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Because of their flexibility, trees and other plants deform with great amplitude

(reconfigure) when subjected to fluid flow. Hence the drag they encounter does not

grow with the square of the flow velocity as it would on a classical bluff body, but rather

in a less pronounced way. The reconfiguration of actual plants has been studied

abundantly in wind tunnels and hydraulic canals, and recently a theoretical under-

standing of reconfiguration has been brought by combining modelling and experimen-

tation on simple systems such as filaments and flat plates. These simple systems have a

significant difference with actual plants in the fact that they are not porous: fluid only

flows around them, not through them. We present experimentation and modelling of

the reconfiguration of a poroelastic system. Proper scaling of the drag and the fluid

loading allows comparing the reconfiguration regimes of porous systems to those of

geometrically simple systems. Through theoretical modelling, it is found that porosity

affects the scaling of the drag with flow velocity. For high porosity systems, the scaling

is the same as for isolated filaments while at low porosity, the scaling is constant for a

large range of porosity values. The scalings for the extreme values of porosity are also

obtained through dimensional analysis.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Phenomena of fluid–structure interactions are ubiquitous in vegetation due to the great flexibility of plants (de Langre,
2008). For example, wind causes waves on the surface of wheat fields (Py et al., 2006), the blades of giant kelp squeeze into
tight bundles when subjected to tidal flow (Koehl and Alberte, 1988), and the leaves of poplar trees flutter at the slightest
breeze (Niklas, 1991). The great flexibility of plants comes as the solution to an optimisation problem plants face: that of
maximising surface area and height to capture sunlight with a finite quantity of material (Vogel, 1984).

In this paper, we are specifically concerned with the static drag of plants and how their flexibility allows for a
minimisation of the stresses encountered. It is essential to understand the fluid loadings on vegetation in order to devise
better models to comprehend and predict wind damages to forests (Dupont and Brunet, 2006), crops (Baker, 1995) and
shore vegetation (Boizard and Mitchell, 2009), as well as to study the adaptation of aquatic and terrestrial plants to their
environment.

The problem of the drag of vegetation is complicated by the fact that when subjected to fluid flow, trees and other
plants deform with great amplitude because of their flexibility. Through deformation, plants encounter fluid loadings
much smaller than if they were rigid (Vogel, 1996). We say that they reconfigure (Vogel, 1984), i.e., they reduce their cross-
sectional area and become more streamlined. To quantify the effect of reconfiguration on drag reduction, we use the Vogel
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exponent V which expresses the deviation from the classical scaling law of a rigid bluff body

FpU2þV
1 , ð1Þ

where F is the drag load and U1 is the flow velocity. For example, the leaf of the tulip tree rolls up into a cone when
subjected to increasing wind speed (Vogel, 1989) hence decreasing its cross-sectional area and becoming more
streamlined. This reconfiguration has for effect that the drag on the leaf increases more or less linearly with flow speed
(V ��1). The reconfigurations of many species of plants have been studied in wind tunnels, tow tanks and hydraulic
canals. Collections of measures of reconfiguration and Vogel exponents for various species can be found in Vogel (1996,
p. 143) as well as Harder et al. (2004). Moreover, some man made structures do experience drag reduction due to large
amplitude reconfiguration such as aquaculture net cages (Moe et al., 2010).

Recently a more fundamental understanding of the mechanisms of reconfiguration has been brought by combining
modelling and experimentation on simple systems such as filaments and flat plates (Shelley and Zhang, 2011). Alben et al.
(2002, 2004) studied the reconfiguration of a flexible filament supported at its centre in a 2-D soap film flow. The drag
reduction and the bending deformation of the filament measured experimentally were properly modelled with a potential
flow theory coupled with a Euler–Bernoulli beam formulation. From their experimental and theoretical results (Alben
et al., 2004) concluded that the scaling of the drag of the fibre transitioned from a rigid regime (V ¼ 0) to a large
deformation regime with V ¼� 2

3 as the hydrodynamic force was increased with respect to the rigidity of the fibre.
Gosselin (2009) and Gosselin et al. (2010) compared drag measurements of flexible thin plates in a wind tunnel with

predictions from a simplified model based on an empirical drag formulation. The simplified model predicts well the
reconfiguration of plates and further comparisons showed that the reconfiguration of a rectangular flexible plate
supported at its centre in a wind tunnel is identical to that of a filament in a soap film as studied by Alben et al. (2002,
2004). Moreover, Gosselin et al. (2010) showed that in the regime of large deformation, the scaling of the drag with the
flow velocity can be deduced by dimensional analysis through the assumption that for a very deformed system, the
original characteristic length becomes irrelevant. Consider the 2-D reconfiguration of an elastic system with drag per unit
width F=W and bending rigidity per unit width EI=W subjected to a fluid flow of velocity U1 and density r. If it is assumed
that the elastic body is so deformed that its original length ‘ is irrelevant, the four quantities can be combined into a single
dimensionless number required to describe the problem:

F

WðEI=WÞ1=3r2=3U4=3
1

:

From this dimensionless number, the scaling FpU4=3
1 and equivalently the Vogel exponent V ¼� 2

3 can be deduced, in
agreement with the potential flow theory of Alben et al. (2004).

Schouveiler and Boudaoud (2006) explored the 3-D reconfiguration of a circular flat plate cut along a radius and
supported at its centre. When subjected to water flow, the circular plate rolled up into a cone which became tighter as the
flow rate was increased similarly to the tuliptree leaf of Vogel (1989). The drag and reconfiguration of the circular plates of
Schouveiler and Boudaoud (2006) was well matched by the predictions of a simplified momentum conservation model.
Moreover, this model predicted that in the large deformation regime, the scaling of the drag with flow velocity should obey
a Vogel exponent of V ¼� 4

3 while Gosselin et al. (2010) obtained that same value with a dimensionless analysis similar to
the one discussed above applied to the 3-D reconfiguration of a flat plate.

The study of the reconfiguration of idealised systems allowed understanding the basic mechanisms of drag reduction
affecting trees and vegetation. However, a major difference separates beams and plates from actual trees: fluid must flow
around simple obstacles while wind flows trough a porous structure such as a tree. The elements composing the plants like
the leaves and the branches perceive an effective flow velocity modified from that of the free stream velocity. Because the
plant is a poroelastic system, when reconfiguring, it modifies this effective flow velocity.

Modelling this type of poroelastic structures has recently gained a lot of attention for all sorts of applications. Py et al.
(2006) as well as Dupont et al. (2010) used an averaging technique to model the drag force of a swaying crop canopy as a
volumetric force coupled with the momentum conservation equations of the flow. Similarly, Favier et al. (2009) modelled
the effect of a passively deforming homogeneous layer of hairlike structures on the fluctuating drag of a bluff body and
Ricciardi et al. (2009) studied the non-linear stability of a nuclear reactor core.

The goal of the present paper is thus to characterise the effect on reconfiguration of poroelasticity. Extensive wind
tunnel testing was realised on poroelastic bodies as well as flexible filaments. These experimental results allow us to
define a proper Cauchy number which governs the problem of reconfiguration and accounts for geometry, Reynolds and
porosity effects. Moreover, with a simple theoretical model for the reconfiguration of the poroelastic system studied, we
investigate the mechanisms of drag reduction and study the effect of porosity on reconfiguration. A dimensional analysis is
presented to obtain the scaling of the drag with flow velocity for poroelastic bodies in the large deformation regime.
2. Experiments

To understand the effect of porosity on the problem of reconfiguration, we performed experiments in a wind tunnel to
measure the drag of simple filaments as well as that of poroelastic bodies.
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2.1. Methodology

We measured the drag of flexible cylindrical filaments of diameter d, length ‘ and flexural rigidity EI (Fig. 1). Three
specimens of filaments supported at their centre were tested, their properties are given in Table 1. Because the filaments
were small and had little drag, 50 identical filaments were mounted on a specially designed support to test them in the
wind tunnel (Fig. 2). A significant measure of drag could thus be obtained. The spacing between the filaments on the
support was of 10 diameters in the transverse direction and 40 diameters in the streamwise direction. The interaction
between filaments is thus neglected. To avoid a bidimensional deformation, the filaments were mounted vertically in the
wind tunnel. Hence, the lower half of a filament is rigidified by gravity and the upper half is effectively more flexible. On
the whole filament, the effect of gravity is compensated and thus lessened. Regardless, at high flow velocity, aerodynamic
loading becomes much larger than weight. In addition to the three flexible filaments, rigid cylinders of the same
dimensions were tested.

The poroelastic system studied is a ball of diameter D made of N round filaments of diameter d tied together at
the center of the ball (Fig. 3). The core of the ball where all the filaments are tied is relatively rigid and has a diameter Di.
The ball is screwed onto a downstream support which transmits the drag force to the force sensor. The specimens were
manufactured by Hasbro and sold as toys under the name of ‘‘Koosh balls’’. The flexural rigidity EI of the filaments forming
the ball was found by measuring the natural frequency of a single cantilever filament using a high-speed camera. Two
poroelastic specimens were tested in the wind tunnel, their characteristics are given in Table 2. Moreover, a rigid porous
specimen built with finishing nails planted in a styrofoam ball was tested (Fig. 4).

These laboratory experiments were conducted in a small Eiffel wind tunnel with a test section of 0.180 m�0.180 m.
The wind stream is produced by a centrifugal fan mounted downstream and exhausting air vertically. The mean velocity in
the test section can be varied from 5 to 30 m/s with a turbulence level of 1.5% at 10 m/s.
U

F

d

Fig. 1. Schematic diagram of the support holding 50 identical filaments and details of one filament.

Table 1
Parameter values of the tested flexible filaments and rigid cylinders.

‘ (cm) d (cm) EI=d ð10�6 N mÞ

f1 4.0 0.094 127

f2 7.4 0.094 127

f3 11.6 0.094 127

c1 4.0 0.094 –

c2 7.4 0.094 –

c3 11.6 0.094 –

Fig. 2. Photograph of the support holding 50 filaments of length ‘¼ 7:4 subjected to an air flow of 20 m/s.
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Fig. 3. Schematic of the poroelastic system.

Table 2
Parameter values of the tested flexible and rigid porous specimens.

D (cm) Di (cm) d (cm) EI=d ð10�6 N mÞ N

FP1 8.9 3.1 0.094 127 900

FP2 5.4 1.6 0.068 38.1 1150

RP 8.9 3.0 0.09 – 530

Fig. 4. Photograph of the rigid porous specimen. It has the same dimensions as the first poroelastic specimen, but is made of less cylinders (N¼530).
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The different specimens tested were mounted on a support connected to a five-axis force sensor located under the wind
tunnel. The force sensor measured the drag of the specimen and a pitot-static system measured the flow velocity. For every
specimen at each flow velocity tested, the 24 bit data acquisition system collected the measurements of the drag and the
flow velocity for one minute and time-averaged the values. The drag on the support alone was measured and subtracted
from the drag of each specimen.

2.2. Reconfiguration and drag measurements

The deformation of the first poroelastic specimen (FP1) is shown in Fig. 5 for three flow velocities. At 5 m/s (Fig. 5(a)),
the deformation is small. As the flow velocity is increased further, the deformation becomes important and the filaments
bend with the flow. Note that on Fig. 5(b), a dynamic coherent movement of the filaments blurs the picture. We presume
that these coherent movements are due to a passive response of the filaments to vortex shedding on the ball. At 14 m/s,
the standard deviation of the drag measurement fluctuations is less than 8% of the time-averaged value. For this reason, in
this study of static reconfiguration, we neglect any dynamic effect due to vortex shedding, turbulence or other coupling
mechanisms.

The drag measurements of the filaments and the rigid cylinders are shown on Fig. 6(a) while those for the three porous
specimens are shown on Fig. 6(b). For both the cylinders and the porous systems, the increase of drag with flow velocity on
the rigid specimens is almost quadratic. However, the drag of all flexible specimens has a smaller dependence on the flow
velocity.

To analyse the effect of flexibility on drag, we must first characterise the drag of the rigid benchmark specimens. We
define a drag coefficient and a Reynolds number for the rigid cylinders CD ¼ 2F=rd‘U2

1 and Re¼ rdU1=m where F is the
measured drag force, U1 is the flow velocity and r and m are the fluid density and dynamic viscosity, respectively.



Fig. 5. Photographs of the deformation of the first poroelastic specimen in the wind tunnel at flow velocities of: (a) 5, (b) 14 and (c) 29 m/s.
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Fig. 7. Dependence of the drag coefficients on Reynolds number: �, rigid porous specimen and n, rigid cylinder c2.
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Similarly for the rigid porous specimen, we define a drag coefficient CD ¼ 8F=prD2U2
1 and use the same definition of

Reynolds number based on the diameter of a cylinder of the porous ball. On Fig. 7, the drag coefficient of the rigid cylinders
c2 as well as that of the rigid porous ball are shown in function of the Reynolds number. The effect of varying Reynolds
number on the drag coefficient is similar for a single cylinder as for a porous ball made of 530 cylinders. By extrapolating,
we could expect the effect of varying Reynolds number to be the same on a ball of 530, 900 or 1150 cylinders in the limit
where the porosity of the system is still large. Under this assumption, we know how the drag on rigid porous balls
equivalent to the poroelastic specimens studied varies and can thus isolate the effect of flexibility on the drag variation as
the flow velocity is varied. To extract from the drag measurements the variations due to flexibility and thus fully
appreciate the effect of reconfiguration, we develop appropriate dimensionless numbers.
2.3. Dimensionless numbers

We consider the drag F of a flexible slender cylindrical filament of length ‘, diameter d and flexural rigidity EI bending
due to a fluid flow of density r and velocity U1. We express this problem using the Cauchy number and the
reconfiguration number:

fCY ¼ CD
r‘3U2

1d

16EI
, R¼ F

1
2rCD‘dU2

1

: ð2Þ
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The Cauchy number characterises the reconfiguration of an elastic medium subjected to flow (Cermak and Isyumov, 1998;
Chakrabarti, 2002; de Langre, 2008; Gosselin et al., 2010). It is equal to the ratio of the aerodynamic force produced by the
fluid on the original shape of the structure over the rigidity of the structure. We use the definition introduced by Gosselin
et al. (2010) which includes the drag coefficient. This allows to take into account effects of geometry and Reynolds number.
The reconfiguration number R emphasises the effect of flexibility on the drag by comparing the drag of the flexible
filament to that of an equivalent rigid cylinder at the same Reynolds number.

For the poroelastic system, similar Cauchy and reconfiguration numbers can be defined based on the cross-sectional
area of the ball. A new quantity, the surface density, is introduced

fCY ¼ CD
rðD�DiÞ

3U2
1d

16EI
, R¼ 8F

rpD2CDU2
1

, Z¼
Nd

D

2
1
4pD2

¼
2Nd

pD
: ð3Þ

We define the surface density as the ratio of the cross-sectional area of all the components of the porous body (the N

filaments composing the ball) over the cross-sectional area of the undeformed poroelastic body.
The variation of R as function of fCY is shown in Fig. 8 for the three specimens of filaments ð&Þ. The new experimental

points are shown along with the results of Gosselin et al. (2010) on flexible rectangular plates (n) and those of Alben et al.
(2002) on flexible fibres in a soap film flow ( ). Despite the different geometries, dimensions, rigidity and type of flow, all
the data points collapse on a single curve. This confirms that the problems of reconfiguration of a filament and a
rectangular plate in a wind tunnel, as well as a fibre in a soap film flow are essentially the same problem, i.e., the same
dimensionless numbers characterise them and their reconfiguration is the same. Note that only the experimental points of
Gosselin et al. (2010) and Alben et al. (2002) where blockage of the test section was minimal where used otherwise the
reconfiguration is altered. Also note that superposition is only possible with the use of the Cauchy number definition of
Eq. (2) which includes the drag coefficient CD. Values of CD for the different specimens plotted in Fig. 8 vary from 0.7 for the
shortest filaments at the highest Reynolds number to 7 for the fibres in the soap film flow. The inclusion of the drag
coefficient in the Cauchy number allows to fully isolate effects of flexibility on the drag from Reynolds number and
geometry effects. For the sake of comparison, the reconfiguration curve predicted by the model of Gosselin et al. (2010)
which couples an empirical drag formulation to the large deformation of a Euler–Bernoulli beam is shown in solid line in
Fig. 8. The agreement between the experiments and the model is very good, and for this reason, the model is extended to
poroelastic systems in the following section.

The Cauchy number governs the problem of the reconfiguration of slender systems (Fig. 8). For small values of fCY , the
points are aligned on a horizontal line which indicates that the drag on the flexible objects varies as it would on a rigid

object. At values of fCY between 1 and 10, the reconfiguration number starts to decline as the specimens deform. As fCY

increases further, the decline of R seems to follow a constant logarithmic slope. Upon fitting a least square power law on

the data points of Fig. 8 where fCY 4100, one finds that RpfCY

�0:29
which corresponds to FpU1:42

1 or V ¼�0:58. This value

of Vogel exponent is in agreement with the dimensional analysis of Gosselin et al. (2010) which predicts a Vogel exponent
of V ¼�2=3 based on the assumption that the characteristic length of the original undeformed system becomes irrelevant
as presented in the introduction.

The reconfiguration curves for the first (�) and the second (3) flexible porous specimens are shown on Fig. 9. The two
curves are superimposed indicating that the Cauchy number is appropriate to describe the problem.

Differently from the reconfiguration of slender bodies in Fig. 8, the reconfiguration number of the poroelastic balls in
Fig. 9 increases slightly before decreasing. At fCY � 10, the drag of the poroelastic balls is 18% larger than that of identical
10
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Fig. 8. Superposition of the experimental measurements of drag on flexible slender systems: &, three flexible filaments tested in a wind tunnel; �, five

rectangular plates tested in a wind tunnel by Gosselin et al. (2010); , two fibres tested in a soap film flow by Alben et al. (2002) and —— the theoretical

model of Gosselin et al. (2010).
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Fig. 10. Collapse of the reconfiguration curves of porous (�) specimens as well as the slender specimens (filaments, rectangular plates, fibres, ) when

plotted in function of: (a) the Cauchy number alone fCY and (b) the Cauchy number divided by the surface density fCY =Z.
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rigid porous balls. This can be explained by the fact that the filaments which point upstream in the flow before the ball is
deformed must adopt a position where they are more or less perpendicular to the flow before bending downstream with
the flow (see Fig. 5(b)). Because of this, they significantly increase their drag. Some tree branches have been observed to
exhibit the same phenomenon (Vogel, 1984).

Another noticeable difference between Figs. 8 and 9, is that the drag reduction begins at fCY � 3 for the plates, fibres
and filaments while R only starts to decrease beyond fCY � 20 for the porous systems. The reconfiguration curve
for the porous systems is shifted to higher values of fCY . This difference is highlighted in Fig. 10(a) where R is plotted
for the slender specimens ( ) along with the poroelastic specimens (�) versus the Cauchy number. In Fig. 10(b),
the reconfiguration of both types of systems is plotted in function of the quotient of the Cauchy number by the surface
density fCY =Z. For the slender specimens, Z¼ 1 while for the first and second poroelastic specimens it can be calculated
from Eq. (3) with the data from Table 2 to be, respectively, Z¼ 6:1 and Z¼ 9:2. Dividing the Cauchy number by the
surface density amounts to dividing the aerodynamic load evenly on all the structural elements composing the porous
bodies.

For both porous and non-porous bodies, it is found that drag reduction begins at values of fCY =Z between 1 and 3. The
curves are not collapsed as their slopes on the logarithmic plot are different. However, the starting points of the drag
reduction of all systems studied are coalesced onto a point at fCY =Z between 1 and 3. It is shown with the following
theoretical model that this coalescence of the drag reduction starting point can be extended on a much greater scale of
surface density values.
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3. Theoretical model

3.1. Model derivation

We consider the deformation of a ball made up of a collection of N identical cylindrical beams uniformly spread and
clamped at the centre of the ball (Fig. 11(a)). The beams each have a bending rigidity EI, diameter d, length D=2 and form a
ball of diameter D. This system is subjected to a flow of uniform velocity U1 of an inviscid fluid of density r.

The schematic diagram of beam j part of the system along with the flow it perceives are shown in Fig. 11(b). The
undeformed beam j makes an angle Yj with the flow and has an azimuthal angle jj about the axis of the flow (Fig. 11(a)).
The lagrangian coordinate Sj is defined along the central axis of this beam from its clamped end to its free end. The
deformed shape of beam j is given by the local angle yjðSjÞ the beam makes with the flow.

We use an empirical formulation of the fluid forces based on the model of Gosselin et al. (2010). As in their work and
similarly to the modelling of the drag force on yawed cylinders by Taylor (1952), we approximate the pressure drag on a
beam in a potential flow with a conservation of momentum argument. We assume that the flow produces a force
proportional to the momentum it carries in the direction perpendicular to the beam. Upon setting this drag force on a
beam element equal to the shear force per unit length in a Euler–Bernoulli beam, we obtain

EI
@3yj

@S3
j

¼�
1

2
rdC0D½UjðSjÞsinyj�

2, ð4Þ

where C 0D is the drag coefficient of one beam inside the porous ball and where the velocity UjðSjÞ perceived by beam j is not
assumed constant, i.e., it varies along the beam since the part of the beam closer to the exterior of the ball sees higher flow
speed than the part of it deep inside the middle of the ball (Fig. 11(b)). We neglect the contacts between the beams so the
only coupling between the deformations of the N beams comes from the flow.

From Newton’s third law, the force produced by the beams on the flow can be written similarly. Every element dSj of
beam j creates a force perpendicular to itself on the fluid

fjðSjÞ ¼
1

2
rdC0DU2

j sin2yjdSj: ð5Þ

The system has a high number of degrees of freedom, since the number of beams N is of the order of 1000 and each
beam has a continuous deformation along its length. Moreover, the flow through the multiple beams is complex. Rather
than modelling all these degrees of freedom and this complexity of the flow, we use a homogenisation approach similar to
Py et al. (2006) and Favier et al. (2009). We consider the ball of beams as a poroelastic continuous media. Deformation of
beam j, yjðSjÞ, becomes a continuous function in Y, i.e., yðS,YÞ. By neglecting gravity, deformation of the system can be
considered axisymmetric in j. We can thus rewrite Eq. (4) as

EI
@3y
@S3
¼�

1

2
rdC0D½Usiny�2, ð6Þ

where U and y are functions of Y and S.
j(S j)

Θj

S j

S j

U

j

Uj(S j)

(a)

(b)

D

d

�

�

Fig. 11. (a) Schematic diagram of the poroelastic system modelled. (b) Detail of the deformation of beam j part of the system along with the flow the

beam perceives.



Fig. 12. (a) Schematic diagram of the deformation of the system and (b) detail of the section of a volume element dO of the poroelastic continuum.
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Homogenisation in space allows to model the forces that the beams exert on the flow as a body force. In a volume dO of
an element dSdYdj, as drawn in Fig. 12, are located NO ¼NsinðYÞdYdj=4p beams and the body force they exert on the
fluid is NO times the force of one beam element from Eq. (5), i.e.,

f ðS,YÞ ¼
N

4p
sinYdYdj

� �
1

2
rdC0DU2sin2ydS

� �
: ð7Þ

In the spirit of keeping the model simple, we make the approximation that the flow is always parallel to the axis of
axisymmetry of the system and neglect the transverse component, i.e., ~Uj ¼Uj~ex. It follows from this simplification that the
flow can be solved with the Bernoulli equation.

For purely axial flow, the fluid in the volume dO (Fig. 12) flows trough the surface RdRdj, where R is the eulerian
coordinate measured perpendicular to the axis of axisymmetry. From the transformation dR¼ dSsiny, we can write the loss
of pressure due to drag across the volume dO as

DP¼
f siny

RdRdj
: ð8Þ

To find the loss of velocity on a variation dY, we apply Bernoulli’s law, 1
2rU2ðR,YÞ ¼ 1

2rU2ðR,YþdYÞ�DP:

U2ðR,YÞ�U2ðR,YþdYÞ ¼�U2ðR,YþdYÞ
NsinYdYC0Ddsin2y

4pR
: ð9Þ

If the angle dY is small, Eq. (9) takes the form of a derivative

@U

@Y
¼U

NsinYC 0Ddsin2y
8pR

: ð10Þ

The beam located at Y¼ p encounters an unperturbed flow U1. For Yop, since the deformation of the beam varies with
R, the local flow velocity is a function of R.

The drag force of the entire poroelastic system is the integral over its volume of the axial component of the body force
of Eq. (7):

F ¼

Z p

0

N

2
sinY

Z D=2

0

1

2
rdC0DU2ðR,YÞsin3y dS dY: ð11Þ

To write the problem in a dimensionless way, we define the dimensionless lagrangian and eulerian coordinates, the
velocity, the surface density, as well as the reconfiguration and Cauchy number

s¼
2S

D
, r¼

R

D
, U ¼

U

U1
, Z¼ 2Nd

pD
, ð12Þ

R¼ F
1
8rpD2CDU2

1

, fCY ¼ CD
rD3U2

1d

16EI
, c¼

C0D
CD

,

where the reference drag of a rigid porous system is defined based on the macroscopic drag coefficient of the entire system
CD which is different from the microscopic drag coefficient of only one beam inside the ball C0D, and where c is the ratio of
both coefficients.
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With the parameters of Eqs. (12), Eqs. (6), (10) and (11) are made dimensionless:

@3y
@s3
¼�cfCY U

2
sin2y, ð13Þ

@U

@Y
¼U

ZC 0DsinYsin2y
16r

, ð14Þ

R¼ Zc

2

Z p

0
sinY

Z 1

0
U

2
sin3y ds dY: ð15Þ

Note that we define the Cauchy number, fCY , based on the macroscopic drag coefficient of a rigid equivalent porous ball, CD,
although it is the drag coefficient of a single filament composing the ball, C0D, that appears in Eqs. (6) and (10). We do so
because C 0D is difficult to measure experimentally.

The dimensionless boundary conditions can be written as follows:

U jY ¼ p ¼ 1, yjs ¼ 0 ¼Y,
@y
@s

����
s ¼ 1

¼ 0,
@2y
@s2

����
s ¼ 1

¼ 0: ð16Þ

To solve the system of Eqs. (13) and (14), the deformation of the poroelastic media yðs,YÞ and the velocity of the fluid
U ðr,YÞ are discretised in Y over NY reference beams similarly to Favier et al. (2009). The deformation of the beam furthest
upstream at Y¼ p is solved first since it perceives an unperturbed flow velocity. Eq. (13) is integrated numerically using
the shooting method and the Runge Kutta algorithm. Once the deformation of this beam is known, Eq. (14) is solved at Nr

points on r between 0 and 1 to yield the flow perceived by the second reference beam. The equation of deformation (13) is
subsequently integrated numerically with Runge Kutta using an iterative scheme since the flow velocity profile is defined
in eulerian coordinates and the deformation of the beam is defined in lagrangian coordinates. Once the shape of the beam
is found, the loss of momentum in the flow is computed using Eq. (14) and the process is repeated for every reference
beam. We finish by solving Eq. (15) to find the reconfiguration number.

Note that care has to be taken when discretising Eq. (14) to insure physically meaningful computations. In its
discretised form, it is written as

Uðr,Y�dYÞ ¼Uðr,YÞ 1�dY
ZC0DsinYsin2y

16r

 !
: ð17Þ

When the poroelastic system is dense enough, i.e., when Z is large, the term in the parenthesis could become negative over
part of r especially close to the centre of the system (r¼0). Since the lowest value of r where Eq. (17) is evaluated is at
r¼ dr=2, we can insure that it is always physical if dr is chosen such that drZZC0DdY=8.

Also, when many equilibrium positions exist for a beam, we select the one for which the free end is the furthest
downstream. No stability analysis is performed on the different positions, but we judge that this position has the most
chance of minimising the potential energy.

The geometry we model is slightly different from that of our experiments because we neglect to model the rigid core of
the poroelastic system. Considering that all the coupling between the deformation of the beams comes from the flow and
considering the simplicity of the flow model, the effect of the core is neglected. Moreover, by defining the Cauchy number
based on the flexible length of the filaments (D=2�Di=2 in Eq. (3) and D=2 in Eq. (12)), the model can be appropriately
compared with the experiments.

3.2. Theoretical results

To realise the simulations, it was necessary to provide a value for the microscopic drag coefficient C0D which we could
not measure experimentally. The model was thus used to simulate the drag of the rigid specimen tested experimentally
and the value of C0D was calibrated to make the resulting simulated macroscopic drag coefficient CD match that measured
experimentally on the rigid specimen. A value of C 0D ¼ 0:3 was thus used for the remainder of the simulations.

The first and the second poroelastic specimens tested in the wind tunnel which have, respectively, surface densities of
Z¼ 6:1 and Z¼ 9:2 where modelled using NY ¼ 480 reference beams. The deformation of the first specimen is shown in
Fig. 13. The deformation is qualitatively very similar to that observed in the wind tunnel in Fig. 5.

The reconfiguration curves predicted by the theoretical model of Eqs. (13)–(15) with Z¼ 6:1 and 9.2 corresponding,
respectively, to the first (solid line) and second (dash line) specimens are shown in Fig. 9 for comparison with the first (�) and
second (3) experimental specimens. The general trend of the theoretical curves is the same as for the experimental points.

As the model succeeds in reproducing the experimental results in Fig. 9, we use it to investigate the effect of surface
density on the reconfiguration. In Fig. 14, the curves of R versus fCY in (a) and versus the ratio fCY =Z in (b) are plotted for a
wide range of surface densities. In (a), the curves from left to right represent systems with surface densities of Z¼ 0:064,
0.64, 6.4 and 64; in (b) they go from right to left. In (a) the curves are evenly spread on the logarithmic plot, while in (b),
they are made to coalesce at one point about fCY =Z� 3. This shows that the drag reduction of the poroelastic system
studied becomes significant when the Cauchy number spread over every element composing the system is effectively of
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Fig. 13. Visualisation of the modelled deformation of a poroelastic system equivalent to the first specimen subjected to a flow with (a) fCY ¼ 2:8; (b) 20.6;

and (c) 87.2. Note that the Cauchy numbers correspond to the conditions of Fig. 5.
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Fig. 14. Effect of the surface density on the reconfiguration curve for poroelastic systems in function of: (a) fCY , and (b) fCY =Z. The curves have surface

densities of Z¼ 0:064, 0.64, 6.4 and 64 from left to right in (a) and from right to left in (b).
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order 1, i.e., fCY =Z�Oð1Þ. The reconfiguration curve of a poroelastic system can thus be compared with that of a simple
system by dividing the Cauchy number by the surface density as is done for the experimental measurements on slender
filaments and plates in Fig. 10(b).

At a given Cauchy number on Fig. 14(a), less reconfiguration occurs for the high surface density ball because the
aerodynamic load is split onto many more beams and thus does not deform the beams as much. However, at a fixed value offCY =Z on Fig. 14(b), the reconfiguration number is smaller for the ball with the higher surface density as the aerodynamic load
per beam is the same for each ball and the beams of the higher surface density ball benefit from more sheltering.

The curves of Fig. 14(b) coalesce at small values of fCY =Z, but at high values when the deformation is large, they have
different slopes. Recall that this slope is equal to half the value of the Vogel exponent V. In Fig. 15, the value of Vogel
exponent computed at cfCY ¼ 104 is plotted in function of the surface density.

On this graph, a small value of ZC0D corresponds to the case where the beams composing the poroelastic system are thin
and few. Therefore, they do not perceive the presence of their neighbours through the flow. Accordingly, at ZC0D ¼ 10�4, the
poroelastic system has a Vogel exponent of V ¼�0:6667 which corresponds to the asymptotic regime of large deformation
of plates, filaments and fibres.

However, when ZC0D is larger, the system has more drag-generating surfaces and the downstream beams feel a fluid
flow altered by the upstream beams. This has an effect on the value of Vogel exponent in the large deformation regime. The
Vogel exponent changes from V ¼�2=3 at low ZC0D to a value close to �1 at large values of surface density. For values of
ZC0D between 3.9 and 64, the Vogel exponent varies only slightly from �0.96 to 1.03. This range of values of ZC0D
encompasses the two experimental specimens tested. What the model predicts is that if one of the experimental
specimens had 2 times less or 10 times more filaments, its Vogel exponent at large cfCY would have been approximately
the same around V ��1.

Similarly as for the flat plates and the filaments in the flow, a dimensional analysis can be performed to obtain the
scaling of the drag of the porous system in the large deformation regime assuming that the surface density is very high. As
for the filaments, we assume that the original length scale D of the poroelastic system becomes irrelevant as the structure
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Fig. 15. Variation of the Vogel exponent of the drag of a poroelastic system with surface density. The exponent V is computed at cfCY ¼ 104.
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is highly deformed. Moreover, if the surface density Z is large, the exact size of the elements of the poroelastic system is
not important. Because the flow through the porous system will lose all of its momentum, the size of the filaments does
not matter. Directly behind the poroelastic body, the flow velocity is null. For both large deformations and large surface
density, the physical problem of the reconfiguration of this 3-D poroelastic body is described by four quantities:

F ½N�, EI ½N m2�, U1 ½ms�1�, r ½kg m�3�:

The one dimensionless number required to describe this problem is thus

F

ðEIrÞ1=2U
:

Accordingly, the drag on a poroelastic system in the large deformation regime should obey a Vogel number of V ¼�1.
Again, this is the value observed on Fig. 15 at large values of cfCY .
4. Conclusion

By performing the first experiments on the reconfiguration of synthetic poroelastic systems, it was shown that the drag
on these systems is characterised by the Cauchy number, the reconfiguration number and the surface density.

The drag of the synthetic poroelastic system studied shows particularities similar to those of real trees. As measured on
branches of Loblolly Pine and American Holly by Vogel (1984), the drag on the poroelastic system was measured to
increase in a more pronounced way than a U2 law because the upstream filaments realign themselves in the flow.

A model based on a conservation of momentum in the direction of the flow coupled with the large deformation Euler–
Bernoulli equation of many beams allows to predict the reconfiguration of the specimens tested experimentally. The same
model shows that for increasing surface density, the large deformation-regime Vogel exponent transitions from the � 2

3

value of the 2-D reconfiguration of a slender structure to the �1 value of a volumetrically homogeneous poroelastic body.
The question thus arises of what would happen to the reconfiguration of a 2-D poroelastic body such as a hairy cylinder.
Also, the scaling law in V ¼�1 at large surface density and Cauchy values exists for wide range of values of surface density.
This scaling can be predicted from dimensional analysis by assuming that the original size of the poroelastic body as well
as the size of drag-creating elements play no role in the problem.

On the scaling law for poroelastic bodies, it is worth mentioning that in the literature, almost all the Vogel exponent
values we found for coniferous trees are about �1 (Vogel, 1984; Mayhead, 1973; Rudnicki et al., 2004). Moreover, these
trees have a structure that somewhat resembles that of the poroelastic system studied here. Like the balls made of
filaments, coniferous trees are poroelastic structures made of lots of beams which create drag: long thin needle-like
foliage. It might not be a coincidence that 4 out of 5 of the Vogel exponents we found in the literature for coniferous trees
are about �1. It would be interesting to evaluate the surface density of these species and to test specimens using the same
experimental protocol used here for synthetic specimens. This would allow for better understanding of why there seems to
be an homogeneity in the values of Vogel exponents in the literature. Also, getting an estimate of the Cauchy numbers
encountered by trees and other plants could help bridge the gap between fundamental physics/mechanics studies and the
biology/botany ones.

Another possible avenue for future work on vegetation drag could investigate how plants strike the right balance in
structural flexibility. With the right structural flexibility, plants reduce their drag through passive reconfiguration. However, it
is well known that the drag on flexible structure increases significantly upon the onset of flutter (Morris-Thomas and Steen,
2009). How should a flexible structure be designed to maximise its reconfiguration while avoiding flutter?
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