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This work considers a nearly spherical bubble and a nearly flat free surface interacting
under buoyancy at vanishing Bond number Bo. For each perturbed surface, the
deviation from the unperturbed shape is asymptotically obtained at leading order
on Bo. The task appeals to the normal traction exerted on the unperturbed surface
by the Stokes flow due to a spherical bubble translating toward a flat free surface.
The free surface problem is then found to be well-posed and to admit a solution
in closed form when gravity is still present in the linear differential equation gov-
erning the perturbed profile through a term proportional to Bo. In contrast, the
bubble problem amazingly turns out to be over-determined. It however becomes
well-posed if the requirement of horizontal tangent planes at the perturbed bubble
north and south poles is discarded or if the term proportional to Bo is omitted.
Both previous approaches turn out to predict for a small Bond number, quite close
solutions except in the very vicinity of the bubble poles. The numerical solution of
the proposed asymptotic analysis shows in the overlapping range Bo = O(0.1) and
for both the bubble and the free surface perturbed shapes, a good agreement with
a quite different boundary element approach developed in Pigeonneau and Sellier
[“Low-Reynolds-number gravity-driven migration and deformation of bubbles near
a free surface,” Phys. Fluids 23, 092102 (2011)]. It also provides approxi-
mated bubble and free surface shapes whose sensitivity to the bubble location is
examined. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4953467]

I. INTRODUCTION

The motion of particles (solid bodies, bubbles, or drops) rising toward a free surface or a
liquid-liquid interface is encountered in many industrial applications such as flotation, distillation,
and liquid-liquid extraction. For close boundaries (particle surface, free surface, or interface) strong
interactions arise which not only dictate the non-solid particle(s) and interface shapes but also the
liquid flow pattern. Hence, for most of the applications, it is necessary to adequately handle such
particle-boundary and/or particle-particle interactions. For instance, this is the case when estimat-
ing the lifetime of a bubble at a free surface, which is a key parameter to adequately predict the
occurrence of foam in a glass melting process.1

Once a particle (solid, drop, bubble) is finally stuck to an interface or a free surface (due to
buoyancy), it lasts a long time before the rupture of the liquid film squeezed between the particle
and this close surface. During this stage, the lubrication controls the film drainage. Actually, for
small enough particles, the liquid flows at low velocity not only during and but also before the
drainage so that one can resort to the creeping flow assumption. Within this low-Reynolds-number
flow simplified framework, Lee and Leal2 numerically investigated the axisymmetric slow rise
of a solid sphere toward a liquid-liquid interface using a suitable boundary integral formulation.
Simultaneously, Berdan and Leal3 addressed the same problem but for a sufficiently distant sphere
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and a weakly perturbed interface by working out an asymptotic analysis. Yiantsios and David4 later
investigated the case of a solid sphere or drop approaching a deformable interface.

As already illustrated in the seminal contribution of Youngren and Acrivos5 for a solid body,
the boundary element method (BEM) is a powerful technique to deal with steady Stokes flows. This
well-established method (see textbooks such as Refs. 6 and 7 and also for the numerical implemen-
tation8) is also quite efficient to track interacting non-rigid boundaries (free surface, interface) even
for the case of fully three-dimensional liquid domains.

As experimentally evidenced for one bubble,9 the free surface and bubble deformations play a
key role on the drainage dynamics. Therefore, it is necessary to accurately compute the shape of
each encountered time-dependent interface. Unfortunately, this issue has been found by Pigeonneau
and Sellier10 to be very challenging when the surface tension γ becomes in a sense too large
compared with the magnitude g > 0 of the imposed uniform gravity field g. More precisely, if the
bubble(s) with a typical length a are immersed in a liquid with uniform density ρl and viscosity µ,
the numerical accuracy deteriorates as the Bond number Bo = ρlga2/(3γ) vanishes. In practice, it
is required to drastically refine the mesh on each interface and to decrease the time step as soon as
Bo ≤ 0.2 while for Bo ≤ 0.05, numerical computations finally exhibit unphysical free surface and
bubble shapes close the problem axis of revolution. Actually, this has to do with the accuracy level
at which one approximates on the entire liquid boundary S, both the unit normal n and the curvature
given by the surface divergence of n: ∇S · n. Indeed, if the computational error made on a∇S · n
is of the order ϵa > 0 the resulting numerical error for the capillary force is of the order ϵa/Bo
and thus becomes too large when Bo vanishes. This error then worsens the determination of the
flow velocity u on the entire surface S and therefore the liquid domain boundary S time-dependent
location.10 However, at small Bo, each bubble and the free surface remain nearly spherical and
nearly flat, respectively, and this suggests gaining the weakly perturbed shapes by developing an
asymptotic analysis in terms of the small Bond number Bo.

The aim of the present work is to asymptotically approximate, at leading order in a small Bond
number, the shapes of two interacting and gravity-driven bubble and free surface (i.e., to treat for
only one bubble the problem encountered by Pigeonneau and Sellier10 for vanishing Bo). Similar
issues have been actually addressed in the literature but for different circumstances. One can first
cite the case of a bubble or droplet with large uniform surface tension γ and subject (in absence of
gravity) to an arbitrary ambient steady Stokes flow with velocity magnitude V . This problem has
been nicely handled in the study by Hetsroni and Haber11 in which the nearly spherical particle
shape is approximated at the first order in capillary number Ca = µV/γ, whatever the ambient
Stokes flow. As earlier mentioned, Berdan and Leal3 later asymptotically obtained the nearly flat
shape of a fluid-fluid interface interacting with a solid and not-necessarily force-free sphere with
radius a as both capillary number Ca and Bond number Bo vanish. Finally, one should mention
two additional papers dealing with two nearly spherical and weakly interacting drops moving either
in the same liquid in the absence of gravity12 or in two different liquids due to the gravity13 (with
in this latter case also the approximation of the nearly flat liquid-liquid interface). One should
note that the results obtained by Chervenivanova and Zapryanov13 amazingly predict a non-smooth
perturbed interface and are therefore questionable. In addition, there is, to the authors very best
knowledge, no work dealing with the case of a bubble interacting with a free surface at small Bond
numbers.

The paper is organized as follows. The governing Stokes problem and its associated zeroth-
order flow are presented in Sec. II. The free-surface location first-order approximation at a small
capillary number is obtained in Sec. III while Sec. IV is devoted to the estimate, at the same order,
of the weakly non-spherical bubble shape. The proposed asymptotic theory is compared in Sec. V
with the BEM predictions provided by Pigeonneau and Sellier10 while concluding remarks close the
paper in Sec. VI.
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FIG. 1. A nearly spherical bubble B1 ascending, under the uniform gravity field g=−gez, toward a weakly perturbed free
surface S0.

II. GOVERNING PROBLEM AND ZEROTH-ORDER FLOW SOLUTION

This section presents the governing axisymmetric Stokes problem and the flow asymptotic
expansion at relevant vanishing Bond and capillary numbers.

A. Axisymmetric stokes problem

As sketched in Fig. 1, we consider a bubble ascending, in a Newtonian liquid with a uniform
density ρl, toward a free surface under a uniform gravity field g = −gez. For distant bubble and free
surface, this bubble is spherical with a radius a while the free surface is the z = 0 plane. Otherwise,
at time t, the non-spherical bubble center-of-volume O′ is located at a distance l from the z = 0
plane. In the liquid domainD(t), the fluid has a velocity field u, with a magnitude U, and a pressure
field p + ρlg · x + pa where x = OM and pa designates the uniform ambient pressure above the free
surface. Assuming a vanishing Reynolds number, i.e., Re = ρlUa/µ ≪ 1, and a flow quiescent far
from the bubble it follows that (u,p) obeys

µ∇2u = ∇p and ∇ · u = 0 inD(t), (1)

(u,p) → (0,0) as |x| → ∞. (2)

We supplement (1) and (2) with boundary conditions on the free surface S0 and the bubble boundary
S1 having a unit outward normal n and a local average curvature H = ∇S · n/2 with ∇S, the surface
divergence.14 Assuming the same uniform surface tension γ on each surface and denoting by pb the
bubble uniform pressure and by σ the flow (u,p), stress tensor yields15

n · σ · n = ρlg · x + γ∇S · n on S0, (3)

n · σ · n = ρlg · x + pa − pb + γ∇S · n on S1, (4)

(σ · n) ∧ n = 0 on S0,S1. (5)

There is no mass transfer across S0 ∪ S1 and the bubble has a constant volumeVb. Thus,
S1

u · ndS = 0. (6)

At each time t, one gains (u,p) by solving the well-posed problem (1)-(6). Note the following:
(i) The bubble is force free since integrating (4) over S1 with pa − pb uniform and using Leal32

gives a zero contribution.16

(ii) To track in time the liquid boundary S0 ∪ S1, with the material velocity U, it is sufficient to
first get there the velocity u and then to exploit the no-mass transfer condition,

U · n = u · n on S0 ∪ S1. (7)
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B. Dimensionless numbers and flow expansion at a vanishing Bond number

In (3) and (4), the terms n · σ · n, ρlg · x, and γ∇S · n are of flow, gravity, and capillary natures.
Taking U as typical velocity magnitude and the bubble initial radius a as length scale, gives

γ∇S · n ∼ γ/a, n · σ · n ∼ µU/a, ρlg · x ∼ ρlga on S0 ∪ S1. (8)

Comparing either in (3) or in (4) the gravity term and the flow term with the capillary term then
introduces two dimensionless numbers: the Bond number Bo and the capillary number Ca here
defined as

Bo =
ρlga2

3γ
, Ca =

µU
γ
. (9)

For the present problem, Ca = O(Bo) due to the cancellation of the integral of (4), µUa ∼ ρlga3.
Henceforth, it is assumed that Bo ≪ 1 and therefore also that Ca ≪ 1. In that case, the bubble

and the free surface remain nearly spherical and flat, respectively, while the flow (u,p) is expanded
as follows:

u = u0 + Ca u1 + O(Ca2), p = p0 + Ca p1 + O(Ca2). (10)

The zeroth-order flow (u0,p0), with stress tensor σ0, is handled in Sec. II C while (u1,p1) is
discarded because, as shown in Sections III and IV, determining the first-order O(Ca) weakly
perturbed free surface and bubble shapes solely appeals to the normal stress n0 · σ0 · n0 on the
unperturbed spherical bubble surface and flat free surface with the unit normal n0.

C. Zeroth-order flow problem and solution

1. Zeroth-order flow and drag coefficient

As illustrated in Fig. 2, (u0,p0) is the flow about a spherical bubble with a radius a and surface
S′1 translating at the velocity u0 = Uez toward (U > 0) the motionless z = 0 plane S′0. The liquid
domain isD0 and (u0,p0) obeys, using (7),

µ∇2u0 = ∇p0 and ∇ · u0 = 0 inD0, (u0,p0) → (0,0) as |x| → ∞, (11)
u0 · n0 = 0 on S′0, u0 · n0 = Uez · n0 on S′1, (σ0 · n0) ∧ n0 = 0 on S′0 ∪ S′1. (12)

FIG. 2. Zeroth-order axisymmetric problem of a spherical bubble with radius a, center O′ and surface S′1 translating at the
velocity Uez toward the z = 0 flat free surface S′0.
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TABLE I. Computed drag coefficients versus the bubble location ζp and the truncation number Nt (see Appendix A) by
analytical evaluation (λ0,a), integration over S′1(λ0,1) or integration over S′0(λ0,0). The 6-digit value of λ0,a obtained by
Bart17 is given for comparison.

(ζp,Nt) l/a λ0,a
17 λ0,a λ0,1 λ0,0

(0.5,35) ∼1.13 2.049 981 2.049 981 121 918 44 2.049 981 121 915 24 2.049 981 122 052 33
(0.5,50) ∼1.13 2.049 981 2.049 981 121 918 44 2.049 981 121 918 45 2.049 981 121 921 56
(1,18) ∼1.54 1.509 456 1.509 455 474 830 87 1.509 455 474 829 72 1.509 455 474 888 96
(1,25) ∼1.54 1.509 456 1.509 455 474 830 87 1.509 455 474 830 86 1.509 455 474 830 31
(1.5,15) ∼2.35 1.273 450 1.273 449 986 994 64 1.273 449 986 994 64 1.273 449 986 993 78

For symmetry reasons, (u0,p0) exerts on the bubble a zero torque and a force F0 given by

F0 =


S′1

σ0 · n dS = −4πµUaλ0 ez (13)

with a drag coefficient λ0 > 1 (see Table I in Sec. II C 2) solely depending upon the bubble normal-
ized location l/a. For the freely suspended bubble, expanding the equation in Ref. 16 at the leading
order in small Bo yields,

U =
ρlga2

3µλ0
, λ0 = Bo/Ca = O(1). (14)

2. Solution in bipolar coordinates and comparisons

As in Refs. 17 and 18, the axisymmetric problems (11) and (12) are solved using the usual
bipolar coordinates (ζ,η,φ) here related to the cylindrical coordinates (ρ, z, φ) as follows:19

z =
c sinh ζ

cosh ζ − cos η
, ρ =

c sin η
cosh ζ − cos η

, c =
√

l2 − a2. (15)

Surfaces ζ = 0 and ζ = −ζp for sinh ζp = c/a are the boundaries S′0 and S′1, respectively. Local
unit normal vectors eζ,eη,eφ = eη ∧ eζ are introduced at each point x(ζ,η,φ) in the liquid domain
−ζp ≤ ζ ≤ 0, η ∈ [0, π] and φ ∈ [0,2π] (see Fig. 2). Setting χ = cos η, one gets u0(x) = u0ζeζ
+ u0ηeη with

u0ζ(ζ, χ) = − (cosh(ζ) − χ)2
c2

∂ψ

∂ χ
, u0η(ζ, χ) = − (cosh(ζ) − χ)2

c2 sin(η)
∂ψ

∂ζ
(16)

and a stream function ψ(ζ, χ) recalled20 in Appendix A. On S′0 and S′1 the required normal stress
reads n0 · σ0 · n0 = σ0ζζ = −p0 + τ0ζζ with p0 the pressure obtained as detailed in Ref. 21 and τ0ζζ
the normal viscous stress given by19

τ0ζζ(ζ, χ) = −2
µU(cosh ζ − χ)

c3


∂

∂ζ


(cosh ζ − χ)2 ∂ψ

∂ χ


− (cosh ζ − χ)∂ψ

∂ζ


. (17)

The resulting values of σ0ζζ on both S′0(ζ = 0) and S′1(ζ = −ζp), available in Ref. 22, are here tested
in Table I by integrating σ0ζζ (as detailed in Appendix A) on those surfaces to calculate the drag
coefficient λ0 introduced by (13). Clearly, there is an excellent agreement between the different
approaches.

III. FIRST-ORDER WEAKLY PERTURBED FREE SURFACE SHAPE

A. Governing problem for the free surface shape

The free surface shape location is obtained from (3) which gives the normal traction n · σ · n
on the perturbed free surface S0. Setting d = 2a, we adopt dimensionless quantities z = z/d,
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ρ = ρ/d,∇S · n = d∇S · n and σ = dσ/(µU). The perturbed free surface S0 admits equation
z = Ca f (ρ) with f = O(1) the unknown shape function. Moreover, it has unit normal n ∼ −ez
+ Ca n1 with Ref. 3,

[∇S · n1]( f ) = d2 f

dρ2 +
1
ρ

df
dρ

. (18)

Recalling that g = −gez, substituting n and z in (3) and retaining the leading order terms yields, in
conjunction with (18), the governing equation for the shape function

ρ
d2 f

dρ2 +
df
dρ
− t f ρ f = ρ [n0 · σ0 · n0] (z = 0) with t f = 12 Bo. (19)

The free surface is unperturbed far from the (z′Oz) axis and exhibits (axisymmetric problem) an
horizontal tangent on the (z′Oz) axis. Therefore, we supplement (19) with the conditions

df
dρ
= 0 for ρ = 0, f (ρ) = 0 as ρ → ∞. (20)

B. Basic property and analytical solution

In solving (19) and (20), one may think about neglecting the term t f ρ f in (19) because
Bo = O(Ca) for the freely suspended bubble. Doing so, and taking into account the first condition
(20) would give

df
dρ
=
g(ρ)
ρ
, f (ρ) =

 ρ

∞

g(s)
s

ds, g(s) =
 s

0
u[n0 · σ0 · n0](u)du. (21)

But from (A6), one gains g(s) → −λ0 , 0 as s becomes large and thus f given by (21) is not
bounded. Thus, one must keep the term t f ρ f in (19). Moreover, for a freely suspended bubble, the
volume of liquid above the z = 0 plane does not depend upon (l/a,Bo) and is equal to the bubble
volume. Indeed, when normalized by 8a3, this volumeV l satisfies

V l = 2π
 ∞

0
Ca f (ρ)ρdρ = − π

6λ0

 ∞

0
σ0ζζ(u)u du =

π

6
. (22)

This is due to (19) which with λ0 = Bo/Ca for the freely suspended bubble becomes

d
dρ

(
ρ

df
dρ

)
= 12λ0Caρ f (ρ) + ρ σ0ζζ. (23)

Anticipating on (24), it is possible to show that ρdf /dρ → 0 as ρ → ∞. This latter property and the
boundary condition df /dρ = 0 at ρ = 0 (see (20)) then provide (22) by integrating (23) over [0,∞[.

Using the so-called method of Wronskian as done by Berdan and Leal3 for a distant solid
sphere, provides the following analytical solution to (19) and (20),

f (ρ) = I0(t f ρ)
 ∞

ρ

K0(t fu),uσ0ζζ(u)du − K0(t f ρ)
 ρ

0
I0(t fu) uσ0ζζ(u)du, (24)

where σ0ζζ = n0 · σ0 · n0 = 2aσ0ζζ/(µU) and I0 and K0 denote the usual modified Bessel functions
of the first and the second kind, respectively.23 From (24) and I0(0) = 1, it appears that the free
surface shape function on the (z′Oz) takes the value

f (0) =
 ∞

0
K0(t fu) uσ0ζζ(u)du. (25)

C. Numerical results and discussion

The shape function f is computed from (24) with a Fortran routine using the Netlib library for
the modified Bessel functions I0 and K0.
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To our very best knowledge, no asymptotic result for a bubble is available in the literature
and we thus first compare our results with the predictions of Berdan and Leal3 for a distant solid
sphere. For a distant particle (solid sphere or bubble), translating at the velocity Uez, the free
surface is, at the leading order, pushed by the flow produced by a point force located at the particle
center of volume. This point force has strength F0 = −4πµU aλ0ez for the bubble and strength
F0,s = −6πµU aλ0,sez for the solid sphere with drag coefficient λ0,s given in Bart17 using bipolar
coordinates. For prescribed (l/a,Bo,Ca), the free surface shapes f and f s obtained for distant
bubble and solid sphere then obey f s/ f = ∥F0,s∥/∥F0∥ = 3λ0,s/(2λ0). This relation is tested for
l/a = 6,Bo = 1/3, and Ca = 0.2 by plotting in Fig. 3 the free surface locations z/a obtained for
shape functions fb given by (24), f s = 3λ0,s fb/(2λ0) ∼ 1.570 fb,24 fbel given for a solid sphere in
Ref. 3 and finally fsbip or fsa obtained by using in (24) the normal stress σ0ζζ(u) for a solid sphere
either calculated in bipolar coordinates as in Bart17 for fsbip or asymptotically evaluated as in Berdan
and Leal3 for fsa. Clearly, the results for the distant solid sphere using f s, fbel, fsbip, and fsa are
consistent and predict a more deformed free surface than for the case of a bubble (using fb) because
of different (no-slip or no tangential stress) boundary conditions on the particle (sphere, bubble)
surface.

We now examine the free surface deformation due to the freely suspended bubble by prescrib-
ing the Bond number Bo and taking Ca = Bo/λ0 with λ0 given by (A4). In Fig. 4, we plot
z/a = 2Ca f versus ρ/a still for l/a = 6 but at different Bo. Since λ0 ∼ 1.091 for l = 6a one has
Ca ∼ 0.3055 at Bo = 1/3 in Fig. 4. From z/a = 2Ca f (ρ/a; l/a,Bo), one gets (z/a)Fig. 4
∼ 1.528(z/a)Fig. 3 while for Fig. 3, recall that f s ∼ 1.570 fb. This explains why curves for z/a in
Fig. 3 for the solid sphere and in Fig. 4 at Bo = 1/3 are very close. As seen in Fig. 4, increasing Bo
(by dropping the free surface tension at prescribed gravity) increases the free surface deformation
near the (z′Oz) axis. As shown in Fig. 5(a), this trend holds whatever the bubble location l/a.
In contrast, the free surface sensitivity to (l/a,Bo) far away from the (z′Oz) axis is less intuitive.
This is already seen for l/a = 6 in Fig. 4 when ρ/a ≥ 5.5, and confirmed by plotting in Fig. 5(b)
the free surface deformation z/a at ρ/a = 10 versus (l/a,Bo). At a given l/a, this deformation
increases as Bo drops from 1/3 to 0.05 while it increases with Bo in the range [0.005,0.01].
Moreover, depending on l/a, the value of z/a at Bo = 0.05 is either larger or smaller than its value
at Bo = 0.005. At ρ/a = 10 this free surface deformation z/a amazing sensitivity to Bo is due to
the volume conservation (22). Finally, Fig. 5 also shows that when l/a drops at given Bo then z/a
increases at ρ = 0 but, depending on Bo, either increases or decreases at ρ = 10a. The computed

FIG. 3. Free surface shape locations z/a = 2Ca f versus ρ/a induced by distant bubble and solid sphere located at l = 6a
for Bo= 1/3 and Ca= 0.2. fb(◦), fs (dashed line), fbel(∗), fsbip (solid curve), and fsa(N).
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FIG. 4. Free surface shapes at different Bond numbers Bo for a bubble location l = 6a. Bo= 1/3 (+); Bo= 0.1 (◦);
Bo= 0.05 (−); Bo= 0.01 (△); Bo= 0.005 (�).

FIG. 5. Free surface deformation z/a versus l/a on the ρ = 0 axis (a) and at ρ = 10a (b) for Bo= 1/3 (+); Bo= 0.1 (◦);
Bo= 0.05 (−); Bo= 0.01 (△); Bo= 0.005 (�).

free surface locations for l/a = 4,2 are displayed in Fig. 6 and exhibit the same trend as the ones
discussed for Fig. 4. The developed first-order asymptotic analysis writes the free surface location
as z = 2aCa f with f = O(1). This latter assumption is satisfied as shown by plotting in Fig. 7(a) the
normalized free surface location z/(aCa) at ρ = 0 (i.e., where f reaches its largest value) versus l/a
for several values of Bo. Not surprisingly, as the bubble approaches 2 f (0) increases but remains of
order unity. The ratio z/(aBo), plotted in Fig. 7(b), exhibits the same behaviour as the one observed
in Fig. 7(a).

IV. FIRST-ORDER BUBBLE SHAPE

A. Governing problem for the bubble shape

Mimicking Section III A we need to asymptotically enforce at small Ca = O(Bo) the relation
(4) on the perturbed bubble surface S1. Employing bipolar coordinates (recall (15)), as done by
Chervenivanova and Zapryanov13 for a droplet, is not convenient. As depicted in Fig. 2 and accord-
ing to Hetsroni and Haber,11 we instead use spherical coordinates (r ′, θ, φ), centered at the bubble
center-of-volume O′ such that OO′ = −lez, with φ ∈ [0,2π], θ ∈ [0, π] and r ′ = |x′| for x′ = O′M.
For small Ca = O(Bo) the nearly spherical bubble uniform pressure pb and axisymmetric surface S′1
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FIG. 6. Free surface shapes at different Bond numbers: Bo= 1/3 (+); Bo= 0.1 (◦); Bo= 0.05 (−); Bo= 0.01 (△); Bo= 0.005
(�). (a) l = 4a and (b) l = 2a.

FIG. 7. (a) ratio z/(a Ca)= 2 f (ρ/a) and (b) ratio z/(aBo)= 2 f (ρ/a)/λ on the ρ = 0 axis for Bo= 0.1 (◦); Bo= 0.05 (−);
Bo= 0.01 (△) and Bo= 0.005 (�).

then admit the expansion and equation

pb ∼ p0
b + Ca p1

b, r ′ ∼ a[1 + Ca ξ(θ)] on S′1 (26)

with p0
b
= pa + ρlgl + 2γ/a prevailing at Bo = 0 and unknown uniform pressure p1

b
and bubble

shape function ξ(θ) = O(1). Requiring conservation of the bubble volume and center-of-volume O′

location and the bubble surface to be smooth, bounded, and to exhibit horizontal tangent planes at
its two θ = 0 and θ = π poles25 provides, at order O(Ca), the conditions π

0
ξ(θ) sin θdθ = 0,

 π

0
ξ(θ) sin θ cos θdθ = 0, (27)

ξ and
dξ
dθ

bounded in [0, π]; dξ
dθ
= 0 for θ = 0, π. (28)

As for the free surface, we set ∇S · n = d∇S · n and σ = dσ/(µU) when imposing (4) while the
second approximation (26) yields (see Refs. 11 and 26)

∇S · n ∼ 4 − 2 Ca L(ξ), L(ξ) = 2ξ +
1

sin θ
d
dθ

(
sin θ

dξ
dθ

)
. (29)

As shown in Appendix B, enforcing (4) up to order O(1) then gives the pressure p1
b

(see
Appendix B) and for the bubble shape function ξ, the linear second-order differential equation

tbξ sin θ cos θ + 2ξ sin θ +
d
dθ


sin θ

dξ
dθ


= R(θ) sin θ, tb = 3Bo, (30)

R(θ) = 1
2

1
2

 π

0
[n0 · σ0 · n0](α) sin αdα − 6λ0 cos θ − [n0 · σ0 · n0](θ)


. (31)
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In (31), we calculate λ0 from (A4) and the occurring normalized zeroth-order normal traction
is given by [n0 · σ0 · n0](θ) = d[σ0ζζ(−ζp, η)]/(µU) with, see (A5), cos η = (cos θ cosh ζp − 1)/
(cos θ − cosh ζp). Accordingly, R and ξ solely depend on l/a and (l/a,Bo), respectively. In sum-
mary, ξ is obtained by solving (30), (27), and (28) for R given by (31).

B. Approximated well-posed and ill-posed problems

Setting x = cos θ, we seek the bubble shape function f (x) = ξ(θ) for x in [−1,1]. Using the
prime symbol for differentiation with respect to x and the relations

f (x) = ξ(θ), dξ
dθ
= −
√

1 − x2 f ′(x), (32)

makes it possible to recast the determination of ξ into the following equivalent problem

(1 − x2) f ′′ − 2x f ′ + (2 + tbx) f = R(x) for − 1 < x < 1, (33) 1

−1
f (x)dx = 0,

 1

−1
x f (x)dx = 0, (34)

f and
√

1 − x2 f ′(x) are bounded in [−1,1], (35)

lim
x→−1

√
1 − x2 f ′(x) = 0, lim

x→1

√
1 − x2 f ′(x) = 0. (36)

As will be shown in Sec. IV B 2, such a problem turns out to be ill-posed for tb > 0.

1. Approximated well-posed problem for tb = 0

For tb = 0, it is possible to solve (33)-(36) by expanding f in Legendre polynomials Pn,23

as done by Hetsroni and Haber11 when dealing with the weak deformation of a bubble freely
suspended in a prescribed arbitrary ambient Stokes flow in an unbounded liquid. Exploiting the
differential equation satisfied by each Legendre polynomial and the properties23

P0(x) = 1, P1(x) = x,
 1

−1
Pn(x)Pm(x)dx =

2δnm
2n + 1

(37)

with δnm the usual Kronecker delta, we easily arrive at the desired solution

f (x) =

n≥2

LnPn(x), Ln =
2n + 1

2[2 − n − n2]
 1

−1
Pn(x)R(x)(x)dx for n ≥ 2. (38)

We also numerically solved (33)-(36) using a O(h2) second-order centered Finite-Difference Method
(FDM) with N − 1 nodal points xn = −1 + nh in ] − 1,1[ (with n = 1, . . . ,N − 1,h = 2/N) and dis-
cretizing the integral conditions (34) also at O(h2) using a trapezoidal rule. As illustrated in Table II,
comparisons of the implemented FDM against (38) are excellent and the FDM exhibits the expected
O(h2) accuracy.

TABLE II. Computed function f (x) for tb = 0 and l = 3a when retaining
Nt = 25 terms in expansions (A1) and (A4). In the Legendre approach
(38) we take 2 ≤ n ≤ 20 and evaluate each coefficient Ln with a Gaussian
integration scheme at a 10−8 accuracy level.

x FDM, h = 0.01 FDM, h = 0.001 Legendre

−0.95 −0.051 554 290 7 −0.051 550 820 1 −0.051 550 785 9
−0.30 0.021 120 384 0 0.021 117 916 7 0.021 117 891 8

0.0 0.032 884 981 1 0.032 881 552 0 0.032 881 517 3
0.30 0.027 368 809 8 0.027 364 972 0 0.027 364 933 2
0.95 −0.063 678 902 2 −0.063 676 941 0 −0.063 676 921 1



063102-11 Guémas, Sellier, and Pigeonneau Phys. Fluids 28, 063102 (2016)

FIG. 8. Numerical solution to (33) and (34) for the bubble location l = 3a, spacing h = 0.001 and tb = 1 (◦), tb = 0.01 (•) or
tb = 0 (∗). (a) Shape function ξ = f . (b) Function g (x)=−√1− x2 f ′(x) for x in the range [−0.999,−0.95].

2. Ill-posed problem for tb > 0

For tb > 0, there is no guarantee that our requirements (35) and (36) are consistent with
(33) and (34). This issue is addressed by first numerically solving (33) and (34) and then checking
whether (35) and (36) are satisfied. To do so we again run a O(h2) finite-difference method solely
differing by a minor change (one had just to code the extra term tbx f arising in (33)) from the one
validated for the previous tb = 0 case.

Both computed functions f and g(x) = −√1 − x2 f ′(x) are plotted versus x in Fig. 8 for
h = 10−3, a bubble location l = 3a (still keeping Nt = 25 terms in expansions (A1) and (A4)) and
different values of tb ≥ 0. As seen in Fig. 8(a), f is not only bounded (i.e., the first requirement (35)
holds) but it is also nearly insensitive to the value of the parameter tb except near the x = −1,1
end points where f also exhibits a large derivative. Moreover, as illustrated near the x = −1 point
(i.e., close to the south pole) in Fig. 8(b), the function g is bounded in [−1,1]. Therefore, the
computed solution f satisfies (33)-(35) whatever tb ≥ 0. However, (36) is not fulfilled because g
is non-zero at x = −1,1 for tb > 0 although it tends to zero there as tb vanishes (see Fig. 8(b) for
x → −1 if tb = 0.01).

In summary, our computations reveal that (33)-(36) is ill-posed for tb > 0. However, for small
tb > 0 the solution f to (33)-(36) is close to the regular one obtained for tb = 0 and we thus
henceforth compute the perturbed bubble shape by taking tb = 0.

C. Numerical results and discussion

In this section, perturbed bubble shapes are computed with spacing h = 10−3 and tb = 0.
Since in practice we give Bo, it is worth introducing the function ξ̃ such that, recalling (26),
Boξ̃ = Caξ. Because Bo = λ0Ca note that ξ̃ = ξ/λ0. As already pointed out, taking tb = 0 makes
ξ and therefore also ξ̃ solely depend upon the bubble location l/a. Both functions are plotted in
Fig. 9 versus θ/π for l/a = 1.5, 2, 3, 4, 6 and 10. Not surprisingly, the bubble is squeezed by
its weak interaction with the free surface near its θ = 0 north pole and forced to expand away
from its axis of revolution for θ close to π/2. As a result, ξ and ξ̃ are negative and positive near
θ = 0 or near θ = π/2, respectively. Moreover, the bubble is also squeezed near its θ = π south pole
(negative functions near this pole) the deformation being there smaller than near the north pole
because the interacting free surface is more distant (one bubble diameter more). Finally, domains
of positive and negative values of the shape functions ξ and ξ̃ are nearly insensitive to the bubble
location l/a.

The bubble deformation is weak when compared with the free surface deformation on the
(z′Oz) axis. This is clear when comparing for a prescribed bubble location l/a, the quantities
z/(aCa) at ρ = 0 (recall Fig. 7(a)) and ξ at the θ = 0 north pole. Moreover, |ξ̃ | is at most of
the order 7% as soon as l exceeds 3a. Therefore, the perturbed bubble shapes remain very close
to a sphere with radius a as soon as Bo ≤ 0.2 even for l/a = 1.5. This is why in Fig. 10 we
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FIG. 9. Functions ξ and ξ̃ = ξ/λ versus θ/π for l/a = 1.5, 2, 3, 4, 6, and 10 (taken negative values at θ = 0 decrease with
l/a). (a) Function ξ. (b) Function ξ̃.

FIG. 10. Normalized half-spherical bubble (dashed line) and several exaggerated perturbed bubble profiles (solid lines)
for r ′/a = 1+ ξ̃(θ) and l/a = 1.5,2,4,6. For each profile, the value of l/a is obtained knowing that at z′= 0, the bubble
deformation increases with a/l .

deliberately show exaggerated half (due to the symmetry about the (z′Oz) axis) deformed bub-
ble profiles by setting Bo = 1 and thus taking r ′/a = 1 + ξ̃(θ). Those profiles are drawn for
l/a = 1.5,2,4,6 in the half-normalized plane (ρ′/a, z′/a), where z′ = z + l (the bubble center of
volume O′ having in this plane coordinates (0,0) whatever l/a). Such “amplified” profiles show a
bubble squeezed at its north and south poles and expanded in the vicinity of its horizontal z′ = 0
plane.

V. COMPARISONS AGAINST AN AXISYMMETRIC BEM SOLUTION

As mentioned in the introduction, direct numerical computations have been recently per-
formed10,27 to track in time the free surface and bubble boundary locations in a large range of
Bond number Bo. Those direct simulations appeal to an axisymmetric BEM solution, which has
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FIG. 11. Free surface shapes from the BEM solution (dashed lines) and the first-order asymptotic analysis (solid lines) at
Bo= 0.1 (◦) and Bo= 0.2 (•). The bubble center of volume is located at l/a ∼ 6 (see Table III for the associated 4-digit value
of l/(2a)).

been actually found, as reported in Pigeonneau and Sellier,10 to experience numerical accuracy
troubles for Bo ≤ O(0.1). This section compares at small Bond number Bo the weakly perturbed
free surface and bubble surface shapes predicted either by the BEM or the present asymptotic
analysis.

A. Comparisons for the weakly perturbed free surface

Predictions of the asymptotic analysis developed in Sec. III and the BEM are compared by
running the asymptotic procedure for the bubble center-of-volume location l/a computed by the
BEM solution. First we draw in Fig. 11 the resulting free surface shapes z/a versus ρ/a for a bubble
location l/a ∼ 6 and Bo = 0.1,0.2. The asymptotic and BEM results are compared by inspecting the
quantity

∆ = max |(z/a)BEM − (z/a)Asymptotic| (39)

versus the small quantity (Ca)2. Note that ∆ is actually reached at a not-necessarily zero location
(ρ/a)m. The values of (ρ/a)m,∆ and (Ca)2 for Fig. 11 (and also for Fig. 12) are given in Table III
which also provides the 4-digit value of the bubble center-of-volume location l/(2a) obtained by
the BEM computations and used in the asymptotic analysis. At l ∼ 6a a nice agreement between
the asymptotic and BEM is found for Bo in the range [0.1,0.2]. Of course, at a given Bond number
the free surface is more perturbed when the bubble approaches and this suggests also checking our
asymptotic results for l < 6a. This has been done for l/a ∼ 4,2 in Fig. 12 and is also quantified in
Table III.

While the l ∼ 4a results are still in full agreement, some discrepancies are found at Bo = 0.1
for the l ∼ 2a case of a close bubble. For this pair (Bo, l/a) the computed BEM free surface exhibits
a non-physical weavy shape close the (z′Oz) axis (inspect Fig. 12(b)) and this results in a value of ∆
(see Table III) which is much larger than (Ca)2. This case illustrates the troubles experienced at low
Bond number by the BEM computations for a close bubble, i.e., when on each deformed surface the
local curvature slightly differs from the uniform one prevailing for unperturbed surfaces (see also
the introduction).
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FIG. 12. Free surface shapes from the BEM solution (dashed lines) and the first-order asymptotic analysis (solid lines) at
Bo= 0.1 (◦),Bo0= 0.15 (*), and Bo= 0.2 (•). Here l/a ∼ 4 (a) or l/a ∼ 2 (b) (see also Table III for the associated 4-digit
values of l/(2a)).

TABLE III. Setting (l/(2a),Bo) and quantities (Ca)2,∆ and (ρ/a)m for Figs. 11 and 12.

(l/(2a),Bo) (3.0008,0.1) (3.0003,0.2) (2.0022,0.1) (2.0022,0.2) (1.0016,0.1) (1.0021,0.2)
(Ca)2 8.40 · 10−3 3.36 · 10−2 7.70 · 10−3 3.06 · 10−2 5.60 · 10−3 2.22 · 10−2

∆ 1.10 · 10−3 2.40 · 10−3 3.30 · 10−3 8.00 · 10−3 2.73 · 10−2 2.14 · 10−2

(ρ/a)m 0 0 4 0 2.3 0

B. Case of the bubble shape

Comparisons between the BEM and asymptotic approaches have been also made and found to
be very convincing for the bubble shape. As noted in Sec. IV C, the bubble deformation is small
when compared to the free surface shape deformation. Accordingly and in contrast to the case de-
picted in Fig. 12(b) for the perturbed free surface, the agreement between the BEM and asymptotic
bubble shapes remains quite good even at l/a = 2 and Bo = 0.2. This is illustrated by drawing in
Figs. 13 and 14 the perturbed bubble normalized half-profile where the largest deformations arise,
i.e., near its north and south poles and equatorial plane.

As seen in those figures, the asymptotic analysis yields a larger deformation than the BEM
approach. Moreover, the difference (when normalized with a) between those methods on the entire

FIG. 13. Parts of half-bubble normalized profiles from the BEM code (dashed lines) and first-order asymptotic analysis (solid
lines) at Bo= 0.1 (◦) and Bo= 0.2 (•). Here l/a ∼ 2 (see Table III) and the normalized unperturbed spherical bubble profile
is shown in solid line. (a) Bubble north pole (z′= a) vicinity. (b) Bubble south pole (z′=−a) vicinity.
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FIG. 14. Vicinity of the z′= 0 half-equatorial plane for the normalized deformed bubble profiles from the BEM code (dashed
lines) and first-order asymptotic analysis (solid lines) at Bo= 0.1 (◦) and Bo= 0.2 (•). The bubble center of volume is located
as in Fig. 13 (with l/a ∼ 2) and the normalized unperturbed spherical bubble profile is shown in solid.

bubble profile is of the order 4 · 10−3 or 12 · 10−3 for Bo = 0.1 or Bo = 0.2, respectively. Recalling
the values given in Table III for the associated values of Ca2 then shows that, as announced, both
predictions well agree to order O(Ca2).

VI. CONCLUSIONS

The shapes of interacting free surface and bubble in the presence of a uniform gravity field have
been asymptotically obtained at the first order in small Bond number Bo (or equivalent capillary
number Ca). The analysis appeals to the accurate determination of the normal stress n0 · σ0 · n0
prevailing in the case of unperturbed bubble spherical surface and flat free surface. The gap of
each surface to its unperturbed location is measured by the quantity Ca f with f = O(1) the asso-
ciated shape function obeying a linear problem involving an ordinary differential equation in which
the gravity appears through a term proportional to Bo f . Keeping this latter term yields either a
well-posed or an ill-posed problem (in contrast to the unbounded liquid Haber11) for the free surface
or bubble, respectively. The bubble problem however is well posed if one ignores the requirement of
horizontal tangent plane at the bubble north and south poles or discards the Bo f term both choices
predicting for small Bond number Bo close bubble shape functions except in the very vicinity of
the bubble north and south poles. In the present work, the Bo f term is ignored in the bubble shape
problem. The asymptotic analysis numerical implementation reveals that, at given bubble location
and small Bond number, the free surface is in practice more perturbed than the bubble. It also well
agree with the BEM computations10 in the overlapping range Bo = O(0.1).

One can readily deal with interacting bubble and free surface having unequal uniform surfaces
tensions by taking in the present analysis for each surface Bond and capillary numbers (recall (8))
based on the addressed boundary surface tension. Finally, one may think about extending the work
to the case of several bubbles interacting, at small Bond number and in axisymmetric configuration,
with a free surface. This time the evaluation of the zeroth-order normal stress n0 · σ0 · n0 on the
unperturbed flat free surface and on each spherical bubble boundary might be done by proposing a
new BEM approach somewhat combining the ones employed in Sellier28 for the gravity-driven mo-
tion of a cluster of spherical bubbles in an unbounded liquid and in Pasol et al.29 for a solid sphere
interacting with a fluid-fluid interface. Since this challenging task requires substantial additional
efforts, it is postponed to a future work.
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APPENDIX A: ZEROTH-ORDER FLOW AND DRAG COEFFICIENT

Denoting by Pn the usual Legendre polynomial of order n,30 the stream function ψ reads31

ψ(ζ, χ) = U(cosh ζ − χ)− 3
2

∞
n=1

Un(ζ)[Pn−1(χ) − Pn+1(χ)], (A1)

Un(ζ) = Bn sinh[(n − 1/2)ζ] + Dn sinh[(n + 3/2)], (A2)

Bn =
(2n + 3)kn[e2ζp − e−(2n+1)ζp]
cosh(2n + 1)ζp − cosh 2ζp

, Dn =
(2n − 1)kn[e−(2n+1)ζp − e−2ζp]

cosh(2n + 1)ζp − cosh 2ζp
(A3)

with kn = c2 n(n + 1)/[√2(2n + 1)(2n + 3)(2n − 1)] for n ≥ 1. The drag coefficient λ0, defined by
(13), receives the analytical form17 λ0,a given by

λ0,a = [√2
∞
n=1

(2n + 1)(Bn + Dn)]/(2ac) (A4)

but can also be evaluated by integrating the normal traction σ0ζζ either on S′0(ζ = 0) or on
S′1(ζ = −ζp). As the reader may easily check, upon introducing

λ0,1 = −
a

2µU

 π

0
σ0ζζ(−ζp, η) cos θ sin θ dθ, cos η =

cos θ cosh ζp − 1
cos θ − cosh ζp

, (A5)

λ0,0 = −
1

2µUa

 ∞

0
ρσ0ζζ(0, η)dρ = −a(sinh ζp)2

2µU

 π

0

σ0ζζ(0, η) sin η
(1 − cos η)2 dη (A6)

with angle θ defined in Fig. 2 one indeed arrives at λ0 = λa,0 = λ0,1 = λ0,0. These relations are
numerically checked in Table I, for several bubble locations l/a, by retaining Nt terms in (A1) and
(A4) and performing each integration in (A5) and (A6) at a 10−14 accuracy using an iterative scheme
with Gaussian quadratures.

APPENDIX B: BUBBLE FIRST-ORDER PRESSURE AND SHAPE FUNCTION PROBLEM

Enforcing (4) and using (29) provides on the unperturbed bubble boundary r = a

1
Ca


4 +

d
γ
(pa + ρlgl − p0

b)

∼ 6 Bo ξ cos θ + 2L(ξ) − 2R(θ) (B1)

with angle θ introduced in Fig. 2 and, using the link Bo = λ0 Ca, the following function

R(θ) = −1
2


d
γ

p1
b + 6λ0 cos θ + [n0 · σ0 · n0](θ)


. (B2)

in which [n0 · σ0 · n0](θ) means the normalized zeroth-order normal stress applied on the unper-
turbed bubble surface S′1 at point such that z = −l + a cos θ. Enforcing (B1) at O(Ca−1) and O(1) re-
trieves p0

b
and gives (30), respectively. Now integrating (30) over θ in [0, π] and using (27) and (28)

yields the compatibility relation  π

0
R(θ) sin θdθ = 0. (B3)

Owing to the definition (B2), the condition (B3) provides the first-order pressure

p1
b = −

γ

2d

 π

0
[n0 · σ0 · n0](θ) sin θdθ. (B4)

Finally, one deduces (30) by substituting in (B2) the above quantity p1
b
.
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