 
effect of varying M ,  it is more meaningful to compare the results obtained in the 
nonlinear regime: when M is doubled from 16 to 32, the total perturbation energy 
contained in the Gortler vortices in the fully saturated nonlinear stage merely changes 
from 1.071 477 x On the basis of these comparative studies, the 
number of grid points in the y-direction and the number of Fourier modes have been 
held fixed at 100 and 16 respectively, in all the computational results presented in this 
paper. 

In order to solve the secondary instability equations (13) and (14), one takes 
advantage of the invariance properties mentioned in the previous section. Sinuous 
perturbations of streamwise wavenumber k, are expanded into the following Fourier 
series : 

to 1.071 484 x 

M 

(u, V , P )  = eikzx E {um(.Y, t ) ,  V ~ ( . Y ,  t),Pm(y, t)> sin mk, z+ c.c., 

w = eikzx C wm( y, t )  cos mk, z +c.c., 

(23) 

(24) 

where it is assumed that periodicity holds in the spanwise direction at the same 
wavenumber k, as in the basic Gortler flow. Varicose perturbations of streamwise 
wavenumber k, admit similar expansions with sine and cosine functions being 
interchanged. The linear stability equations are solved with the same numerical method 
used to integrate the Gortler equations for the same value of M .  They are numerically 
integrated until an asymptotic limit of the form e(-iwr+wl)t is established. One can 
therefore retrieve from this simple procedure the most unstable temporal eigenvalue 

m=o 
M 

m=o 
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FIGURE 2. Temporal growth of energy for k, = 0.5 and G = 5 : (a) linear theory, (b) fundamental, (c) 
mean flow distortion, ( d )  first harmonic, (e) mean flow energy at time T minus initial mean flow 
energy. 

Mode type At Number of Fourier modes 

sinuous 0.1 16 
sinuous 0.2 16 
sinuous 0.2 16 
sinuous 0.3 16 
sinuous 0.2 32 
varicose 0.1 16 
varicose 0.2 16 
varicose 0.2 16 
varicose 0.2 32 

Number of grid points 

200 
200 
100 
100 
100 
200 
200 
100 
100 

w 

0.3197+0.026 17i 
0.3 194 + 0.026 17i 
0.3195 +O.O2605i 
0.3297 + 0.026021 
0.3195 +0.02605i 
0.3098 + 0.02995 
0.3101 +O.O3007i 
0.3089 +0.0293li 
0.3089 +O.O2931i 

TABLE 2. Sensitivity of computed instability eigenvalue w with respect to time step At, number of 
Fourier modes M and number of grid points in the y-direction 

w = w,+iw, and eigenfunction for given values of G,  k,, T and k,. The numerical 
accuracy of the secondary instability problem is also checked. As shown in table 2, the 
temporal eigenvalue w is virtually unchanged as the number of grid points in the y- 
direction is doubled from 100 to 200 or the number of Fourier modes M is doubled 
from 16 to 32. In the following discussion, computational results for the secondary 
instability are presented with the number of grid points in the y-direction and the 
number of Fourier modes set at 100 and 16 respectively. The time step has been fixed 
at At = 0.2. 

4. Results and discussion 
4.1. Primary instability 

The Gortler number G chosen in the simulation is 5 and the fundamental spanwise 
wavenumber k, is 0.5, which corresponds approximately to the most amplified 
perturbation at that value of G. The initial condition is taken to be the eigenfunction 
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FIGURE 3. Constant streamwise velocity contours in the ( y ,  2)-plane for k, = 0.5 and G = 5. 
(a)  T = 3, (6) T = 4, ( c )  T = 5. 

of the linear stability problem, the initial amplitude of the streamwise perturbation 
being 2 YO of the free-stream velocity. Figure 2 shows the evolution of the energy en in 
the first three Fourier modes, where en is defined by 

en = - ' Ui(y, T)dy for n > 0. 
2 k  0 

The initial growth rate of the vortices agrees with the results given by linear theory as 
indicated by the dotted line. The energy of the mean flow distortion eventually becomes 
larger than that of the fundamental. The higher harmonics grow, but most of the 
energy is contained in the fundamental and the mean flow distortion as emphasized by 
Hall (1988). One interesting phenomenon is that the energy of the fundamental 
overshoots its saturated level and later decays down to its saturated state. A similar 
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FIGURE 4. Constant aW/az contours in the (y,z)-plane for k, = 0.5 and G = 5. 
(a) T = 3, (b) T = 4, (c) T = 5. 

behaviour has been observed in the rotating channel flow experiment of Alfredsson & 
Matsson (1990). The chain-dashed line represents the energy of the mean flow at time 
T minus the initial mean flow energy of the asymptotic suction velocity profile. It is 
observed that the energy of the mean flow is always decreasing. This is due, first, to 
transfer of energy to the growing Gortler vortices and, second, to viscous dissipation. 
But in the time interval during which the energy of the fundamental reaches a 
maximum and begins to decay, the energy of the mean flow is almost stationary. This 
suggests that the energy given back to the mean flow by the fundamental balances the 
energy loss of the mean flow due to viscous dissipation. Therefore the physical 
explanation for this overshoot phenomenon is that the fundamental initially draws 
excessive energy from the mean flow and later has to give it back to the mean flow. 

Contours of constant streamwise velocity are presented in figure 3 for T = 3, 4 and 
5.  As time progresses, the streamwise velocity profile begins to lose its homogeneity in 
the spanwise direction and the alternating high-speed and low-speed regions appear as 
a result of the pumping of low-speed fluid from the wall region into the free stream. 
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FIGURE 5. Constant i3U/ay contours in the ( y ,  z)-plane for k, = 0.5 and G = 5. 
(a) T = 3, (b) T = 4, (c) T = 5.  

The boundary layer is thicker in the upwash region and thinner in the downwash 
region. As the streamwise vortices intensify, a fully developed mushroom-like contour 
emerges as seen at T = 5 and the streamwise vortices become elongated in the vertical 
direction and the centres of the vortices move away from the wall. The mushroom-like 
structures are also observed in the computations of Sabry & Liu (1991) and Liu (1991) 
and in the experiments by Swearingen & Blackwelder (1987) among others. 
Peerhossaini & Wesfreid (1 988) have observed that vortex centres move vertically when 
they have grown enough. This shift in position brings the zone of major vortical 
activity as well as the high-shear region further away from the wall. As mentioned by 
these authors, this fact could have a major impact on the heat transfer and the skin 
friction characteristics of the flow. The boundary layer is thicker in the upwash region 
and thinner in the downwash region. 

Corresponding contours of constant aU/az and constant aU/ay are plotted in figures 
4 and 5. These plots reveal the existence of regions of high spanwise shear located on 
either side of the low-speed region and of a region of high vertical shear located at the 
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FIGURE 6. U(z) at y = 4 for k, = 0.5 and G = 5. (a) T = 3, (b) T = 4, (c) T = 5, (d )  T = 6. 

upper edge of the boundary layer. These high-shear zones seem to be associated with 
the production of small-scale oscillatory motion. Shown in figures 6 and 7 are the U(z) 
profile at y = 4 and U( y )  profile at z = 0, in the low-speed region for T = 3, 4, 5 and 
6, respectively. At T = 3, the inflection point in the spanwise direction distinctly 
appears and it is accompanied by a relatively large spanwise shear while the inflection 
point associated with the vertical shear of the U( y )  profile is very weak. But at T = 4, 
the U(y)  profile also develops a fairly strong inflectional character around y - 8 while 
the spanwise shear associated with the inflection point of the U(z) profile becomes very 
intense on both sides of the low-speed region close to the wall. At T = 5, U(y )  also 
becomes highly inflectional. As the inflectional profile develops in the vertical direction, 
the inflection point begins to move away from the wall with approximately a constant 
speed. The vertical migration of the inflection point of the U( y )  profile is also observed 
by Swearingen & Blackwelder (1987). At this fully developed stage, both the U ( y )  and 
U(z) profiles display multiple inflection points. 

The temporal evolution of the destabilizing shear associated with the inflection 
points is presented in figure 8. The solid line refers to the maximum aU/az and the 
dashed line to i3U/ay at the upper inflection point minus i3U/ay at the lower inflection 
point. This later quantity measures the amount of unstable spanwise vorticity in the 
low-speed region. Unstable shear is seen to develop earlier in the spanwise direction 
than in the vertical direction. 
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FIGURE 7. V ( y )  at z = 0 (low-speed region) for k, = 0.5 and G = 5. (a) T = 3, 
(b) T = 4, (c) T = 5, (d )  T = 6. 
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FIGURE 8. Temporal growth of shear components for k, = 0.5 and G = 5. (a) Maximum ?U/az,  
(b) aU/ay at upper inflection point minus aU/ay at lower inflection point. 

4.2. Secondary instability 
The fully inflectional velocity profiles generated by the action of Gortler vortices are 
unstable on inviscid grounds. We will now present the results of the linear stability 
analysis of these velocity profiles at T = 3, 4 and 5 respectively. The temporal growth 



Instabilities of the suction boundary layer on a curved plate 26 1 

0.03 

aJ 
Y 0.02 

s 
6 0.01 
0 

0 

-0.01 4 , , , , I , , 1 , 

0 0.4 0.8 1.2 1.6 2.0 

k x  

FIGURE 9. Temporal growth rate wi versus streamwise wavenumber k, of the secondary instability. 
Solid lines refer to the sinuous mode and dashed lines to the varicose mode. 0, T = 3; 0, T = 4; a, 
T = 5. The dotted line is the linear growth rate of the primary Gortler instability. Note that the 
temporal growth rate of the secondary instability far exceeds that of the primary Gortler instability. 

rate wi is plotted versus the streamwise wavenumber k, of the secondary instability in 
figure 9. The horizontal dotted line represents the linear growth rate of the original 
Gortler instability. At T = 3, the sinuous mode becomes slightly unstable. Its 
maximum growth rate is about three times that of the Gortler vortices. No unstable 
varicose mode is found at T = 3. At T = 4, the sinuous mode becomes highly unstable 
and it has a broad band of unstable streamwise wavenumbers. The maximum growth 
rate is far greater than that of the Gortler vortices. Note that the varicose mode is 
beginning to be slightly unstable with a maximum growth rate slightly larger than that 
of the sinuous mode at T = 3.  However, the maximum growth rate of the sinuous 
mode is about seven times greater than that of the varicose mode. The typical 
streamwise wavelength of the secondary instability mode is about the same order as the 
spanwise wavelength of the Gortler vortices. At T = 5,  both modes are highly unstable. 
The maximum growth rate of the sinuous mode is slightly greater than that of the 
varicose mode. Note again that the maximum growth rates for both modes far exceed 
the Gortler vortex growth rate. The unstable wavenumber bandwidth of the sinuous 
mode is about twice as broad as that of the varicose mode. The U(z)  profile displays, 
over a single spanwise wavelength, the same shape as a wake. It is known (Drazin & 
Reid 198 1) that for a two-dimensional wake profile, the sinuous or odd mode is more 
amplified than the varicose or even mode and that its unstable bandwidth is twice as 
large. Our results at T = 5 are therefore qualitatively consistent with those of classical 
two-dimensional wakes. However, the presence of inflectional profiles in the vertical 
direction does not allow us to push this analogy any further. The present results are in 
agreement with Hall & Horseman (1991) whose secondary instability analysis showed 
that the fastest growing odd (sinuous) mode has a growth rate twice as large as that 
of the fastest growing even (varicose) mode. Displayed in figure 10 is the plot of the 
phase speed c, = o , /k ,  versus streamwise wavenumber k,. The phase speeds of the 
unstable waves are around 0.7-0.8. These correspond to the streamwise velocity of the 
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FIGURE 10. Phase speed c, versus streamwise wavenumber k, of the secondary instability. Solid lines 
refer to the sinuous mode and dashed lines to the varicose mode. 0, T = 3; 0, T = 4; A, T = 5 .  

basic flow near the vertical inflection point. At T = 5 the phase speed of the sinuous 
mode and that of the varicose mode are very close to each other for streamwise 
wavenumbers near 0.2 and 0.6. This phase locking of the two modes may lead to 
resonance and have a significant effect on their growth in the nonlinear regime. 

The respective total growths of the sinuous and varicose are given by 

Even though the maximum growth rates of the sinuous mode and the varicose mode 
at T = 5 are of the same order of magnitude, the total growth of the sinuous mode, 
asin(T = 5) ,  is much larger than that of the varicose mode, vvar(T = 5 )  as a result of 
the integrated effect. Therefore, for this specific Gortler vortex flow, the transition 
process appears to be initiated and dominated by the growth of the sinuous mode. In 
fact, the sinuous mode is often the most frequently observed secondary instability 
motion as, for instance, in the experiments by Swearingen & Blackwelder (1987). The 
fact that the temporal growth rates of both modes are much greater than that of the 
Gortler vortices ensures that the quasi-steady assumption of the basic flow is 
legitimate. Bippes (1972) has indeed observed that the growth rate of streamwise 
vortices is relatively small and that a secondary instability mechanism of larger growth 
rate produces the fluctuations that lead to turbulence. Thus the vortices themselves do 
not directly break down to turbulence, but set up a flow field which is sensitive to 
inflectional instabilities with a much higher growth rate. 

The constant-r.m.s. contours for the sinuous mode eigenfunction of streamwise 
wavenumber k, = 0.4 and T = 5 are shown in figure 11. The largest velocity 
component is u,,, and the smallest is v,,,. Thus for the sinuous mode, the major 
motion takes place in a horizontal plane. This is in agreement with the conclusions of 
Blackwelder & Swearingen (1988) stating that the sinuous mode of instability is more 
successful in producing streamwise and spanwise fluctuations than in producing 
streamwise and vertical fluctuations. The u,,, contour plot for the sinuous mode is very 
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FIGURE 11. Sinuous mode eigenfunction in the (y,z)-plane for k, = 0.4 at T =  5. (a) u,,,, (b) urma, 
(c) wrmS. All three components are normalized by the maximum of u,,,. 

similar to the u,,, contour of the direct numerical simulations of Liu (1991), as shown 
in figure 12, and to the u,,, contour plot in the experiments by Swearingen & 
Blackwelder (1987), as shown in figure 13. Since Liu (1991) solved the full 
Navier-Stokes equations, the varicose mode as well as the sinuous mode were allowed 
to evolve. But his solution is mainly documented by the growth of the sinuous mode. 
This is a strong indication that the dynamics of the sinuous mode play a major role in 
the transition to turbulence in Gortler flows. It is also noteworthy that the constant- 
u,,, contour plot is extremely well correlated with the constant-aU/az contour plot in 
figure 4. There are two regions, one close to the wall and another near the upper edge 
of the boundary layer, where the spanwise inflectional shear is very destabilizing. Both 
regions are unstable at small streamwise wavenumber k,. However, only the region 
close to the wall is unstable at high streamwise wavenumber k,. 
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FIGURE 12. Iso-contours of r.m.s. streamwise velocity u,,, for secondary motion 

in the (y,z)-plane (from Liu 1991). 
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FIGURE 13. Iso-contours of r.m.s. streamwise velocity u,,, for secondary motion in 
the ( y ,  z)-plane (from Swearingen & Blackwelder 1987). 

The constant-r.m.s. contours for the varicose mode eigenfunction of streamwise 
number k ,  = 0.4 at T = 5 are presented in figure 14. Here, u,,, is the largest among the 
three velocity components and w,,, is the smallest. Therefore the varicose mode is 
dominated by up-and-down motion occurring primarily in the vertical plane. The 
maximum value u,,, is located in the region where the shear in the vertical direction 
is maximum and inflectional. Note that the u,,, contours are extremely well correlated 
with the contours of constant aU/ay in figure 5. Recall that the varicose mode is 
damped at T = 3 while the sinuous mode is already unstable. The reason for this is 
that, at T = 3, the magnitude of the shear of U ( y )  at the inflection point is not strong 
enough to trigger the varicose of instability while U(z) is inflectional enough to trigger 
the sinuous mode of instability. At T = 4, the U(y)  profile has also become clearly 
inflectional and this results in the growth of the varicose mode. Finally at T = 5,  the 
inflectional profile in the vertical direction is quite strong as well, and the varicose 
mode at this stage also becomes highly unstable. The maximum growth rates of the 
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FIGURE 14. Varicose mode eigenfunction in the (y,z)-plane for k,  = 0.4 at T = 5. (a) u,,,, (b) u,,,, 
( c )  w,,,. All three components are normalized by the maximum of u,,,. 

sinuous mode at T = 3 and of the varicose mode at T = 4 are seen to be very 
comparable. This stems from the fact that the maximum spanwise shear aU/az at 
T = 3 and the vertical shear aU/ay at the upper inflection point minus the vertical 
shear aU/ay at the lower inflection point at T = 4 are about the same, as indicated in 
figure 8. 
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FIGURE 15. Contour plots of kinetic energy production for the sinuous mode at k, = 0.4 and 
T = 5. (a) - (aU/ay)Z ,  (b) - (aU/az)G.  Contours are normalized by the maximum of 
- (au/ayr) uv. 

We define the perturbation kinetic energy as 

42 = + ( U Z + Y + W 2 ) .  (29) 

The evolution of the average in the streamwise direction of the kinetic energy is 
governed by the following equation : 

where 

and A, is the streamwise wavelength. The major portion of the total kinetic energy 
is produced by the first two terms on the right-hand side because U = 0(1) while 
V, W = O(Ri1). The first term, - (aU/ay) UV, represents the production of kinetic energy 
by the workings of the Reynolds stress -uV against the mean vertical shear while the 
second term, -(aU/az)iZ, is the kinetic energy production by the workings of the 
Reynolds stress -E against the mean spanwise shear. Shown in figure 15 are the 
contour plots of the kinetic energy production due to these first two terms in the case 
of the sinuous mode. The major contribution to the total kinetic energy production 
comes mainly from - (aU/az) UW and not from - (aU/ay)  UV in the upwash region near 
the wall. This provides strong evidence that the spanwise inflectional velocity profile is 
the major factor responsible for producing the sinuous mode of instability. In essence, 
one obtains the equivalent of the sinuous mode in two-dimensional wakes. However, 
both terms contribute nearly equal amount in the upper region where aU/ay and aU/az 
are roughly of the same magnitude as shown in figures 4(c) and 5(c). The opposite is 
true for the varicose mode as shown in figure 16. The term -(aU/ay)UV completely 
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FIGURE 16. Contour plots of kinetic energy production for the varicose mode at k ,  = 0.4 and 
T =  5. (a) -(aU/i?y)Z, (b) - ( a U / a z ) Z .  Contours are normalized by the maximum of 
- (a v/ay) uv. 

dominates the production of the total kinetic energy. The kinetic energy production by 
the term - (aU/az) UW is an order of magnitude smaller. Since the varicose mode draws 
energy from the unstable shear in the vertical direction which is of the mixing layer 
type, it is analogous to the Kelvin-Helmholtz instability mode in free shear layers. 

In the region close to the wall, the sinuous mode completely dominates and the initial 
oscillatory motion a fluid particle will experience will be in the (x, z)-plane as the low- 
speed fluid particle is lifted upward. But as the fluid particle reaches the head of the 
low-speed region where the varicose mode is strong, it will experience an oscillatory 
motion in the (x, y)-plane. Therefore smoke wire visualization close to the wall is more 
likely to reveal the sinuous motion in the (x,z)-plane than the vertically oscillatory 
motion in the (x,z)-plane. 

H. Bippes (1990, personal communication) in a review paper also mentioned two 
types of secondary instabilities. His conclusion was that the sinuous motion in the 
(x, z)-plane does not necessarily precede transition but that the horseshoe-type vortices 
related to the varicose mode do. However, the sinuous motion was observed for small- 
wavelength Gortler vortices. Our results indicate that the sinuous mode is dominant, 
which is in line with the experimental observations of Swearingen & Blackwelder 
(1987). Our findings are also consistent with the direct numerical simulations of the 
Gortler flow by Liu & Domaradzki (1990). The latter study also demonstrated that the 
transition to turbulence is initiated in a region characterized by large values of mean 
spanwise shear aU/az rather than by large values of vertical shear aU/ay. 

The deciding factor for which mode leads to the breakdown of vortices is probably 
dependent on the spanwise wavelength of Gortler vortices. For large-wavelength 
vortices, it is reasonable to think that the varicose mode associated with a large aU/ay 
is more likely to dominate the transition process. For small-wavelength vortices, 
however, we can speculate that the sinuous mode associated with a large aU/az will 
dominate. This is conjectured because the large-wavelength vortices will produce weak 
spanwise shear while small-wavelength vortices are more likely to produce strong 
spanwise inflectional shear. Therefore the spanwise wavelength of Gortler vortices 
could be a critical factor in predicting the dominant mode. Myose & Blackwelder 
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FIGURE 17. Contour plot of the streamwise velocity (U+ u)  in the (x, 2)-plane at y = 4 and T = 5 for 
the sinuous mode with the streamwise wavenumber k,  = 0.4. Note that this resembles the unstable 
wake shear layer. 

(1991) have also observed that the sinuous or wavy vortex mode is dominant for 
smaller wavelengths. 

The contour plots of the streamwise velocity ( U + u )  in the horizontal plane at 
y = 4 are displayed for the sinuous mode in figure 17. For clarity, 0.2 is used as the 
amplitude for the sinuous mode eigenfunction. We see that the sinuous motion of the 
low-speed region is similar to the initial stage of transition to unsteadiness as described 
by Swearingen & Blackwelder (1987). Liu (1991) has observed that the growth of the 
sinuous mode of oscillatory motion in the horizontal plane eventually leads to the 
breakdown of the curved boundary layer. It also resembles the oscillatory motion of 
low-speed streaks in turbulent boundary layers. Recently Peerhossaini & Wesfreid 
(1988) have pointed out that the interface between two neighbouring vortices may 
oscillate about its stationary mean position. The streamwise rolls bend to the sides, and 
when the motion is strong enough, they even touch the wall. In figure 18, the contour 
plots of the total streamwise velocity ( U +  u) in the cross-stream plane are presented for 
the sinuous mode at six streamwise stations within a single streamwise wavelength. As 
the sinuous mode develops, the whole mushroom-like structure oscillates from side to 
side. Therefore we may conclude that Peerhossaini & Wesfreid (1988) have indeed 
observed the oscillatory instability motion of the sinuous mode due to the unstable 
U(z)  inflectional velocity profile. The oscillatory motion resulting from the sinuous 
mode is also very similar to the twisting Dean vortices due to secondary shear 
instability in curved channel flow as shown in the numerical simulation of Finley, 
Keller & Ferziger (1988). 

Horseshoe-type vortices have been detected in several Gortler flow studies including 
those by Swearingen & Blackwelder (1987), Aihara & Sonoda (1981), Aihara & 
Koyama (1981), and Ito (1988). The periodic horseshoe-type vortices which are 
observed experimentally can be interpreted as arising from the nonlinear evolution of 
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FIGURE 18. Contour plots of the streamwise velocity (Utu) in the (y,z)-plane for the sinuous mode 
at k, = 0.4 and T = 5. (a)  x = 0, (6) x = hJ6, (c) x = 2A,/6, ( d )  x = 3h,/6, (e)  x = 4 h J 6 ,  

x = 5h,/6, where A, is the streamwise wavelength of sinuous mode. 
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FIGURE 19. Contour plot of the streamwise velocity ( U + u )  in (x,y)-plane at t = 0 (low-speed 
region) and T = 5 for the varicose mode with the streamwise wavenumber k ,  = 0.4. 

the varicose mode. Contour plots of the streamwise velocity (U+u)  for the varicose 
mode in the vertical plane in the upwash region z = 0 are displayed in figure 19. For 
the purpose of illustration, 0.2 is used as the amplitude of the varicose mode 
eigenfunction. An up-and-down wave motion is observed in the vertical plane around 
the inflectional region. The head portion of horseshoe-type vortices present in many 
experiments is probably due to the roll-up of the wavy shear layer similarly to the roll- 
up of spanwise vortices in two-dimensional free mixing layers as described in detail in 
Ho & Huerre (1984) among others. 

5.  Conclusion 
Temporally evolving Gortler vortices have been studied by numerically solving the 

nonlinear Gortler equations. It has been shown that the most important Fourier 
components participating in the dynamics are the fundamental and the mean flow 
distortion. These two terms contain most of the perturbation energy. The streamwise 
velocity profile becomes inflectional both in the spanwise and vertical directions. But 
the inflectional shear develops earlier in the spanwise direction than in the vertical 
direction. It is only at a later time that the velocity profile becomes inflectional in the 
vertical direction with an inflection point located above the low-speed region. Vortices 
become elongated and move away from the wall as observed experimentally by many 
investigators including Blackwelder & Swearingen (1 988) and Peerhossaini & Wesfreid 
(1988). 

The existence of inflectional velocity profiles had been previously reported in 
numerous studies, but secondary inflectional instability had been inferred solely on the 
basis of two-dimensional stability theory. In the present study, the three-dimensional 
aspects of the linear secondary inflectional instability have been considered and 
quantified. We emphasize that only the possible exponential growth of secondary 
perturbations in the linear regime has been examined. We have not attempted to tackle 
the issue of nonlinear interactions between streamwise vortex structures and instability 
waves as described in Hall & Smith (1991), or the highly nonlinear events associated 
with the processes of breakdown and eruptions from the surface in transition to 
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turbulence on flat-plate boundary layers as reviewed in Smith et al. (1991). Our results 
are in good qualitative agreement with Swearingen & Blackwelder (1987) and with 
recent results by Liu (1991). We have demonstrated that there exist two instability 
modes. The sinuous mode is primarily related to the spanwise shear i3Ula.z while the 
varicose mode is related to the vertical shear aU/ay.  Since the spanwise inflectional 
profile develops before the vertical inflectional profile, the sinuous mode becomes 
unstable earlier than the varicose mode and possibly dominates the transition process. 
These secondary instability modes have a streamwise wavelength comparable to the 
Gortler wavelength. The largest contribution to kinetic energy production comes from 
- (aU/az) UW for the sinuous mode and from - (aU/ay) UV for the variose mode. The 
sinuous mode induces motion that is observed close to the wall region and it is 
analogous to the dominant instability mode in plane wakes. The horseshoe-type 
vortices detected experimentally could possibly originate from the roll-up of spanwise 
vortices triggered by the varicose mode. This nonlinear mechanism is similar to the 
roll-up of spanwise vortices in mixing layers. 
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