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Abstract In this paper, we propose a model for
the transverse oscillation of a square-section cylinder
under flow. The fluctuating transverse force due to vor-
tex shedding is represented using a coupled nonlinear
wake oscillator, while the unsteady force for galloping
caused by the varying incidence angle effects is mod-
elled using the quasi-steady approach. First, we ana-
lytically investigate the lift behavior and phase angle
variation of the square cylinder under forced vibra-
tions. Comparison with experimental data is used to
determine the form of the coupling terms and its val-
ues. The present model shows advantages in predict-
ing the phase angle, and it successfully captures the
change in sign of the phase. Second, the proposed
model is directly applied in predicting free oscilla-
tion caseswithout any tuning. The dynamical behaviors
predicted by this model are compared with published
experiments under different Scruton numbers, and rea-
sonable agreement can be found. The results indicate
that the model can not only be applied in simulating
the “pure galloping” and “pure VIV,” but also is able to
capture the interactions of VIV and galloping, includ-
ing combined and separate VIV-galloping motions.
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1 Introduction

When a deformable body is submitted to flow, it will
vibrate and in turn affect the fluid flow. This well-
known phenomenon is called flow-induced vibration
(FIV) and may occur in many fields of engineering,
such as civil engineering (chimneys and bridges), off-
shore engineering (risers and pipes), and energy engi-
neering (electrical cables and power lines); it is there-
fore of practical interest [1]. There are many forms
of FIV, but in this paper, we focus on vortex-induced
vibration (VIV) and galloping [2].

VIV is a self-limitedmotion induced by vortex shed-
ding from a bluff body. The most important feature
of VIV is “lock-in,” during which both the vortex
shedding frequency and the oscillation frequency are
locked [3]. For flowvelocities outside the lock-in range,
the amplitude of motion is small. Studies on VIV are
mainly for a circular-shape cylinder, because it could
vibrate in pure VIV, away from the influence of other
vibrations, such as galloping [1]. In past decades, a
large body of experimental studies have been carried
out on VIV of a circular cylinder, see reviews by Bear-
man [3],WilliamsonandGovardhan [4], andSarpakaya
[5]. ComputingVIV has been considered as a challeng-
ing problem due to the complex nonlinear interactions
between the fluid and solid dynamics. Simulations,
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such as with the DNS method, has been employed to
predict VIV [6]. AlthoughDNS allows to obtain details
on the fluid flow, it is difficult to apply in complicated
flow conditions and in three-dimensional cases. Conse-
quently, reduced order models based on the simple idea
of a wake oscillator can be useful and efficient tools to
describe such vibrations. In those reduced order mod-
els, the lift acting on a circular cylinder caused by vor-
tex shedding is simulated by a self-excited oscillator,
which satisfies the Rayleigh or van der Pol equation,
or some modified forms of them [7–9]. Facchinetti et
al. [10] proposed a wake oscillator model using a sin-
gle flow variable coupled to the structural oscillator by
acceleration, to describe the fluctuating nature of the
vortex shedding. This model is simple to use and has
been shown to simulate VIV both quantitatively and
qualitatively for elastically supported rigid cylinders.
This approach was then extended to its 3D version and
has been applied with success in analyzing the vibra-
tion behaviors of flexible and slender cylinders under
uniform and shear flow [11–14]. It should be noted here
that wake oscillators, which were originally introduced
as purely phenomenological (see the review in [15])
have later been related to the unsteady fluid dynamics
downstream of the bluff body by several approaches.
See for instance in [16] the relation to the dynamics
of the dead fluid region, in [17] the relation to Navier-
Stokes equations and in [18] the relation to the linear
stability of the coupled wake/solid system.We use here
the van der Pol wake oscillator, one of the simplest and
most used form.

Galloping is also a self-limited vibration but the
amplitude of the limit cycle always increases with the
flow velocity, contrary to VIV. The galloping instabil-
ity can be understood by considering the variations of
the instantaneous incidence angle [2]. Thus, cylinders
with circular cross section, are not subject to gallop-
ing. Square section is the ideal shape, not only because
of its known galloping instability, but also because it
is one of the most common geometries in engineer-
ing. By using the quasi-steady theory (QST), Parkin-
son and Smith [19] predicted transverse galloping for
a square cylinder, and particularly the critical veloc-
ity, Ug , above which galloping occurs. Their results
showed good agreement with experimental data. Later,
thismodel has beenwidely used to predict the galloping
motion at a high reduced velocity, in different ranges of
physical parameters (for instance, in the low Reynolds
number (Re) range [20], in the high Re range [21,22],

with different turbulence intensity in these same ref-
erences). Also, this model has been used in modeling
piezoelectric energy harvesting from oscillating cylin-
ders with square shapes [23,24].

VIV and galloping are therefore two distinct mech-
anisms that cause motions of elastically supported
square cylinder. Depending on the parameters of the
flow and of the solid, the effects of VIV and gallop-
ing may overlap or not. We need a simple and effi-
cientmathematicalmodel to predict combinedVIVand
galloping in the most general cases. The approaches
cited above with a wake oscillator for VIV and a QST
model for galloping are good candidates to build such
a combined model. Some attempts have been made in
this direction. Bouclin [25] combined two force terms
related to VIV (developed by [7]) as well as gallop-
ing (developed by [19]) and applied the model to the
case of a square cylinder. Corless and Parkinson [26]
slightly modified Bouclin model and employed multi-
ple scales method to solve the equations. Tamura and
Shimada [27] proposed a model for the square cylin-
der by adding quasi-steady force term in the previ-
ous model developed by Tamura and Matsui [16] for
a circular cylinder. They used a time-dependent vari-
able, based on Birkhoff’s oscillator model for the dead
air region behind a cylinder, to describe the trans-
verse force caused by vortex shedding. This model was
applied in simulating energy harvesting of a square
cylinder by Andrianne et al. [24]. Both Corless and
Parkinson’s model as well as Tamura and Shimada’s
model has been extended to be applied in predicting
VIV and galloping of rectangular cylinders by Man-
nini et al. [28]. Recently, Liu et al. [29] developed two
new approaches by modifying Corless and Parkinson’s
model and adding the fluid inertia effect.

Considering that the wake oscillator approach by
Facchinetti et al. [10] is simple and efficient, we pro-
pose, following the same idea as the work above, to
extend Facchinetti et al.’s model for a square cylin-
der and then combine it with a QST model of gal-
loping. In this paper, the dynamic equations based on
Facchinetti et al’s model for transverse vibration of
a square cylinder are developed in Sect. 2. In Sect.
3, the model is investigated analytically with differ-
ent coupling terms and then applied in simulating lift
characteristics and phase angle variations of a forced
vibration case. Furthermore, coupling parameters are
estimated from experimental data considering forced
vibrations. In Sect. 4, the model is employed to cap-
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ture free vibration responses of a square cylinder under
different Scruton numbers (Sc), corresponding to over-
lap or not between VIV and galloping. A comparison
between the numerical and experimental results is also
presented in this section. Finally, discussion and con-
clusions are made in Sects. 5 and 6, respectively

2 Mathematical model

First, the main features of the model proposed by
Facchinetti et al. [10] are recalled here. Considering an
elastically supported rigid circular cylinder under flow,
its dynamical responses can be modelled by a typical
M-C-K equation, which reads

mŸ + cẎ + kY = Fv, (1)

where m represents the mass, including both the struc-
tural mass, ms , and the added mass, ma . Also, c is
composed of the viscous dissipations of the system cs ,
and the fluid-added damping, c f = γω f ρD2. The (̇)
stands for time derivation. Here, γ is the stall param-
eter, which is related to the drag coefficient, Cd , and
is assumed constant for simplicity (see [1,8,10]). We
introduce ρ, D, k,U , St and ω f as fluid density, diam-
eter of the cylinder, stiffness, flow velocity, Strouhal
number and the vortex shedding frequency expressed
as ω f = 2π StU/D, respectively. Note that the param-
eters m, c, and k are defined per unit length.

The right-hand side force term in Eq. (1) repre-
sents the lift caused by vortices. It can be expressed as
Fv = ρU 2DCv

L/2, where Cv
L is the vortex-induced lift

coefficient of anoscillating cylinder.Now,we introduce
a variable q = 2Cv

L/CL0 as the ratio between the lift
coefficient of an oscillating cylinder (Cv

L ) and a fixed
one (CL0). Here, CL0 is obtained by lift measurement
from flow over a stationary cylinder. The dimension-
less wake variable q can be interpreted as a reduced
vortex (or “fluctuating”) lift coefficient that satisfies
the van der Pol equation [10]. This is common, with
some variations, to most of the wake-oscillator models
in the literature since the pioneering work of Hartlen
and Currie [7]. The equation for the wake oscillator
involving variable q can be written as

q̈ + εω f

(
q2 − 1

)
q̇ + ω2

f q = (A/D)Ÿ , (2)

Fig. 1 Elastically supported square cylinder and wake oscillator

where ε and A are two constant parameters, and for
more details see [10]. The van der Pol equation or its
modified form is commonly used to represent the fluc-
tuating nature of the vortex street [7,10,14,30]. This
is because the vortex-shedding process is the result of
a hydrodynamic instability and as such can be seen as
self-exited and self-limited. The van der Pol equation
is the simplest dynamic equation that contains these
two important features. In fact, any nonlinear oscilla-
tor that generates a limit cycle can potentially be used
(and has been used) to represent the vortex-shedding
process. The van der Pol equation can represent the
most important characteristics of the vortex shedding
process, which is considered only through the single
variable q, a measure of the effect of the vortex shed-
ding on the lift coefficient.

Now let us turn to the case of a square cylinder,
as shown in Fig. 1. Facchinetti et al’s model does not
include the physics of galloping, but only of VIV. As
a result, the lift force related to galloping, Fg , needs
to be added in the right side of Eq. (1). Parkinson and
Smith [19] demonstrated that the force (Fg) acting on
a square cylinder causing galloping can be described
by approximating the relation between the lift coeffi-
cient (taken from flow over a fixed cylinder) and the
incidence angle α. Assuming the velocity for the struc-
tural motion Ẏ is quite smaller when comparedwith the
incoming flowvelocityU , we can therefore use Ẏ /U to
approximately model the incidence angle (Ẏ/U ≈ α)
and further to describe its instantaneous effects. As in
Parkinson and Smith [19], a seventh-order polynomial
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based on the above assumption is employed here to
model the galloping force, which reads

Fg = 1

2
ρU 2DCg

L = 1

2
ρU 2D · [A1(Ẏ/U )

− A2(Ẏ/U )3 + A3(Ẏ/U )5 − A4(Ẏ/U )7], (3)

where Ai are constants depending on characteristics
of the incoming flow (Reynolds number,...), and Cg

L
represents the lift coefficient related to galloping. In
a given range of flow parameters, the coefficients Ai

have been obtained by considering the variation of the
lift coefficient on afixedbodywith the angle of attack of
the incoming flow α, and approximating this variation
by polynomials. This lift coefficient can be obtained
by experiments or numerical simulations, as was done
in [19,20]. In the present paper, for all the subsequent
tests, we use values previously given in published stud-
ies. For a different range of flow parameters, or differ-
ent section, it would be necessary to obtain these coeffi-
cients Ai fromother data on lift coefficients. Finally, the
dynamic equations for VIV and galloping of a square
cylinder are therefore modelled as

mŸ + csẎ + kY = Fv + Fg

q̈ + εω f

(
q2 − 1

)
q̇ + ω2

f q = f (Y )/D. (4)

Besides the new force term inM-C-Kequation inEq.
(4), note that there are also other differences between
the model for a square cylinder, Eq. (4), and for a circu-
lar one, Eqs. (1) and (2). First, the stall parameter, γ , is
deleted in the present model. This is because its effects
has already been considered in the first coefficient (A1)
of the expression of Cg

L . Second, the right-hand term
in the van der Pol equation is written as a more general
function of Y ; see later.

We now introduce dimensionless terms, including
mass ratio μ, damping ratio ξ , reduced velocity Ur ,
structural angular frequency ωs , dimensionless time t ,
reduced angular frequency δ and dimensionless dis-
placement y, defined as

μ = (ms + ma)/ρD
2, ζ = rs/(2mωs)

Ur = 2πU/(ωs D), ωs = √
k/m

t = Tω f , y = Y/D, δ = ωs/ω f . (5)

Substituting Eq. (5) into Eq. (4) gives

ÿ + (2ζ δ)ẏ + δ2y = H

×{CL0q/2 + [A1(2π St ẏ) − A2(2π St ẏ)3

+A3(2π St ẏ)5 − A4(2π St ẏ)7]}, (6)

q̈ + ε
(
q2 − 1

)
q̇ + q = f (y), (7)

where H is a mass coefficient defined as H =
1/(8π2St2μ), and (̇) now stands for the derivative with
respect to the dimensionless time t . Here, ε is a parame-
ter that is related to the growth in time of thewake oscil-
lation, starting from rest. This corresponds to twice the
growth rate of the unstable wake mode, see [31]. The
parameter should be set as 0 < ε < 1 to make sure it
canmodel a self-sustained stable quasi-harmonic oscil-
lation of finite amplitude [30]. We use here a value of
ε = 0.3. This is identical to the value used for circular
cylinders in [10] and is consistent with the growth rate
of the wake mode behind a square cylinder computed
by [32], using the DNS and a linear stability analysis.

3 Forced vibrations

Let us consider a forced oscillation of a square cylinder,
y = y0cos(ωt), where y0 is the dimensionless ampli-
tude and ω represents the angular frequency scaled by
the vortex shedding frequency, ω f . We look for a first
harmonic approximation for the function of q, which
can be expressed as q = q0cos(ωt + θ), where θ

denotes the phase angle between q and the motion.

3.1 Acceleration coupled model

The only undefined term left in present model is f (y)
which may depend on the displacement, the velocity or
the acceleration of the structural motion. The acceler-
ation coupling model has been shown to better predict
the VIV of a circular cylinder than displacement or
velocity; see Facchinetti et al. [10]. For this reason, we
first try

q̈ + ε
(
q2 − 1

)
q̇ + q = B1 ÿ. (8)

The coupling parameter B1 scales the effect of the
motion of the body on the wake variable, which is the
vortex-induced lift. The value of B1 can be estimated
from data of forced vibration experiments as was done
in [10] for the circular cylinder case. This is based on
the results of someexperiments, that the vortex-induced
lift is magnified by an imposed structure motion, par-
ticularly at resonance [33]. Now, substituting the two
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terms y = y0cos(ωt) and q = q0cos(ωt + θ) into Eq.
(8), and considering only the main harmonic contribu-
tion of the nonlinearities, we have

q60 − 8q40 + 16

[
1 +

(
ω2 − 1

εω

)2
]
q20 = 16

(
B1y0ω

ε

)2

,

(9)

θ = arctan
εω

ω2 − 1
(q20/4 − 1). (10)

There is unique positive real root in the bi-cubic
polynomial of q0, and it can be obtained numerically.
Thus, the instantaneous lift coefficient related vortices
can be derived as, Cv

L = qCL0/2 = q0CL0cos(ωt +
θ)/2. To further compare with experiments we now
build the whole fluid force applied on the moving
square cylinder, combining the wake oscillator terms
and the QST terms. In the reduced form of lift coeffi-
cient, this reads,

Ct
L = Cv

L + Cg
L − Ca

L , (11)

where Ct
L is the total lift coefficient and Cv

L is defined
above. Here, Ca

L represents the added mass effects that
can be expressed here as

Ca
L = −ω2CM2π3St2y0cos(ωt), (12)

where CM denotes the added mass coefficient, which
is mainly related to the cross-section shape and derived
from potential flow theory [1]. For a square cylinder,
CM = 1.51 (see [1,34]).

The lift coefficient related to galloping, Cg
L , can be

computed by substituting y = y0cos(ωt) in Eq. (3),

Cg
L =

[
−2π Sty0ωA1 + (2π Sty0ω)3

3

4
A2

−(2π Sty0ω)5
5

8
A3 + (2π Sty0ω)7

35

64
A4

]
sin(ωt).

(13)

Then, after elementary algebra, the total lift coeffi-
cient can be rewritten as Ct

L = Rcos(ωt + Θ), where
R and Θ are given by

R2 = (0.5CL0q0cosθ + ω2CM2π3St2y0)
2

+
[
−0.5CL0q0sinθ − 2π Sty0ωA1 + (2π Sty0ω)3

3

4
A2 − (2π Sty0ω)5

5

8
A3 + (2π Sty0ω)7

35

64
A4

]2
,

tanΘ = [−0.5CL0q0sinθ

−2π Sty0ωA1 + (2π Sty0ω)3·
3

4
A2 − (2π Sty0ω)5

5

8
A3 + (2π Sty0ω)7

35

64
A4

]

/(0.5CL0q0cosθ + ω2CM2π3St2y0). (14)

Redefining the reduced velocity Ur = 1/(ωSt) for
forced vibration, the lift coefficient amplitude, R, and
phase angle, Θ , with respect to Ur can be obtained.
Figure 2 shows the comparison between the theoreti-
cal predictions and experimental data [35] under forced
vibration, and the effects of acceleration coupling term
B1 on the unsteady aerodynamic force are also plotted.
The coefficients Ai used here are taken from Freda et
al. [36] and the CL0 = 1.4 following the [37], while
other parameters are taken from the experimental stud-
ies conducted by Carassale et al. [35]. As can be seen
from Fig. 2a, a peak value of the amplitude of lift
coefficient occurs near Ur = 1/St , which corresponds
to the lock-in region. In addition, increasing B1 will
result in a higher maximum peak of R and a wider
range of lock-in region; it therefore means the ampli-
tude R can be probably modelled by this approach.
However, in terms of phase angle, the present model
is not able to capture enough details in particular at
low reduced velocity. The phase angle, Θ , between
the cylinder motion and transverse force is quite cru-
cial for predicting VIV and galloping responses, as it
determines the energy transfer between structure and
fluid. More specifically, it is from flow to cylinder if
0◦ < Θ < 180◦, while the energy transfers from cylin-
der to flow when −180◦ < Θ < 0◦. For this reason,
the acceleration coupling term may not be suitable to
simulate flow-induced vibrations of a square cylinder
because it fails to predict the important characteristics
of the phase angle.

3.2 Acceleration and velocity coupled model

An out-of-phase term (velocity coupling term) there-
fore needs to be taken into account in the form of f (y)
to match the phase angle. A similar method has also
been used by several studies [24,26–29]. Then, the Eq.
(7) can be rewritten as

q̈ + ε
(
q2 − 1

)
q̇ + q = B1 ÿ + B2 ẏ, (15)

123



P. Han et al.

Fig. 2 a Amplitude of lift coefficient, R, and b phase angle,
Θ , of a square cylinder under forced vibrations (y0 = 0.1) for
several values of the coupling coefficient, B1. Experimental data

are taken from Carassale et al. [35]. Coefficients: A1 = 3.01,
A2 = 110, A3 = 3037 and A4 = 26, 215 [36]

where B1, B2 are the multiplying factors for accel-
eration coupling (B1 ÿ) and velocity coupling (B2 ẏ),
respectively. Their values can be determined through
experiments of forced vibrations as in Sect. 3.1.
According to the new term in Eq. (15), the polynomial
of q0 and its phase angle, θ , now read

q60 − 8q40 + 16

[
1 +

(
ω2 − 1

εω

)2
]
q20

= 16

(
B1y0ω

ε

)2

+ 16

(
B2y0

ε

)2

, (16)

θ = arctan
εω

ω2 − 1
(q20/4 − 1) + arctan

B2ω

−B1ω2 .

(17)

Figure 3 shows the theoretical amplitude of lift coef-
ficient, R, and the phase angle,Θ , by solving Eqs. (16),
(17) and (14). The experimental data taken from differ-
ent forced vibration conditions are also plotted in fig-
ures for comparisons [35]. The parameter B1 affects the
variation of the lift coefficient in both maximum peak
amplitude and the range of resonance region, while the
value of velocity coupling term B2 does not affect the
lift coefficient amplitude. As expected, adding the out-
phase term in Eq. (15) gives a better predictions for
the phase angle than the single accreditation coupling
model. Overall, B1 = 10 and B2 = 0.1 are reasonable
values for Eq. (15), which can basicallymatch themax-
imum lift coefficient around the resonance region and
accurately capture the variation of both amplitude and

phase angle. Thus, the acceleration and velocity cou-
pledmodel with these parameters is now used, and they
will be applied to the subsequent caseswhere the square
cylinder is set to freely move, without any tuning. In
addition, note that our model allows to have, as in the
experiments, the value of the critical reduced velocity
for zero phase lag that increases with the amplitude y0
(Uc

r = 10; 11.2; 12.2, y0 = 0.1; 0.2; 0.3). This impor-
tant point will be discussed later.

4 Free vibrations

We now apply the present model, with the coefficients
obtained above from forced vibration experiments, to
other experiments where the square cylinder is left
free to vibrate. The two Eqs. (6) and (15) are now
solved simultaneously with a second order accuracy,
with one initial condition on y. Only the limit cycle
oscillation is analyzed in terms of magnitude defined
by, ȳ = √

2yrms .
An elastically supported square cylinder under flow

may vibrate in different ways according to the relation-
ship between the critical reduced velocity for VIV (Uv)
and for galloping (Ug). The velocity Uv is associated
with the Strouhal number defined as,Uv = 1/St , while
Ug can be obtained by the quasi-steady theory, defined
as,Ug = 8πm∗ζ/A1 [19]. The ratio of the two critical
velocities reads simply
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Fig. 3 b, d and f Amplitude of lift coefficient, R, and a, c and
e phase angle, Θ , of a square cylinder under different forced
vibrations (y0 = 0.1, 0.2 and 0.3). Experimental data are taken

from Carassale et al. [35]. The black solid lines in right three
figures represent Θ = 0. Coefficients: A1 = 3.01, A2 = 110,
A3 = 3037 and A4 = 26, 215 [36]

Ug/Uv = 8π Stm
∗ζ/A1 = 2St Sc/A1, (18)

where A1 is the first coefficient of the polynomial, Eq.
(3), measured by the slope at zero incidence of the

approximated lift coefficient curve. It is a function of
both shape and Reynolds number. For a given flow con-
dition on a square cylinder, both A1 and St are fixed,
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so that the ratio Ug/Uv only depends on the Scruton
number.

4.1 High Scruton number cases

The model is first employed to predict VIV and gallop-
ing of a square cylinder at high Scruton numbers. If Sc
is high enough, we have Ug/Uv � 1, and the square
cylinder is expected vibrate in “pure VIV” and “pure
galloping” at low and high reduced velocity, respec-
tively. Parkinson and Smith have conducted experi-
ments on galloping of a square cylinder [19]. In their
work, the mass ratio μ is 1162.8 with different damp-
ing ratios ζ varying from 0.00107 to 0.00372. So we
can calculate Sc between 15.64 and 54.36, and the ratio
Ug/Uv from 1.56 to 5.46. Figure 4 shows the numer-
ical results and the experimental data for comparison.
All parameters used for the model are taken from the
experiments. The X -axis in Fig. 4 is shown as Ur/Ug ,
so that the galloping instability should start near X = 1.
The experimental points plotted in the figure consist of
data tested with three different Scruton numbers, and
they strongly overlap. Similarly, the predictions by the
model give almost identical results for the three Sc
conditions, and we only show the curve for the high-
est value of Sc for clarity. Quite accurate quantitative
agreement between numerical data and experiments
can be found. In addition, by changing the initial ampli-

Fig. 4 Pure galloping: Comparison of amplitude responses
between experimental and numerical results obtained by present
model for Sc=54.36. Experimental data are taken from Parkinson
and Smith [19]. Coefficients: A1 = 2.69, A2 = 168, A3 = 6270
and A4 = 59, 900 [19]

Fig. 5 Pure VIV of a 3:2 rectangular cylinder: Comparison of
amplitude responses between experimental and numerical results
obtained by present model for Sc=87.7. Experimental data are
taken from Mannini et al. [28]. Coefficients: A1 = 4.88, A2 =
290.09, A3 = 30140, A4 = 1.1173 × 106, A5 = 1.773 × 107

and A6 = 8.749 × 107 [28]

tude,we can clearly capture the two “jumps” frompoint
2 to point 3 and from point 5 to point 1, respectively.

A square cylinder under flow with high Sc is
expected to undergo “pure VIV” at low reduced veloc-
ity. Very few experiments exist on VIV of square sec-
tions at high Scruton numbers. Cheng et al. [39] as well
as Amandolèse and Hémon [40] carried out experi-
mental studies on the VIV of a square cylinder, but
the Sc in their works are 15.7 and 9.41, respectively,
which are not high enough to rule away the influence
from galloping. Mannini et al. [28] experimentally and
numerically investigated the vibrations of a rectangu-
lar cylinder under flow. They tested very high Sc cases
(87.7) inwind tunnel and compared thedatawith results
obtained byCorless and Parkinson’smodel [26] as well
as Tamura and Shimada’s model [27]. The rectangular
cylinder also has leading-edge corners, as the square
shape, and there are no significant differences in terms
of fluid dynamics between the two geometries. There-
fore, it is reasonable to test the present model for “pure
VIV” by comparing with experiments of VIV of a rect-
angular cylinder. The numerical results are plotted in
Fig. 5.Note that, the quasi-steady polynomial used here
is 11th-order instead of seventh-order following [28].
The St , m∗, ξ , CL0 and polynomial coefficients Ai can
be found in Mannini et al.’s work [28]. As can be seen
from Fig. 5, the amplitude predictions agree with the
wind-tunnel data, though there are some differences
in maximum peak value and the lock-in range. These
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differences may caused by the coupling parameters B1

and B2 which were determined under forced vibrations
of a square cylinder instead of a 3:2 rectangular one.
Also, these differences may be caused by the values of
St and CL0 which are not measured at the Reynolds
number of lock-in range (see [28]). In conclusion, the
model proposed in this paper can reasonably predict the
“pure VIV” and “pure galloping” dynamics of a square
cylinder under flow.

4.2 Low Scruton number cases

Vortex-induced vibration and galloping can not be
totally separated unless the Scruton number is high
enough (Ug/Uv � 1). In most of engineering applica-
tions in particular in the cases of hydroelastic oscilla-
tions, Ug/Uv is never much greater than 1 because of
the fluid density.

Here, the present model is employed to simulate
the combined VIV-galloping motions. The numerical
predictions are compared with experimental data from
Bearman et al. [38] and Wawzonek [22] in Fig. 6a and
b. Note that, the values of Sc are 11.76 (Ug/Uv = 0.63)
and 31.98 (Ug/Uv = 1.92), respectively. For the
lower one, Ug is less than Uv , so that VIV and gal-
loping are strongly coupled. Parameters used for this
case can be found in [26]. As shown in Fig. 6a, the
present numerical results are close to the experiments.

However, there are two branches with different limit
cycle oscillations in the amplitude curve, which are not
observed in the experiments. This is probably because
the experiments are conducted with a cylinder start-
ing from rest only. For the case of Fig. 6b, Ug/Uv is
larger than 1 but notmuch. Although Fig. 6b apparently
shows a VIV motion and a galloping motion (sepa-
rate VIV-galloping), the two phenomena are actually
weakly coupled. The model parameters for this case
are the same as the experiments cited in Fig. 6b, aside
from the CL0 = 0.6 which is not mentioned in their
work. Figure 6a and b shows that when the interac-
tions between VIV and galloping cannot be ignored,
the critical velocity for galloping instability (compared
with Ug derived from quasi-steady theory) is reduced.
The phenomenon is important for engineering applica-
tions because it may cause unexpected vibrations for
structures if only considering Ug in the design. This
indicates that the quasi-steady theory is not suitable to
simulate galloping (particularly its critical value) in low
Sc number cases. Finally, the critical reduced veloc-
ity of instability as well as the interactions between
VIV and galloping, including combined and separate
VIV-galloping motions, are successfully captured by
the present model. Overall, the model predict well the
vibrations of a square cylinder, though the amplitudes
in VIV part are slightly overestimated.

Fig. 6 Comparison between experimental results and numeri-
cal predictions obtained by the present model for (a) Sc = 11.76
(strongly coupled VIV-galloping) and (b) Sc = 31.98 (weakly
coupled VIV-galloping). Experimental data in (a) and (b) are

taken from Bearman et al. [38] and Wawzonek [22], respec-
tively. Coefficients (a): A1 = 4.87, A2 = 421, A3 = 17, 000
and A4 = 194, 000 [26]. Coefficients (b): A1 = 4, A2 = 260,
A3 = 10, 000 and A4 = 100, 000 [22]
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5 Discussion

Before the present model, two models were mostly
used to predict transverse oscillation of a square cylin-
der, of which one is Corless and Parkinson’s model
[26] and the other is Tamura and Shimada’s model
[27]. In fact, the form of the present model is sim-
ilar to those two models, for instance, all the three
models use the acceleration & velocity coupling terms.
However, the present model still differs from others in
some aspects. First, the added mass effects are consid-
ered in the present model. Second, the flow variable
q satisfies a standard van der Pol equation, while it is
Rayleigh equation for Corless and Parkinson’s model
and the parameters in their model lack physical mean-
ing. Third, the ability to simulate phase angle of a
square cylinder under flow are obviously different for
the three models. A comparison between theoretical
results with experimental data for the phase angle is
plotted in Fig. 7. Note that, the experimental data we
used for this comparison is different from that in Fig.
3. The flow parameters, i.e., CL0, Ai , and St , used for
the three comparedmodels are same, and they are taken
from the existing literature [19,41]. It can be found that
the present model matches the experiments more accu-
rately than the other two models. Moreover, as men-
tioned in Sect. 3.2, the present model clearly captures
the change in sign of the phase. As reported by Liu
et al. [29], this is not properly captured by existing

Fig. 7 Comparison of the phase angle between lift and motion
predicted by different models with experiments. Experimental
data are taken from Nakamura and Mizota, y0 = 0.1 [41]. Coef-
ficients: A1 = 2.69, A2 = 168, A3 = 6270 and A4 = 59, 900
[19]

Fig. 8 Pure VIV case: comparison between experimental and
numerical results obtained with different models for Sc=87.7.
Red solid line: Present model with quasi-steady coefficients Ai
that taken from [28]. �: Present model with quasi-steady coef-
ficients, Ai (except A1) set to zero. Experimental data are taken
from Mannini et al. [28]

models. It is nevertheless an important feature for the
oscillation of a square cylinder, because it can affect
the amplitude of VIV by limiting the excitation; see
[3]. Finally, because the differences among the three
models occur in the force term related to VIV, we plot
the predictions with different models for “pure VIV” of
a 3:2 rectangular in Fig. 8 for comparison. All the cou-
pling parameters or the model parameters used here are
from a square cylinder, which means ε, B1 and B2 are
same as the previous cases and the parameters used
for Corless and Parkinson’s model and Tamura and
Shimada’s model are directly taken from their work
without any tuning [26,27]. Other parameters applied
for the three compared models, i.e., the mass ratio μ

and the damping ratio ξ for the structure; CL0, Ai and
St for the flow, are exactly the same, and they are all
taken from the experiments [28]. The results show that
the present model provides more reasonable predic-
tions on both the maximum amplitude and the lock-in
range. In addition, for Tamura and Shimada’s model,
though the empiricalmodel parameters are given physi-
calmeanings, it ismore difficult to extend to other cases
because extra experiments may be needed to estimate
the parameters’ values, see [27]. The above evidences
indicate that the present model may be easier to applied
in other cases.

Amandolèse and Hémon experimentally investi-
gated VIV of a square cylinder at Re=2000–8000 [40].
The present model does not predict such vibration as
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successfully as expected, thoughwe have all the param-
eters in the VIV part. This is because although the
cylinder in their work seems vibrating in separated
VIV-galloping motion, in fact, the Sc is 9.41 which is
low. Therefore, interactions between VIV and gallop-
ing potentially affect the vibration responses. However,
we lack data on the coefficients Ai for the quasi-steady
polynomial in that low Re range. For this case, chang-
ing the Ai will not only change the galloping responses,
but also significantly alter the maximum amplitude and
lock-in range among resonance region. This proves
VIV of a square cylinder with low Sc can not be sim-
ulated by single wake oscillator model that only con-
siders vortex force. Conversely, in the high Sc cases,
as shown in Fig. 8, the amplitude responses are almost
unchanged if all the coefficients Ai (expect A1) are set
to zero. The above evidences indicate that the present
model can be used to compute a critical value for Sc
(orUg/Uv), which determines whether the interactions
between VIV and galloping are negligible. Over the
critical Sc, VIV and galloping of a square cylinder can
be predicted separately; otherwise, the two force terms
related to vortices and the flow need to be coupled.

There are some guidelines or steps for applying the
present model to other free vibration cases. First, the
parametersCL0, St and Ai , related respectively to oscil-
lating lift, vortex-shedding frequency and lift on a fixed
cylinder need to be determined by experiments or sim-
ulations. (i) The parameters CL0 and St are obtained
from the case of the incidence angle equals to zero; (ii)
a polynomial approximation of the effect of the inci-
dence angle α on the lift gives the coefficients Ai . The
free oscillation responses for given structural param-
eters (i.e., the mass ratio μ and damping ratio ξ ) can
then be obtained by solving Eqs. (6) and (15).

The present model may have some limitations in its
use, for instance, (i) in terms of damping of the struc-
tural mode, the case of zero damping is particular: The
quasi-steady model would predict a galloping instabil-
ity that starts at zero flow velocity, which is not phys-
ically appropriate. (ii) in terms of Reynolds number,
the model incorporates the Reynolds number effect in
the coefficients. Still, when themechanism represented
by the elements of the model do not follow the simple
rules of Eqs. (6) and (15), themodel is not adequate. For
instance, at very low Reynolds number in the absence
of vortex shedding, Eq. (15) is pointless and the param-
eterCL0 should be put to zero. (iii) if the incoming flow
velocity is relatively small and the galloping instability

occurs, i.e. the motion for the square cylinder is not
“slow” when compared with the incoming flow, the
quasi-steady theory approximation is less valid. Thus,
the present coupled model that combines wake oscilla-
tor and QST becomes less accurate. This is for instance
probably the cause of the overestimate of the amplitude
of motion in Fig. 6a.

6 Conclusions

To conclude, a new approach for the transverse oscil-
lation of a square cylinder under flow has been pro-
posed. The unsteady lift forces were determined by
combining: (i) the incidence angle effects using the
quasi-steady theory, (ii) the vortex force described by
a nonlinear wake oscillator, as well as (iii) the added
mass effects. The wake oscillator model and the QST
model use coefficients (B1, B2, CL0, St ) and (Ai ) that
are to be determined from specific test (or computation)
conditions. Coefficients B1 and B2 are obtained from
the fluid loading under forced oscillation. Coefficients
CL0, St and Ai are determined by lift measurement on
fixed bodies under varying angles of attack, of which
CL0 and St are obtained by a particular case with inci-
dence angle equals to zero. The above coefficients are
then used to try and reproduce the behavior of a square
free to move.

Examining the model by comparison with experi-
ments shows that it can effectively predict both vibra-
tion and forces characteristics, including: (a) lift coeffi-
cient and phase angle variations under forced vibration;
(free vibrations) high Sc cases including (b) “pure gal-
loping” and (c) “pure VIV”; (d) interactions between
VIV and galloping, including combined and separate
VIV-galloping vibrations. The present model is simple
to use and may easily be extended to other flow con-
ditions, shapes, and flexible cylinders. In addition, this
model is helpful to understand the underlying mechan-
ics between VIV and galloping, and it can identify the
critical Scruton number for the VIV-galloping interac-
tions.
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