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The axisymmetric gravity-driven dynamics of a bubble rising toward a free surface is
addressed for gas-liquid interfaces having unequal surface tensions. The liquid flow
is governed by the Stokes equations which are here solved using a boundary element
method in axisymmetric configuration. Within this framework, two dimensionless
numbers arise: the Bond number Bo; based on the surface tension of the bubble
interface and the surface tension ratio y comparing the free surface and bubble surface
tensions. Under a careful and discussed selection of the code key settings (number
of boundary elements, initial bubble location, and distance beyond which the free
surface is truncated), it has been possible to numerically and accurately track in time
the bubble and free surface shapes for several values of (Boy,7). The long-time shapes
are found to deeply depend upon both Bo; and 7 and also to compare well with
the shapes predicted in Princen and Mason [“Shape of a fluid drop at a fluid-liquid
interface. II. Theory for three-phase systems,” J. Colloid. Sci. 20, 246-266 (1965)]
using a hydrostatic model in which both surfaces are touching. Similarly, the drainage
dynamics of the liquid film thickness between the bubble and the free surface depends
on (Boy, ). The long-time film thickness exponentially decays in time and a so-called
thinning rate a for which the numerical behaviors and a simple model reveal two
basic behaviors: (i) at small Bond number, @ behaves as 1/Bo; and (ii) at large
Bond number, « is nearly constant. In addition, it is found that in the entire range
of the quantity y = (1 + 9)Bo;/(29), the thinning rate « is well approximated by the
function 1/(18 y) + @ With @ = 0.158. Such a result also permits one to estimate
the typical drainage time versus the initial bubble radius a, the liquid density p and
viscosity u, the gravity and the free surface, and bubble surface tensions. © 2015 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4918532]

. INTRODUCTION

The buoyancy-driven migration of bubbles toward a free surface occurs in many fields. For
instance, one can think about natural bubbles produced by depressurization in magma chambers
and then reaching the top of a volcano."? The involved physics also takes place in a wide range
of chemical engineering processes such as oxidation, hydrogenation, and chlorination.® For a low
viscosity liquid free from surfactants, the typical lifetime of bubbles near a free surface is generally
required to be small enough to prevent foam creation (as, for instance, in Champagne®). The case of
highly viscous fluid is somewhat more cumbersome. Indeed, if the bubble velocity exceeds a critical
threshold, a foam layer appears and such a phenomena (encountered for example during the glass
melting process>®) is quite damaging at least as regards the energetic efficiency. Since the onset of
foaming is the balance between the bubble flux coming from the bulk and the bubble lifetime at the
bath free surface, the physics of the drainage of the liquid film trapped between a bubble and a free
surface is a key issue in glass furnace design.
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A large body of literature has considered a drop or a bubble approaching a liquid-liquid or
gas-liquid interface. Amongst the first contributions, one should quote the work of Gillespie and
Rideal” in which the drainage and coalescence of a water drop at an oil-water interface were
experimentally investigated by focusing on the probability of coalescence. Allan et al.® also exper-
imentally studied the drainage of nitrogen bubbles in aqueous glycerols and in polyglycol oils
showing that the thinning rate (corresponding to the logarithm temporal derivative of the liquid film)
is an algebraic function of the film thickness (as was also theoretically predicted by Charles and
Mason”). Lee and Hodgson!® provided a theoretical contribution to describe the film flow and coa-
lescence also paying attention to the influence of surface tension gradients and interface mobility.
Interface shapes and the liquid film profile for a drop coalescing with a liquid-liquid interface have
been investigated by Burrill and Woods.!' Those authors later also experimentally and theoretically
studied the drainage properties'? and found the film thickness to be of about 40 nm at the rupture.
Lin and Slattery'® further developed a lubrication model to investigate the film drainage between
a bubble or a drop and a liquid-liquid interface. Their lubrication model is based on the interface
stagnation and they pointed out the dimple formation previously announced by Lee and Hodgson.'?
Chen et al.'* extended the work of Lin and Slattery'? by taking into account the London-van
der Waals attractive forces for which a linear stability is achieved. Note that lubrication models
have been proposed by various authors (see, for instance, Jones and Wilson'> or by Yiantsios and
Davis'®). In another direction, readers interested in coalescence of drops for small viscous fluids are
invited to consult the review provided by Chan et al.'” or the textbook of Slattery et al.'® One should
note that all previously quoted works assume a small bubble compared to the capillary length and
therefore that the fluid-fluid interface is weakly deformed.

For high viscous fluids, Kappel et al.'® provided one of the first studies devoted to the liquid
drainage carried out on molten glass. They developed experiments on both a single vertical film
and on a bubble close to a free surface showing that the liquid film drains exponentially with time.
Later, Laimbck® duplicated the same experiments. He pointed out the stabilization of the drainage
due to a Marangoni effect. Such a stabilization mechanism, due to the sodium oxide evaporation,
has been explained more recently by Pigeonneau et al.>! both experimentally and numerically. The
exponential behavior of the liquid film drainage has been also experimentally observed in silicone
oil by Debregeas et al.>> Howell? theoretically studied the drainage of bubble in high viscous fluid
by determining the bubble static form and developing lubrication models. Such theories however do
not predict the exponential decrease of the liquid film. The drainage of the liquid film produced by
a bubble moving toward a free surface has been investigated by van der Schaaf and Beerkens®* in
which theoretical models have been developed to take into account the potential mobility of fluid
interfaces. The case of buoyancy-driven bubbles moving toward a free surface having the same
surface tensions has been numerically studied by Pigeonneau and Sellier.”> Those authors pointed
out that the liquid film between a bubble and a free surface exponentially drains in time and that
the bubble size deeply affects the drainage. These two results have been verified experimentally in
Refs. 26 and 27.

Despite many contributions in the field, the case of unequal surface tensions has been scarcely
studied. Nevertheless, as shown earlier by Parikh,?® the atmosphere dictates to a large extent the
value of the surface tension for molten glasses. This has been recently confirmed by Nizhenko and
Smirnov?’ who shown that the surface tension of molten glass in contact with nitrogen atmosphere
can be twice of the surface tension of molten glass in contact of air atmosphere! Since, as pointed
out in Refs. 25 and 27, the deformation of the free interface plays an important role in the film
drainage, a fundamental issue is: what is the influence of different surface tensions on the liquid
drainage? The present work investigates this point by studying the dynamics of a buoyancy-driven
bubble near a free surface of non-necessarily equal surface tension. This is achieved by extending
the recent study of Pigeonneau and Sellier® to the case of two different (but still uniform) surface
tensions, assuming a quasi-steady axisymmetric Stokes flows.

The paper is organized as follows. First, the theoretical model is presented in Sec. II in which
the Stokes equations written in dimensionless form, the advocated integral formulation for axisym-
metric Stokes flow are recalled, and the numerical implementation is given. Section III then presents
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the numerical results with a special attention to the computed bubble and free surface shapes and
liquid drainage properties. Finally, conclusions are given in Sec. IV.

Il. GOVERNING PROBLEM AND ADOPTED METHOD
A. Addressed problem and relevant equations

As illustrated in Fig. 1 and denoting by ¢ the time, a bubble with surface S(¢) is immersed in
a Newtonian liquid bounded by a free surface Sy(¢) and having uniform density p and dynamic vis-
cosity u. Moreover, the liquid is subject to a uniform gravity field g = —ge, with g > 0 the gravity
magnitude and e, the ascending unit vector along the z coordinate. The ambient fluid above the free
surface and inside the bubble is a gas with negligible viscosity. Pressures py above the free surface
and p; inside the bubble are assumed uniform and time independent. In addition, the temperature
in the liquid domain and in the bubble is assumed constant and uniform. Finally, the free surface
So(t) and the bubble interface Si(¢) have uniform but not necessarily equal surface tension yy > 0
and y; > 0, respectively.

As the bubble rises under the buoyancy effects, both surfaces Sy(¢) and S;(¢) evolve in time. One
challenging issue is to adequately track in time those shapes. When the bubble is located very far
from the free surface, it is spherical with radius a and its rising velocity Ue,, obtained by balancing
the buoyancy and the drag forces, is given by%3!

ga’
U= e (1
with v = u/p the constant liquid uniform kinematic viscosity. Actually (1) holds when Ua/v < 1.
Taking U as typical liquid velocity magnitude in our problem, the resulting Reynolds number
= Ua )
v
is assumed to be much smaller than unity in the present work. Moreover, at each time ¢, our fluid
interfaces Sy(¢) and S)(¢) are axisymmetric with identical axis of revolution parallel with the gravity
field.

At initial time # = 0, the bubble is spherical with radius a and distant from the free surface
which is flat with equation z = 0. Since in the limit of small Reynolds number, inertia effects can
be neglected; the flow motion with velocity u and total pressure p + pg - x + pp obeys, in the liquid
domain D(r), the quasi-steady Stokes equations

Re

uVu = Vp, in D(1), (3)
V-u =0, in D(t). @
Moreover, we impose the following far-field behavior
(u,p) — (0,0), as [|x|| — co. ®)
z
p()
Y0 &
B p1oi 4 "
o T By | 8= —ye:
D(t) gl Si(t)

FIG. 1. Sketch of a bubble interface Si(z) rising under the gravity field g toward a free surface So(#). The time-dependent
liquid domain is D(¢).
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The flow (u, p) has stress tensor o = —pl + 2uD, with I and D the second-rank unit and rate-
of-strain tensors. At each interface, the jump conditions, corresponding to the momentum balance,
read

o-n=(pg- x+vyVs-n)n, forx on ) (Ref. 32), 6)
o-n=(pg-x+po—pi+yVs-n)n, forxons, @)

where (see also Fig. 1) n is the unit normal on Sy U §; directed into the liquid and the quantity Vg - n
designates the surface divergence which is related to the local average curvature.*
Assuming no mass transfer across the liquid boundary, one also has the relation

V-n=u-nforxonS, (m=0,1) ®)

with V the material velocity of the surface S,,,. Finally, since the bubble volume is time-independent,
(8) also adds the condition

/u-ndSzO. ©)]
Sy

Of course, the bubble has negligible inertia. Therefore, it is force-free when ascending (while
being also torque-free for symmetric reasons). This requirement of vanishing force reads (since py is
uniform)

[o-n—p(g-x)n]dS =0. (10)
N
One should note that the previous relation is actually automatically satisfied from boundary condi-
tion (7) because, since y; and py — p; are uniform, one has the relation

/ [v1Vs - n+ po— pi]ndS = 0. (11)
N

In summary, our problem reduces to well-posed Stokes problem (3)-(7) and (9) for the creeping
flow (u, p).

From (8), it is clear that the knowledge of the liquid velocity # on the liquid domain boundary
0D(t) = So(t) U Si(¢) is sufficient in tracking in time each surface Sy(r) and S;(¢). This property
suggests solving well-posed Stokes problem (3)-(7) and (9) by using a boundary approach in which
u is obtained on 0D(r) by inverting there a boundary-integral equation. The form taken by this
approach for our axisymmetric flow is given in Subsection II B.

B. Boundary approach and resulting boundary-integral equation

The boundary-integral formulation for a three-dimensional Stokes flows has been pioneered
by Oseen®*% and Odqvist*® and later recalled by Ladyzhenskaya.’’” Nowadays, several textbooks
adequately present this widely employed method and its practical implementation (see, among
others, Kim and Karrila,3® Pozrikidis,>® Bonnet,** or Sellier*'). One should note that during the last
four decades, the boundary-integral method has been used to deal with the Stokes flow about solid
bodies, bubbles, or droplets. Among this literature, Davis** addressed two interacting gravity-driven
drops in axisymmetric configuration ending up with a formulation similar to the one adopted in the
present work.

Here, we use dimensionless quantities with the initial bubble diameter 2a as length scale and
the free space bubble velocity U = pga?®/(3u) as velocity scale. Moreover, the time is normalized by
2a/U while the viscous stress components and the pressure are normalized by uU/(2a). As a result,
the dimensionless counterpart of the Stokes problem (3)-(7) and (9) is found to solely depend on
two (strictly positive) dimensionless numbers: the Bond number Bo, and the surface tension ratio y
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defined as
2
Bo, = 8¢ (12)
3n
9 =2 (13)
Y1

Indeed, because of (10), the usual capillary number Ca; = uU/y; is order of Bo; and therefore not
retained in the present analysis.

For axisymmetric flow, the velocity boundary-integral equation is then obtained (as illustrated
in Pozrikidis*’) by integrating over the azimuthal angle, the three-dimensional integral equation
expressing the unknown velocity u on d9(¢) in terms of the prescribed surface traction o - n. The
task then reduces to the determination of the velocity u in a given azimuthal half-plane where it
reads u = u,e, + uce, = ugeg with e, the unit radial vector, u, and u the radial and axial velocity
components, and § = r,z. As in the relation u = ugeg, we shall use throughout the paper the usual
summation convention over indices. Further dropping the time dependence and denoting by £, and
L the traces of the axisymmetric surfaces Sy(¢) and S;(¢) in the selected azimuthal half-plane, the
unit vector n on those contours writes n = n,e, + n;e, = ngeg. Adopting henceforth the same nota-
tions for the variables and the associated dimensionless variables, the resulting boundary-integral
equation takes the following form:

4mug(xo) — Cap(x,xoup(x)dl(x) =
LouLy
- Buptwro fae)ate) forwn € £0U £ (@ = ), (14)
Lov L
where the occurring components f; are defined as
fa(x) = (%VS ‘n— 12z) ng(x) forx € Lo, (15)
1
1
fa(x) = (gvs ‘n- 12z) ng(x) forx € L. (16)
1

In (14), the arising symbol f means a weakly singular integral in the principal value sense of
Cauchy* while the components By p(x,x0) and Cop(x,x0) which have been determined by Lee and
Leal* are provided in Pozrikidis® and also recalled in the Ref. 25. In our problem, the surface
traction f = f,e, + f,e, = fgeg is a prescribed quantity whose numerical evaluation requires the
accurate computation of both the normal components ng and the curvature Vg - n. Note also that, as
shown in Ref. 25, enforcing the boundary-integral equations for # on Ly U £; automatically ensures
so-called compatibility condition (9).

C. Numerical implementation

Details about the employed numerical method have been already provided in the Ref. 25 which
is however restricted to the case ¥ = 1. Here, we easily extend such a numerical implementation
to the case of unequal surface tensions (y # 1). Since only a few changes have been required, we
briefly recall the main features of the adopted numerical strategy while directing the reader to the
Ref. 25 for further details.

A collocation method is employed putting N, o and N, ; boundary elements on a truncated free
surface contour £ and on the bubble contour £, respectively. Each boundary element has two end
points and N, collocation points located using a uniform or a Gauss distribution law. Moreover,
an isoparametric (N, — 1)-order Lagrangian interpolation is used on each boundary element for the
position (r,z), the unknown velocity components (u,,u,), and the given surface traction (f,, f).
As explained in Ref. 25, using this interpolation permits one to evaluate accurately the required
curvature Vg - n and the unit normal n on each element.
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Boundary-integral equation (14) is then discretized and enforced at each collocation point
therefore ending up with a (2N, N,.)-equation linear system (with N, = N, o + N, 1) for the unknown
velocity components (u,,u;), while the surface traction components (f, f) at the collocation points
are known. Collecting those unknown velocity components in a vector U and the given surface
traction components in a second vector F, the (2N, N, )-equation linear system reads

U-C-U=B'F, a7

where (2N,N;) X (2N,.N,) square matrices C and B have components obtained by integrating over
the N, boundary elements the quantities C,p(x,x0) and B, g(x,Xo), respectively.

The accurate computations of the entries of both C and B, which require to calculate complete
elliptic integrals of the first and second kinds, are actually a challenging key step of the numerical
implementation. This part of the computation deserves the following remarks.

(i) Each boundary element i, (here 1 < i, < N,) is mapped onto the segment [—1,1]. Accord-
ingly, each component of C and B is an integral over [—1, 1] which also requires the determi-
nation of the derivative of the curvilinear abscissa along the selected boundary element (here
also done by using the Lagrangian interpolation).

(ii) The efficient computation of complete elliptic integrals of the first and second kinds* is here
achieved exploiting the polynomial approximations given in Chap. 17, Sec. 17.3.34 for the
first kind and Sec. 17.3.36 for the second kind of complete elliptic integrals of the Ref. 45
with an accuracy lesser than 2 x 1078

(iii) Each coeflicient of matrices C and B is an integral over a boundary element £;, (with
Je = 1,N,) for a given collocation point x;, ;. (with i, = 1, N, and i, = 1, N,). This integral
may either be regular for x;, ;. not belonging to £;, or weakly singular for x;, ;. on £;, . In
this latter case, the isolation and analytical integration techniques are applied so that one ends
up with the evaluation of two regular integrals.”

(iv) Each encountered regular integral (see the previous remark) is calculated to a prescribed
accuracy by the self-adaptive Voutsinas and Bergeles procedure.*

On theoretical ground the matrix C has a unit eigenvalue.*® The computed matrix C is then
found to exhibit some eigenvalues close to unity and resulting nearly singular linear system (17) is
therefore solved by resorting to a discrete Wielandt’s deflation (see more details in Ref. 25).

At each time ¢, the required velocity components (u,,u;) are gained at the collocation points
and further interpolated at end-points spread on the bubble and truncated free surface contours. The
liquid boundary is subsequently moved between times ¢ and ¢ + dt (dt > 0) by exploiting condition
(8). In practice, the knowledge of the fluid velocity at each collocation points and end-points of any
boundary element is used to move between times ¢ and ¢ + dt the position x corresponding to the
collocation or end points following the relation

dx(t)
Tl u(x,t). (18)
This is achieved by running the explicit third-order Runge-Kutta-Fehlberg scheme, with evolving
time step, proposed by Stoer and Bulirsch.*’

So doing, the moving collocation points have been sometimes found to concentrate near stag-
nation area (for instance, the bubble rear) as time increases therefore yielding stretched and thus
unsuitable meshes. Such troubles are circumvented by redistributing from time to time the colloca-
tion points over the concerned boundary elements. Such a redistribution is not necessarily uniform
(i.e., it may result in boundary elements of non-equal lengths) because small boundary elements
are employed in the vicinity of two close interfaces. Indeed, when fluid interfaces become closer
and closer, integrals involved in discrete form (17) require to be evaluated with a better accuracy.
In practice, this is obtained by adequately reducing the typical length of the boundary elements in
the area where the two interfaces are close by distributing elements non uniformly (here following a
geometric sequence keeping the total number of boundary elements constant), the smallest length of
the boundary elements being equal to the minimum gap between the two interfaces.
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lll. RESULTS AND DISCUSSION

The numerical method presented in Sec. II has been used to describe the rising of the bubble
toward the free surface when the surface tensions of each interface can be unequal (¥ # 1). In order
to adequately select the length of the truncated free surface, the initial bubble location and the
numbers of boundary elements on the bubble interface and on the free surface interface preliminary
computations have been carefully done. The resulting suitable settings are discussed in Subsection
IIT A which might be skipped by the reader in a first reading.

A. Selected numerical settings and accuracy issue for close surfaces

The previously described numerical implementation still allows several basic choices: the num-
ber and size of the boundary elements, the initial bubble location, and the extent beyond which the
free surface is truncated before its discretization. As this is unfortunately the case when dealing with
the numerical treatment of a boundary-integral equation, there is however no theoretical conver-
gence theorem indicating how to adequately make such choices. Therefore, a preliminary numerical
investigation has been achieved to carefully quantify the results sensitivity to five settings.

(i) The number of boundary elements N, o and N, ; put on the truncated free surface contour and
bubble contour, respectively.
(ii)) The initial bubble location /; which is the distance (normalized by 2a) of the spherical bubble
center to the flat z = 0 undisturbed free surface.
(iii) The free surface truncation distance L (normalized by the bubble diameter 2a) beyond which
the free surface is not meshed (i.e., not taken into account).
(iv) The surface tension ratio y.
(v) The Bond number Bo;.

The bubble and the free surface shapes’ sensitivity to N, o and N, ; at different (dimensionless)
times has been first examined for Bo; =y =1, L = 5, and [; = 3/2. Taking N, o = 25 and N, ; = 20
was found to be sufficient to reach an O(1073) error in location for both evolving surfaces as long
as the normalized gap h between the ascending bubble and the free surface satisfies 7 > 10~3. Note
that for small / (see the nodes redistribution strategy discussed at the end of Sec. II C), the boundary
elements are of unequal lengths.

The computation sensitivity to the initial bubble location /; has been then examined for
Boy=9=1,L =5, N,o=25, and N, ; = 20. The results obtained for several values of /; > 1 are
illustrated in Fig. 2 which compares the computed shapes for two different bubble-free surface
gaps (a) h=0.5 and (b) h =1.77 X 1072, Clearly, for & = 0.5, both the bubble and free surface
shapes are nearly insensitive to the initial position /; > 1.5 while for close bubble and free surface
(h = 1.77 x 1072), all surfaces do not depend upon /; > 1. Actually, the bubble and the free surface
are taken, respectively, spherical and flat at initial time although those shapes are not the correct
ones due to the hydrodynamic interactions. Therefore, there is a transition regime during which the
surfaces evolve in time toward the correct ones. For /; = 1, such a transition regime is not finished
when i = 0.5 while it is the case when i = 1.77 x 1072, Finally, the film thickness history /(¢) has
been also found to be adequately tracked taking /; = 3/2.

Additional tests with Boj in the range [0.3,5] and ¥ in the range [0.2,5] have been performed
and showed that taking L = 5, [; = 3/2, N, o = 25, and N,,; = 20 ensures a sufficient accuracy level.

Finally, note that when the contours Ly and £, become very close near x( as it happens
for small A, the integrals encountered in the discretization of our boundary-integral equation (14)
become nearly singular. Consequently, one should use sufficiently small boundary elements near x
on each contour therefore ending up with N, o + N, ; large and consequently a great cpu-time cost.
A similar drawback occurs when local average curvature of any contour £, or £; becomes so large
that many small boundary elements are requested. For all those reasons, the numerical investigation
in time is in practice stopped as soon as the gap & between the bubble and the free surface becomes
less than 1073 or when troubles arise in the computation of the curvature V -n when evaluating
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FIG. 2. Computed bubble and truncated free surface shapes versus the initial bubble location /; for Boj=9 =1 and two
different gaps between the two interfaces: (a) h =0.5 and (b) h =1.77x 1072

using (15) or (16) the right-hand side of (14). Because of the factor Bol‘1 in (15) or (16), the troubles
due to the curvature evaluation are amplified at small Bo;.

B. Interface shapes versus Boqs and y

As previously noticed, the interactions between the bubble, with a uniform surface tension
v1, and a free surface, with a uniform surface tension 7y, are governed by the Bond number
Bo, = pga®/(3y:) and the surface tension ratio ¥ = yo/y;. This subsection pays attention to the
obtained bubble and free surface shapes versus (Boy,¥) at a few different normalized times ¢.

First, we consider in Fig. 3 (upper row) the computed shapes at Bo; = 1 for #p = 0, #; = 0.590,
and r, = 1.264 and ¥ = 0.2, 1, 5. For a given value of vy, (in practice a given Bond number Bo,
since the gravity is prescribed), the bubble and free surface shapes are clearly affected by the surface
tension of the free surface. Not surprisingly, for y = 0.2, the free surface is strongly deformed while
the bubble is still nearly spherical. As 7 increases, the bubble is more deformed while the free
surface is less affected. For ¢ = 5, the free surface remains weakly disturbed and the bubble, which
is trapped under the free surface while being pushed by the buoyancy force toward it, is forced
to change its nearly spherical shape into a lens shape. Decreasing the Bond number enhances the
previous trends (see the Bo; = 0.3 row in Fig. 3) because the shapes become more sensitive to the
surface tension effects (i.e., less dependent upon the gravity).

The case of a large Bond number Bo; = 5 is depicted in Fig. 4 (lower row) for normalized time
to =10, r; = 0.590, and #3 = 1.747 still for ¥ = 0.2, 1, and 5. The computed shapes have been also
depicted at the same times for Bo; = 1 in Fig. 4 (upper row). For large Bond number Bo; = 5, the
bubble and free surface shapes are strongly deformed whatever 9. The bubble shapes show a flat
bottom. The free surface deformation is enhanced for small surface tension ratio 9 as shown on the
plotted shapes in Fig. 4 obtained for ¥ = 0.2.
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3. Computed bubble and free surface shapes at normalized times 79 =0,
¥=0.2, 1, and 5 for Boj =1 (upper row) and Boj =0.3 (lower row).

t1=0.590 (dashed lines), and ¢, = 1.264 for

As seen in Figs. 3 and 4, the implemented numerical method permits us to accurately track in
time the bubble and free surface shapes until the gap /& between those surfaces becomes small. In
practice, we stop the computations as soon as & becomes smaller 10~ and the resulting shapes are

termed “final numerical” shapes.
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4. Computed bubble and free surface shapes at normalized times 79 =0, #; =0.590 (dashed lines), and ¢3=1.747 for
$=0.2, 1, and 5 for Bo; =1 (upper row) and Bo; =5 (lower row).
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FIG. 5. “Final numerical” bubble and free surface shapes in the plane (Boj,¥). The addressed different Bond number and
surface tension ratio are indicated below the bubble by the pair (Boy, 7).

Those “final numerical” shapes have been computed for several values of (Boy,¥). The results
are displayed in Fig. 5 in which the shapes for > 1 and 7 < 1 are indicated in blue and red colors,
respectively. As previously pointed out and also experimentally observed in Nguyen et al.,*® both
(final) bubble and free surface shapes are affected as Bo; increases for ¥ = 1. More precisely, as Bo;
increases, the free surface becomes curved near the (0, z) axis whereas the bubble bottom becomes
nearly flat.

For 9 < 1, this time the free surface is more affected than the bubble shape as Bo; increases. In
contrast for ¥ > 1, the free surface is weakly modified and the bubble shape is strongly affected as §
increases.

At small Bond number (here, case Bo; = 0.3), the bubble is mainly spherical with eventually
a nearly flat top side when ¥ increases. It also does not expand away from the z-axis. This is very
different from the Bo; = 5 case in which the bubble shape expands away from the z-axis and flattens
(because of the volume conservation) as ¥ increases.

As already mentioned, the final time 77, at which the shapes reported in Fig. 5 are obtained,
depends upon (Boy, 7). For our bubbles of identical volumes, comparing the values of 7, permits one
to distinguish in the diagram (Boj,7) cases of slow and fast drainage. As indicated in Fig. 5, the
fastest drainage is obtained for Bo; small and § large. From Fig. 5, it also appears that the larger the
contact area between the bubble and the free surface is the slower the drainage is. This property will
be explained in Subsection III C.

Of course, for the “final numerical” shapes plotted in Fig. 5, the bubble does not touch the free
surface, i.e., the contact regime is never numerically reached. For 7, the reported bubble and free
surface are actually in a quasi-steady state whereas the liquid keeps flowing (mainly between the
bubble and the free surface) at a very slow rate. According to Hartland* and Lin and Slattery'3
or Howell,* a lubrication model is then more appropriate to further track in time the liquid film
thickness. In contrast to the present work, such a suitable lubrication theory can handle attractive
effects (such as van der Waals force) therefore predicting a film rupture in a finite time.

In absence of rupture a simple model to predict the final touching shapes is the static one
developed by Princen®® and Princen and Mason®' for a drop or a bubble stuck at a free surface. For
this model, there is no flow and the shapes are obtained by the hydrostatic pressure balance. As
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FIG. 6. Shape of touching static bubble and free surface (liquid film zero thickness).

illustrated in Fig. 6, the static bubble and free surface interactions are modeled by three different
surfaces: a top spherical cap representing the touching part of the bubble and the free surface, the
bubble interior interface (lower part of the bubble), and the static meniscus corresponding to the part
of the free surface which is not in contact with the bubble. The spherical cap is characterized by two
parameters: its radius Rc,, and the angle 6. for which it connects the bubble interior interface and
the static meniscus at a triple point. The key point in model by Princen and Mason is the location
of such a triple point for prescribed bubble volume, gravity field, and surface tensions y and ;.
This is here numerically done solving the equations given in the quoted papers (as already achieved
in Ref. 25 for 7 = 1 using Princen®®). Since ¥ # 1, we employ Princen and Mason®' which allows
different surface tensions, y and ;.

Before presenting, the results underline that the obtained shapes by Princen and Mason are here
shifted in the z direction so that the bubble north pole (on the z-axis) becomes the one observed for
the “final numerical” bubble shape given in Fig. 5.

The results for = 0.2 at Bo; = 0.3 and Bo; = 5 are given in Fig. 7. For such cases, the final
computed shapes are actually obtained for a final gap 7 = 1073, A good agreement is observed
for the bubble between the shapes by Princen and Mason and the “final numerical” shapes for
both selected Bond numbers. In addition, for Bo; = 0.3, the bubble is nearly spherical, i.e., weakly
disturbed by its interaction with a strongly deformed free surface.

In contrast, the “final numerical” and shifted free surface shapes by Princen and Mason are
not matching. This is because at f; (and although the gap reaches the value 1073), the liquid be-
tween the bubble and the free surface will further flow away from z-axis whereas the bubble has
already reached. Therefore, its final shape increases the surface of the near-contact area taking place
between the bubble and the free surface.

Similar comparisons made for ¥ = 5 at Bo; = 0.3 and at Bo; = 5 are displayed in Fig. 8. This
time, differences also exist for the bubble shapes. This is because beyond ¢ also the bubble still

! \ \ \ 1 ‘ ‘ ‘

F (a) BOI = 03, ’3/ =0.24 = (b) B01 = 5, ’A}/ =0.2

05 f 05} -

\
- 0. 0 05 1
r r

FIG. 7. Comparison between the “final numerical” (ty) bubble shapes (solid line) and the bubble shapes (dashed lines)
obtained by Princen and Mason®' for $ =0.2 at Bo; =0.3 (a) and Bo; = 5 (b).
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FIG. 8. Comparison between computed “final” (tf,,) bubble shapes (solid line) and the bubble shapes (dashed lines)
obtained by Princen and Mason’! at ¥ =5 and at (a) Bo; =0.3 and (b) Bo; =5.

expands away from the z-axis and therefore flattens due to its volume conservation. In contrast and
especially for y = 5, the free surface shapes are in better agreement thereby indicating that the free
surface is nearly converged at time fy. Comparing with ¥ = 0.2 (Fig. 7), the free surface is also less
deformed for ¥ = 5.

C. Film thickness versus Boq and y

In addition to the bubble and free surface shapes, another basic issue is the time behavior A(f) of
the liquid film thickness (on the z-axis) between the bubble and the free surface. Since the function
h(t) has been only obtained in Ref. 25 for § = 1, we analyse the dependency of /(f) on Boy and .

At low Bond number, the function /A(¢) is found to slightly depend upon the surface tension
ratio . This trend is illustrated for Bo; = 0.3 in Fig. 9(a) where A(t) is plotted, using a linear-log
scale, versus the dimensionless time ¢ either for < 1 or ¥ > 1 (taking /; = 1 for the initial bub-
ble location). As was already observed in Ref. 25 for 9 = 1, the gap h(r) adopts, after a short
transition regime, an exponential decay. This behavior is also established whatever the selected
surface tension ratio 9. However, increasing 7 is clearly seen to enhance the liquid film drainage.
In other words, the larger ¥ is the faster is the liquid film drainage. This behavior quantifies the
one previously pointed out for Bo; = 0.3 row in Fig. 3. This effect illustrates the key influence
of the free surface deformation on the drainage rate. Indeed, when the surface tension ratio ¥ is
larger than unity, the free surface resists the bubble action and it weakly deforms and as a result,
the near-contact area between the bubble and the free surface shrinks. The constant buoyancy force
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FIG. 9. Film thickness & versus time ¢ for y =0.2, 0.3, 0.5, 1, 2, 5 and for Bo; =0.3 (a) and Bo; =1 (b).
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FIG. 10. Long-time thinning rate o versus Boj for several surface tension ratios y.

applied by the nearly steady bubble on the free surface is thus exerted on a small area and the liquid
between the close bubble and free surface is thus expelled away from the z-axis faster.

Increasing the Bond number Bo; inhibits the previous drainage rate sensitivity to . This
behavior is clearly observed in Fig. 9(b) for Bo; = 1. Moreover, the drainage becomes nearly
insensitive to ¥ > 1 while it weakly depends upon ¥ < 1.

Our previous results show that the film thickness exhibits a long-time exponential decay. At
sufficiently large normalized time (¢ > O(1)), one actually gets

h(t) = hoe ", (19)

with @ > 0 the thinning rate which depends upon the Bond number and the surface tension ratio.

It is straightforward to extract from our numerical computations the numerical value of @ for
several pairs (Boy,7). The associated results are plotted in Fig. 10 for several values of ¥ versus Bo;
in the range [0.2; 5]. It is found that « increases with 7 for a given Bond number. In addition, for a
given surface tension ratio 7, the thinning rate « is nearly constant for large Bo; while it increases as
Bo; becomes small.

As shown in Subsection III B, the “final numerical” bubble and free surface shapes compare
well against the static forms predicted by the model of Princen and Mason.’! Consequently and
according to the previous work of Kocdrkova et al.,>” we can think about deriving a simple model
to estimate the thinning rate whatever the surface tension ratio 7. According to Ko¢arkova et al.,”’
the task consists in determining the area of the spherical cap S, created when the bubble reaches its
static form (recall Fig. 6).

Assuming shear-free interfaces and a sufficiently small film thickness, the liquid axial veloc-
ity component is nearly uniform over the film thickness.’> In other words, the flow of the liquid
between the nearly touching bubble and free surface is purely extensional, i.e., the tangential and
azimuthal stresses can be neglected compare with the radial stress. In such a case, the radial
viscous stress o7 is characterized by the extensional viscosity, or “tensile” viscosity,> given by the
following relation:

o = 6Ué, (20)
where the rate-of-strain € is, according to Petrie,>’ given by

., —ldh
€= ——.

2h dt
The thinning of the thin liquid film is due to the pressure imposed by the rising bubble on the

lower side and by the free surface on the upper side. The flow in the liquid film is analogous to the
flow taking place between two very close disks having a surface area Sc,p. The tensile stress or is

ey
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FIG. 11. Normalized spherical cap area Scap/ a? versus (1+79)Bo;/(29) for several surface tension ratios in the domain of
small Bond numbers.

thus balanced by the buoyancy force imposed to the spherical cap. Hence,
ldh pgina’
Hnar = 35.

Combining behaviour (20) with relation (22) then provides the normalized thinning rate as
follows:

or =

(22)

2 a?
a=— .
9 Scap

According to (23), it is thus sufficient to determine the area Sc,, which depends upon both Bo,
and 7. As shown in Princen and Mason,’! the distance D, indicated in Fig. 6 is in the limit of small
Bond number proportional to the square root of the small Bond number and the harmony average of
the surface tensions of the two close interfaces. Therefore, the dimensionless ratio Sc,p/ a® exhibits
the following behaviour:

(23)

cap

> ~dnyas xy — 0, (24)
a
for which the variable y is defined as
1+79)B
- w_ (25)
2y

Note that y turns out to be the “arithmetic” average of the two Bond numbers based on the free
surface and bubble surface tensions since
2 2
X = l(BOQ-{- Boy), with Bog = &, Bo; = psa .
2 3v0 N
Prediction (24) is first compared, at small y, against computations issued from the Princen and
Mason static model by plotting in Fig. 11 the ratio Sc,p/ a? versus the quantity y. Clearly, the static
numerical solution perfectly matches with (24). Since our “final numerical” shapes agree well with
the static shapes obtained from Princen and Mason, we can therefore employ (24) for the present
work.
The combination of Eq. (23) with estimate (24) of Scyp/a” yields the following asymptotic
behaviour of the thinning rate

(26)

az@,as/\/ — 0. 27

Behavior (27) is now compared against our boundary element code results by plotting in
Fig. 12 the numerical thinning rate @ versus the parameter y for different values of 9. The thinning
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FIG. 12. Computed long-time thinning rate a versus y for several values of the surface tension ratios y.

rates obtained for different y are seen to gather near a master curve. Moreover, two trends clearly
appear: first, at small Bond number, « follows the behavior given by Eq. (27) and second, at large
Bond number, the thinning rate @ reaches the asymptotic value @, ~ 0.158. From these results, the
thinning rate « is described over the entire range of y by the following estimate:

1
a= 8y + Qoo (28)
Therefore, (28) provides a very simple relation to estimate the thinning rate versus the average Bond
number y whatever (Boy, 7).

Proposed approximation (28), plotted as a solid line in Fig. 12, agrees well with our Bound-
ary Element Method (BEM) numerical values especially for < 0.5. It is because our numerical
computation stops for 7 = 1073 and, depending upon 7, the long-time drainage law is more or
less accurately obtained. This feature is clearly illustrated when turning back to Figs. 7 and 8. For
Fig. 7(a), the “final numerical” bubble shape is almost the static one predicted by Princen and
Mason.’! In that case, y = 0.9 and one gets an excellent agreement between numerical drainage
rate ayym = 0.2196 and theoretical (28) drainage rate ay, = 0.2197. For Fig. 7(b), this time y = 15
and @,,m = 0.1583 underestimates the theoretical value ay, = 0.1617 because the “final numerical”
bubble shape exhibits now small differences with the static shape.’! As shown in Fig. 8, for § = 5,
the “final numerical” and static bubble shapes exhibit larger differences and this explains why the
error made in @ increases.

. : .
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FIG. 13. Timescale of liquid film drainage 7, as a function of a for a molten glass with g =20 Pas, p =2350 kg/m?, and
y1=0.36 N/m.
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In applications, one can use the long-time thinning rate « to estimate the liquid drainage time
scale as #4; = 1/a@. Going back to dimensional variables, such as drainage timescale then reads

B 3(1 + P)ua
y17 +3(1 +9)pga’ac

As example, we apply (29) to a molten glass with temperature 1400 °C (which is commonly
observed in industrial furnaces) at which the dynamic viscosity is u =20 Pas. According to
Scholze,>* above the glass transition temperature, this molten glass has a density p = 2350 kg/m?
while the surface tension for the bubble interface is y; = 0.36 N/m. The resulting timescale #4, given
by (29) is plotted in Fig. 13 versus the bubble initial radius a for y = 0.2, 1, 5. In agreement with
the previous observations for the thinning rate, the drainage timescale 74, decreases as the surface
tension ratio y increases.

Moreover, 4, exhibits a non-monotonous dependence versus a behaviour since it increases for
a small bubble radius and decreases at large bubble radius. For those limits, one actually gets from
(29) the leading behaviors

Lar (29)

18(1 + 9
tar ™ 181 +7) . 7) ua for small bubble, (30)
Y Y1
16
tar ~ — —E for large bubble. G1)
« pga

Inspecting (30) and (31) reveals that for small bubbles, the drainage timescale is mainly driven by
a balance between capillary and viscous effects while for large bubbles, it is driven by a balance
between the gravity and viscous forces. The crossover of two asymptotic behaviors (30) and (31)
takes place for a bubble having initial radius a of order of the capillary length. Indeed, from (29), the
maximum of #; is easily found to occur for a critical initial radius a. given by

Y71 Leap
de = / ! = ~ 1.0271,, (32)
31+ 9)pgee  Véaw P

with, in the case of two unequal surface tensions, a capillary length [, defined as

29y1
.. :,/—. 33
LN A+9)pg G

In this work, it has been possible to numerically track in time the axisymmetric shapes of a bub-
ble and a free surface interacting when having different uniform surface tensions under the gravity
field. Within the adopted creeping flow approximation, the task reduces to the treatment, at each
time step, of a well-posed boundary-integral equation and one ends up with two key dimensionless
parameters: the Bond number Bo; and the surface tension ratio y.

The accuracy of the implemented numerical method is ensured by adequately selecting some
key parameters of the code: the number of boundary elements used to discretize the fluid interfaces,
the initial bubble location, and the distance beyond which the free surface is truncated.

The sensitivity of the bubble and free surface shapes has been investigated for a large range of
Bond numbers and surface tension ratios and the bubble and free surface shapes have been classified
in a summary diagram. The shape deformation is found to increase with the Bond number and, at
small Bond number, the shapes are sensitive to the surface tension ratio. Moreover, in the final stage
of its rising, the bubble reaches a quasi-static form which compares well with the previous static
model of Princen and Mason.”!

The film drainage has been also found to exhibit an exponential decrease with time as was
already observed in Refs. 22, 25, and 27. Moreover, the effect of the free surface deformation, due to
the increase of the Bond number or the decrease of the surface tension of the free surface, is clearly
observed. In addition, it has been shown that the film drainage is strongly driven by the area of the

IV. CONCLUSION
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spherical cap shape adopted by the bubble top when it reaches its quasi-static form very close the
free surface.

The thinning rate, corresponding to the opposite of the logarithmic derivative of the long-time
liquid film thickness with the time, has been determined from the BEM numerical simulations.
The results are in agreement with the predictions of a simple model in which the liquid film flow
between the two close bubble and free surface interfaces is approximated by a pure extensional flow
between two very close disks having the same area, Scap, as the one of the spherical cap employed
to approximate in the Princen and Mason static model the top of the bubble when it touches the free
surface. As a consequence, it has been possible to adequately estimate the thinning rate @ versus
the quantity y = (1 + 7)Bo;/(27) as a very simple function @ = 1/(18 y) + @ in the entire range of
x > 0 (with @ = 0.158).

The results obtained for @ permit one to draw basic conclusions on the typical time scale #4,
of the liquid film drainage between a bubble and a free surface. For a bubble size much smaller
than the capillary length, ¢4 is proportional to the bubble size and solely depends on the dynamic
viscosity and the surface tensions of the bubble and free surface interfaces. For a large bubble
compared with the capillary length, ¢4, this time becomes independent of the free surface and bubble
surface tensions and linearly depends upon 1/a. Accordingly, the largest value of 74, is gained for a
bubble with initial radius of order of the capillary length.

However, one should keep in mind that for applications other phenomena, neglected in our
model, can play either a stabilizing (bubble lifetime increase as obtained, for instance, when evapo-
ration acts?!) or destabilizing (bubble lifetime decrease) role.

1'C. Jaupart and C. J. Allegre, “Gas content, eruption rate and instabilities of eruption regime in silicic volcanoes,” Earth
Planet. Sci. Lett. 102, 413-429 (1991).
2A.A. Proussevitch, D. L. Sahagian, and V. A. Kutolin, “Stability of foams in silicate melts,” J. Volcanol. Geotherm. Res.
59, 161-178 (1993).
3 H. A. Jakobsen, Chemical Reactor Modeling (Springer-Verlag, Berlin, 2008).
4J. Senée, B. Robillard, and M. Vignes-Adler, “Films and foams of Champagne wines,” Food Hydrocolloids 13, 15-26 (1999).
5 P. Hrma, “Model for a steady state foam blanket,” J. Colloid Interface Sci. 134, 161-168 (1990).
6 L. Pilon, “Foams in glass manufacture.” in Foam Engineering: Fundamentals and Aplications, edited by P. Stevenson (John
Wiley & Sons, Ltd., Chichester, UK, 2012), Chap. 16, pp. 355-409.
7T. Gillespie and E. K. Rideal, “The coalescence of drops at an oil-water interface,” Trans. Faraday Soc. 52, 173-183 (1956).
8R. S. Allan, G. E. Charles, and S. G. Mason, “The approach of gas bubbles to a gas/liquid interface,” J. Colloid Sci. 16,
150-165 (1961).
? G. E. Charles and S. G. Mason, “The coalescence of liquid drops with flat liquid/liquid interfaces,” J. Colloid Sci. 15,
236-267 (1960).
10y C.Lee and T. D. Hodgson, “Film flow and coalescence-I Basic relations, film shape and criteria for interface mobility,”
Chem. Eng. Sci. 23, 1375-1397 (1968).
1K A. Burrill and D. R. Woods, “Change in interface and film shapes for a deformable drop at a deformable liquid-liquid
interface Part I. Film hydrodynamic pressure and interface shapes,” J. Colloid Sci. 30, 511-524 (1969).
12K. A. Burrill and D. R. Woods, “Film shapes for deformable drops at liquid-liquid interfaces II. The mechanims of film
drainage,” J. Colloid Sci. 42, 15-34 (1973).
13 C.-Y. Lin and J. C. Slattery, “Thinning of a liquid film as a small drop or bubble approaches a fluid-fluid interface,” AIChE
J. 28, 786-792 (1982).
143 _D. Chen, P. S. Hahn, and J. C. Slattery, “Coalescence time for a small drop or bubble at a fluid-fluid interface,” AIChE J.
30, 622-630 (1984).
15 A.F. Jones and S. D. R. Wilson, “The film drainage problem in droplet coalescence,” J. Fluid Mech. 87, 263-288 (1978).
165, G. Yiantsios and R. H. Davis, “On the buoyancy-driven motion of a drop towards a rigid surface or a deformable interface,”
J. Fluid Mech. 217, 547-573 (1990).
17D, Y. C. Chan, E. Klaseboer, and R. Manica, “Film drainage and coalescence between deformable drops and bubbles,” Soft
Matter 7, 2235-2264 (2011).
18y C. Slattery, L. Sagis, and E.-S. Oh, Interfacial Transport Phenomena (Springer Science+Business Media, New York,
2007).
193, Kappel, R. Conradt, and H. Scholze, “Foaming behaviour on glass melts,” Glastech. Ber. 60, 189-201 (1987).
20 p. Laimbdck, “Foaming of glass melts,” Ph.D. thesis (Technische Universiteit Eindhoven, 1998).
21 E. Pigeonneau, H. Kotdrkov, and F. Rouyer, “Stability of vertical films of molten glass due to evaporation,” Colloids Surf.,
A 408, 8-16 (2012).
2G. Debrégeas, P.-G. de Gennes, and F. Brochard-Wyart, “The life and death of bare viscous bubbles,” Science 279,
1704-1707 (1998).
23 p. D. Howell, “The draining of a two-dimensional bubble,” J. Eng. Math. 35, 251-272 (1999).
24 3. van der Schaaf and R. G. C. Beerkens, “A model for foam formation, stability, and breakdown in glass-melting furnaces,”
J. Colloid Interface Sci. 295, 218-229 (2006).


http://dx.doi.org/10.1016/0012-821X(91)90032-D
http://dx.doi.org/10.1016/0012-821X(91)90032-D
http://dx.doi.org/10.1016/0377-0273(93)90084-5
http://dx.doi.org/10.1016/S0268-005X(98)00061-7
http://dx.doi.org/10.1016/0021-9797(90)90262-M
http://dx.doi.org/10.1039/tf9565200173
http://dx.doi.org/10.1016/0095-8522(61)90014-9
http://dx.doi.org/10.1016/0095-8522(60)90026-X
http://dx.doi.org/10.1016/0009-2509(68)89047-5
http://dx.doi.org/10.1016/0021-9797(69)90420-2
http://dx.doi.org/10.1016/0021-9797(73)90004-0
http://dx.doi.org/10.1002/aic.690280513
http://dx.doi.org/10.1002/aic.690280513
http://dx.doi.org/10.1002/aic.690300413
http://dx.doi.org/10.1017/S0022112078001585
http://dx.doi.org/10.1017/S0022112090000842
http://dx.doi.org/10.1039/C0SM00812E
http://dx.doi.org/10.1039/C0SM00812E
http://dx.doi.org/10.1016/j.colsurfa.2012.04.014
http://dx.doi.org/10.1016/j.colsurfa.2012.04.014
http://dx.doi.org/10.1126/science.279.5357.1704
http://dx.doi.org/10.1023/A:1004399105606
http://dx.doi.org/10.1016/j.jcis.2005.07.068

043102-18 Guémas, Sellier, and Pigeonneau Phys. Fluids 27, 043102 (2015)

25 F. Pigeonneau and A. Sellier, “Low-Reynolds-number gravity-driven migration and deformation of bubbles near a free
surface,” Phys. Fluids 23, 092102 (2011).

26 H. Kotarkovd, “Stabilité des mousses de verre : Expériences a I’échelle d’une bulle ou d’un film vertical (in English),” Ph.D.
thesis (Université Paris-Est, Marne la Vallée, 2011).

2T H. Kotarkovd, F. Rouyer, and F. Pigeonneau, “Film drainage of viscous liquid on top of bare bubble: Influence of the bond
number,” Phys. Fluids 25, 022105 (2013).

28 N. M. Parikh, “Effect of atmosphere on surface tension of glass,” J. Am. Ceram. Soc. 41, 18-22 (1958).

29 V.1. Nizhenko and Yu. I. Smirnov, “Surface Phenomena and interfacial interaction at the glass-liquid tin-gas phase interface,”
Powder Metall. Met. Ceram. 42, 171-179 (2003).

30 J. Hadamard, “Mouvement permanent lent d’une sphére liquide et visqueuse dans un liquide visqueux,” C. R. Acad. Sci.
Paris 152, 1735-1738 (1911), available at: gallica.bnf.fr/ark:/12148/bpt6k3105c.image.langFr.

31'W. Rybezynski, “Uber die fortschreitende bewegun einer flussingen kugel in einem zaben medium,” Bull. de I’ Acad. des
Sci. de Cracovie, série A 1, 40-46 (1911).

32 Note that in (6), (7) and at some other places we dropped the time dependence for the surfaces So(¢) and S;(¢).

33 R. Aris, Vectors, Tensors and the Basic Equation of Fluid Mechanics (Dover Publications, Inc., New York, 1962).

34 C. W. Oseen, “Sur les formules de Green généralisées qui se présentent dans I’hydrodynamique et sur quelques-unes de
leurs applications,” Acta Mathematica 34, 205-284 (1911).

35 C. W. Oseen, “Sur les formules de Green généralisées qui se présentent dans I’hydrodynamique et sur quelques-unes de
leurs applications,” Acta Mathematica 35, 97-192 (1912).

36 F K. G. Odgvist, “Uber die Randwertaufgaben der Hydrodynamik ziher Fliissigkeiten,” Math. Z. 32, 329-375 (1930).

370. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow (Gordon and Breach, New York, 1963).

38 S. Kim and S. J. Karrila, Microhydrodynamics. Principles and Selected Applications (Dover Publications, Inc., New-York,
2005).

39 C. Pozrikidis, Boundary Integral and Singularity Methods for Linearized Viscous Flow (Cambridge University Press, Cam-
bridge, 1992).

40 M. Bonnet, Boundary Integral Method for Solid and Fluid (John Wiley & Sons Ltd., Chichester (UK), 1995).

41 A. Sellier, “Boundary element technique for slow viscous flows about particles,” in Boundary Element Methods in Engi-
neering and Sciences (World Scientific, 2010), Vol. 4, Chap. 7, pp. 239-281.

42 R. H. Davis, “Buoyancy-driven viscous interaction of a rising drop with a smaller trailing drop.” Phys. Fluids 11, 1016-1028
(1999).

43 J. Hadamard, Le probléme de Cauchy et les équations aux dérivées partielles linéaires hyperboliques (Hermann & Cie,
Paris, 1923).

4S.H. Lee and L. G. Leal, “The motion of a sphere in the presence of a deformable interface. II. A numerical study of the
translation of a sphere normal to an interface,” J. Colloid Interface Sci. 87, 81-106 (1982).

45 M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover Publications, Inc., New York, 1965).

46'S. Voutsinas and G. Bergeles, “Numerical calculation of singular integrals appearing in three-dimensional potential flow
problems,” Appl. Math. Modell. 14, 618-629 (1990).

47 3. Stoer and R. Bulirsch, Introduction to Numerical Analysis (Springer-Verlag, New York, 1993).

BCT Nguyen, H. M. Gonnermann, Y. Chen, C. Huber, A. A. Maiorano, A. Gouldstone, and J. Dufek, “Film drainage and
the lifetime of bubbles,” Geochem., Geophys., Geosyst. 14, 3616-3631, doi: 10.1002/ggge.20198 (2013).

49'S. Hartland, “The coalescence of a liquid drop at a liquid-liquid interface. Part IT: Film thickness,” Trans. Instn Chem. Engrs
45, T102-T108 (1967).

30 H. M. Princen, “Shape of a fluid drop at a liquid-liquid interface,” J. Colloid Sci. 18, 178—195 (1963).

SUH. M. Princen and S. G. Mason, “Shape of a fluid drop at a fluid-liquid interface II. Theory for three-phase systems,” J.
Colloid Sci. 20, 246-266 (1965).

52 P. D. Howell, “Models for thin viscous sheets,” Eur. J. Appl. Math. 7, 321-346 (1996).

53 C. J. S. Petrie, “Extensional viscosity: A critical discussion,” J. Non-Newtonian Fluid Mech. 137, 15-23 (2006).

54 Y. Scholze, Glass. Nature, Structures and Properties (Springer-Verlag, Berlin, 1990).


http://dx.doi.org/10.1063/1.3629815
http://dx.doi.org/10.1063/1.4792310
http://dx.doi.org/10.1111/j.1151-2916.1958.tb13497.x
http://dx.doi.org/10.1023/A:1024961916127
http://gallica.bnf.fr/ark:/12148/bpt6k3105c.image.langFr
http://gallica.bnf.fr/ark:/12148/bpt6k3105c.image.langFr
http://gallica.bnf.fr/ark:/12148/bpt6k3105c.image.langFr
http://gallica.bnf.fr/ark:/12148/bpt6k3105c.image.langFr
http://gallica.bnf.fr/ark:/12148/bpt6k3105c.image.langFr
http://gallica.bnf.fr/ark:/12148/bpt6k3105c.image.langFr
http://gallica.bnf.fr/ark:/12148/bpt6k3105c.image.langFr
http://gallica.bnf.fr/ark:/12148/bpt6k3105c.image.langFr
http://gallica.bnf.fr/ark:/12148/bpt6k3105c.image.langFr
http://gallica.bnf.fr/ark:/12148/bpt6k3105c.image.langFr
http://gallica.bnf.fr/ark:/12148/bpt6k3105c.image.langFr
http://gallica.bnf.fr/ark:/12148/bpt6k3105c.image.langFr
http://gallica.bnf.fr/ark:/12148/bpt6k3105c.image.langFr
http://gallica.bnf.fr/ark:/12148/bpt6k3105c.image.langFr
http://gallica.bnf.fr/ark:/12148/bpt6k3105c.image.langFr
http://gallica.bnf.fr/ark:/12148/bpt6k3105c.image.langFr
http://gallica.bnf.fr/ark:/12148/bpt6k3105c.image.langFr
http://gallica.bnf.fr/ark:/12148/bpt6k3105c.image.langFr
http://gallica.bnf.fr/ark:/12148/bpt6k3105c.image.langFr
http://gallica.bnf.fr/ark:/12148/bpt6k3105c.image.langFr
http://gallica.bnf.fr/ark:/12148/bpt6k3105c.image.langFr
http://gallica.bnf.fr/ark:/12148/bpt6k3105c.image.langFr
http://gallica.bnf.fr/ark:/12148/bpt6k3105c.image.langFr
http://gallica.bnf.fr/ark:/12148/bpt6k3105c.image.langFr
http://gallica.bnf.fr/ark:/12148/bpt6k3105c.image.langFr
http://gallica.bnf.fr/ark:/12148/bpt6k3105c.image.langFr
http://gallica.bnf.fr/ark:/12148/bpt6k3105c.image.langFr
http://gallica.bnf.fr/ark:/12148/bpt6k3105c.image.langFr
http://gallica.bnf.fr/ark:/12148/bpt6k3105c.image.langFr
http://gallica.bnf.fr/ark:/12148/bpt6k3105c.image.langFr
http://gallica.bnf.fr/ark:/12148/bpt6k3105c.image.langFr
http://gallica.bnf.fr/ark:/12148/bpt6k3105c.image.langFr
http://gallica.bnf.fr/ark:/12148/bpt6k3105c.image.langFr
http://gallica.bnf.fr/ark:/12148/bpt6k3105c.image.langFr
http://gallica.bnf.fr/ark:/12148/bpt6k3105c.image.langFr
http://gallica.bnf.fr/ark:/12148/bpt6k3105c.image.langFr
http://gallica.bnf.fr/ark:/12148/bpt6k3105c.image.langFr
http://gallica.bnf.fr/ark:/12148/bpt6k3105c.image.langFr
http://gallica.bnf.fr/ark:/12148/bpt6k3105c.image.langFr
http://gallica.bnf.fr/ark:/12148/bpt6k3105c.image.langFr
http://gallica.bnf.fr/ark:/12148/bpt6k3105c.image.langFr
http://gallica.bnf.fr/ark:/12148/bpt6k3105c.image.langFr
http://gallica.bnf.fr/ark:/12148/bpt6k3105c.image.langFr
http://gallica.bnf.fr/ark:/12148/bpt6k3105c.image.langFr
http://gallica.bnf.fr/ark:/12148/bpt6k3105c.image.langFr
http://gallica.bnf.fr/ark:/12148/bpt6k3105c.image.langFr
http://gallica.bnf.fr/ark:/12148/bpt6k3105c.image.langFr
http://gallica.bnf.fr/ark:/12148/bpt6k3105c.image.langFr
http://gallica.bnf.fr/ark:/12148/bpt6k3105c.image.langFr
http://dx.doi.org/10.1007/BF02393128
http://dx.doi.org/10.1007/BF02418815
http://dx.doi.org/10.1007/BF01194638
http://dx.doi.org/10.1063/1.869973
http://dx.doi.org/10.1016/0021-9797(82)90373-3
http://dx.doi.org/10.1016/0307-904X(90)90021-V
http://dx.doi.org/10.1002/ggge.20198
http://dx.doi.org/10.1016/0095-8522(63)90008-4
http://dx.doi.org/10.1016/0095-8522(65)90015-2
http://dx.doi.org/10.1016/0095-8522(65)90015-2
http://dx.doi.org/10.1017/S0956792500002400
http://dx.doi.org/10.1016/j.jnnfm.2006.01.011

