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We study the motion of a solid sphere after its fast impact on a bath of liquid foam. We identify two regimes

of deceleration. At short times, the velocity is still large and the foam behaves similar to a Newtonian fluid of

constant viscosity. Then we measure a velocity threshold below which the sphere starts experiencing the

foam's elasticity. We interpret this behavior using a visco-elasto-plastic model for foam rheology. Finally

we discuss the possibility of stopping a projectile in the foam, and evaluate the capture efficiency.
Fig. 1 Phase diagram for foam-projectile interactions. On the vertical
axis, the typical size of the solid object R0 is compared to the radius rb
of bubbles in the foam. On the horizontal axis, the time scale sr of
bubble rearrangements is compared to the characteristic time scale
for impact sc ¼ R0/V0. This study focuses on the impact of fast
projectiles larger than foam bubbles: our region of interest is the upper
right corner of this phase diagram (region I).
1 Introduction

A liquid foam consists of a closely packed suspension of gas
bubbles in a continuous liquid phase. Because of their remark-
able mechanical properties (solid-like at rest and liquid-like
under shear), foams have attracted the attention of physicists
from the early work of Plateau1 to modern debates on the
jamming of so materials.2,3 Foams are also widely used in
diverse industrial elds: catalysis and ltration,4 otation,5 and
shock or noise absorption.6 The cellular structure of foams
governs many of their properties, such as shear modulus or yield
stress, that scale with the Laplace pressure inside the bubbles7

with an inuence of the topology of the bubble assembly.8

Solid cellular materials are known as mechanical dampers
and sound absorbers. In nature, it has been shown recently that
woodpeckers have porous cranial bones that prevent their brain
from injury in spite of repeated head drumming against tree
trunks,9 and that the thick skin that protects pomelos when they
fall off the tree has a foam-like structure.10 The use of solid
foams as mechanical dampers in technology is widespread,
even under extreme conditions: for example, to capture inter-
stellar particles without damage, which travel at high velocity,
so solids called aerogels are used.11 In this spirit, we investi-
gate the ability of liquid foams to absorb kinetic energy.

To do so, we measure the energy dissipation during the
impact of a solid sphere of radius R0 and initial velocity V0. We
restrict our study to projectiles much larger than the foam
bubbles, and to characteristic impact times sc ¼ R0/V0 much
shorter than the foam rearrangement time sr. This regime
corresponds to region I in the phase diagram represented in
Fig. 1, where the vertical axis compares the projectile size R0 to
the foam bubble radius rb and the horizontal axis compares the
rearrangement and impact times, sr and sc. Other regions of this
phase diagram have been explored in the literature: regions II
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and III correspond to the case of foams whose bubbles are
much larger than solid particles. When they are fast, small
projectiles can cross the soap lms separating neighboring
bubbles.12 Else, they stay trapped in the nodes where Plateau
borders meet.13 In region IV, quasi-static foam ows around an
obstacle, whose dimension is one order of magnitude higher
than bubble size, are studied in 2D14 and 3D.15 The experimental
setup dedicated to the study of region I is described in Section 2,
results are presented in Section 3, and a model is developed in
Section 4.
2 Experimental setup

The experimental setup is presented in Fig. 2: spheres of
different radius R0 and density rs are thrown at velocity V0 in a
foam trapped in a tube of radius RT.
This journal is © The Royal Society of Chemistry 2014
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Fig. 2 Sketch of the experiment (drawing not to scale). Fig. 3 Phase diagram showing the behavior of spheres of massM and
radius R0 gently deposited at the surface of the foam. After 5 minutes,
some spheres sink under their own weight (C), others stay at the
surface (B). The solid line represents the transition between the two
regimes.
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2.1 Foam

For the foam, we use a well-characterized Gillette shaving
cream:16 the foaming solution has a surface tension g ¼ 29.6
mN m�1 and a viscosity h ¼ 1.9 mPa s, yet shown to vary from
one sample to another, sometimes being as high as 5 mPa s.17

Due to aging, bubble size and related properties evolve with
time:18 to avoid such effects, experiments are performed 20
minutes aer blowing the foam. At this moment, we directly
observe under a microscope that the bubble radius is rb ¼ 21 �
3 mm. The liquid volume fraction Fl is about 7.5% and does not
vary over the time of our experiment.
2.2 Choice of spheres

Our purpose is to stop projectiles using a foam, so we rst need
to check that they can indeed get stuck in foam. To do so, we
gently deposit spheres at the top surface of a tank lled with
foam and observe their behavior for 5 minutes. Spheres that
sink over a distance equal or superior to their diameter are
counted as “sinking”, others are labelled as “oating”. Fig. 3
presents the phase diagram obtained when the mass M and the
radius R0 of the sphere are varied independently. Floating
spheres are represented by hollow symbols, sinking spheres by
black ones. For this experiment, we use both plain spheres and
hollow ones progressively lled with lead particles until they
sink. We observe in Fig. 3 that for each radius there is a critical
mass Mc above which the sphere sinks. This critical mass
increases linearly with the surface area, following the heuristic
behavior Mc/R0

2 ¼ 56 � 1 kg m�2.
The behavior of the sphere results from a balance between its

weight and the foam's elastic response. Projected on a vertical
axis, this balance can be written Mg ¼ pR0

2s, where s is the
average stress. At the limit of yielding, the value of the stress
reaches the foam yield stress s ¼ sY. For a given sphere radius,
this characterizes a critical mass Mc ¼ pR0

2sY/g. From the data
in Fig. 3, we extract sY x 170 Pa. This is about four times larger
than the values published in the literature and obtained by
oscillatory rheometry.19 This can be explained by the relatively
short waiting time of 5 minutes aer which our spheres are
sorted in two categories. A sphere counted as “oating” aer
This journal is © The Royal Society of Chemistry 2014
5 minutes may sink between 5 and 10 minutes. It was pointed
out by Barnes that yield stress is an ambiguous quantity whose
value is likely to depend on the shear rate range, and even to
vanish when measured at extremely low shear rates.20 The
discrepancy between our crude measurement and the results
obtained from non-linear rheology may be explained by the fact
that we are doing a static interpretation of a phenomenon that
occurs over a nite time span.

In the nite velocity impact experiments described below, we
only use spheres dened as “oating” in Fig. 3 (M < Mc), for
which the foam yield stress exceeds, sometimes by far, the
pressure induced by their own weight. The spheres are made of
different materials: stainless steel (rs ¼ 8000 kg m�3), glass
(rs ¼ 2580 kg m�3), polypropylene (rs ¼ 920 kg m�3) and poly-
acetal (rs ¼ 1400 kg m�3). In order to reach intermediate values
of density, we also prepared non-homogeneous spheres by
embedding lead particles into a so polymer matrix. The radius
of the spheres, R0, ranges from 2 mm to 6.4 mm. The sphere's
properties are summarized in Table 1. The whole study is con-
ducted in the limit rb � R0 � RT.
2.3 Launching systems and tubes

Concerning the impact velocity, two different types of launching
have been used: the classical free fall for V0 # 5 m s�1, and a
slingshot for larger velocities: 10# V0# 50 m s�1. The slingshot
consists of a forked stick, whose arms are connected to a pocket
by two rubber bands. The average tension in the rubber
bands determines the impact velocity. A difference in tension
between the two bands induces a torque, making the projectile
spin. In the experiments considered here, both rubber bands
are stretched in a symmetric way in order to avoid spin. As a
foam container, we use plexiglass tubes of internal radius
RT ¼ 35 mm and length L varying between 3 and 15 cm.

All experiments are recorded using a high speed camera
(Phantom V9) at a frequency of 2000 to 5000 frames per second.
Image analysis is performed using ImageJ soware.
Soft Matter, 2014, 10, 6696–6704 | 6697
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Table 1 Properties of the spheres used in the experiments. Spheres
are made either of raw materials (plastic or glass) or of lead particles
dispersed in a soft polymer matrix (composite 1 to 4). Only three of the
smallest spheres were used for high-speed experiments. In the last
column, we compute the characteristic impact time sc ¼ R0/V0. sc
always stays smaller than the typical relaxation time after a plastic
event in a Gillette foam (sr x 200 ms)

Material rs (kg m�3) R0 (mm) Free fall Slingshot sc (ms)

Polypropylene 920 2.4 � � 0–1
Polypropylene 920 3.55 � � 0–2
Polypropylene 920 5 � 2–4
Polyacetal 1400 3.55 � 1–2
Glass 2580 2 � 0–1
Glass 2580 3.1 � 1–3
Composite 1 2380 2.2 � 0–1
Composite 2 2990 2.8 � 0–1
Composite 3 2220 3.8 � 1–3
Composite 4 1860 6.4 � 3–7
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3 Experimental results
3.1 Low velocity impact

Fig. 4 shows the impact of a sphere released above the tank and
freely falling on the foam surface. The whole process is recorded
by the high speed camera: as can be observed in (a), the sphere
entirely penetrates the foam and is captured below the surface.
To measure its position, we equipped the sphere with a ag
attached to a rigid elongated tail, made out of a pulled glass
capillary. Because this rod is very thin and hollow, its mass is
negligible compared to that of the sphere. During the impact,
the ag remains above the foam and we extract the trajectory
from the evolution of its position zf. Such a trajectory is pre-
sented in Fig. 4(b), which reveals both an oscillation and a
strong damping. These features are discussed in Section 4.
3.2 High velocity impact

At high impact velocity, the sphere can cross the whole sample
and escape from the foam cylinder. We throw spheres with an
Fig. 4 (a) Chronophotography of a low velocity impact. The projectile, co
it, is released about 30 centimeters above the foam surface, hitting it at 1.7
zf of the flag is recorded during the free fall. (b) Spatiotemporal diagram

6698 | Soft Matter, 2014, 10, 6696–6704
initial velocity V0 on foam samples of various thicknesses L.
Aer crossing a tube of length L1 full of opaque foam in the time
interval t1, a sphere has decelerated from V0 to V1. This provides
us with a new way to get a deceleration curve V(t) by gathering
several high speed experiments. The method is presented in
Fig. 5(a), and an example of a deceleration curve is shown in
Fig. 5(b) and (c). We assume that if the same sphere is crossing
a longer tube L2 > L1, a process that will require a longer time
t2 > t1, its velocity at the time t1 is again V1. We iterate this
experiment using tubes of increasing length, until one of them
is long enough to make the nal velocity below 5 m s�1. This
allows us to connect data acquired through open tube experi-
ments to those obtained from a free fall experiment by match-
ing impact and exit velocities of different experiments. This
connection is visible on the typical curve presented in Fig. 5(b):
data points are more regularly spaced at low velocity than those
at the beginning of the curve. This is due to the measurements
at high velocity being a reconstructed curve, while data at low
velocity come from a single experiment, where the time interval
is xed by camera settings.

3.2.1 Results on the initial deceleration. Qualitative state-
ments about deceleration in foam can be drawn from a curve such
as the one presented in Fig. 5(b). It takes 20ms and less than 20 cm
for a polypropylene sphere (R0 ¼ 2.4 mm) arriving at 34 m s�1 to
slow down to 1 m s�1. In a viscous oil (hoil ¼ 1 Pa s ¼ 1000hwater),
the same process takes about 5 ms and 3 cm.21 In comparison,
given its small liquid fraction, foam proves to be an efficient
kinetic energy absorber. The energy dissipated during these initial
20 ms is about 35 mJ, corresponding to a power of almost 2 W,
similar to that of a night light.

As can be seen in Fig. 5(c), the same data plotted on a semi-
logarithmic graph reveal that velocity decreases exponentially
with time during the rst 15 ms of motion, over more than one
order of magnitude. This is consistent with a Newtonian
description of the foam, with an apparent viscosity he that can
be deduced from the time scale of the exponential decay. The
equation of motion for an object decelerating due to viscous

friction is M
dV
dt

¼ �6pR0heV and its integration leads to
nsisting of a glass sphere (R0¼ 3.1 mm)with a rod and a flag attached to
m s�1. The time interval between two images isDt¼ 6ms. The position
showing the position zf of the flag as a function of time.

This journal is © The Royal Society of Chemistry 2014
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Fig. 5 (a) Principle of construction of the deceleration curves. At high
velocity, each data point represents an independent experiment, one
of which having a final velocity of 4 m s�1. These points are then
connected with measurements made on a single low velocity exper-
iment, in which a sphere with a flag was released above the foam,
reaching 4 m s�1 at the time of impact. (b) Example of a reconstructed
deceleration curve obtained with polypropylene spheres (R0 ¼ 2.4
mm). (c) Semi-logarithmic representation of the data shown in (b). At
high velocity, data collapse around a straight line, indicating that
velocity decreases exponentially at short times. The solid line corre-
sponds to a fit V ¼ V0e

�t/s, with s ¼ 5.1 � 0.4 ms.

Fig. 6 Position of a polypropylene sphere (R0¼ 2.4mm, V0¼ 2.5m s�1),
as a function of time. Impact is followed by quickly damped oscillations of
pseudo-period T.
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V ¼ V0e
�t/s with s ¼ 2rsR0

2

9he
. The slope measured in Fig. 5(c)

yields a value he ¼ 230 � 15 mPa s. This is much larger than
both the viscosity of air and that of the foaming solution, as
predicted by Schwartz and Princen.22 This behavior is surpris-
ingly simple, considering the large velocity of the impacting
sphere and the complex rheological behavior of foams.
This journal is © The Royal Society of Chemistry 2014
3.2.2 Final stage of deceleration. We now investigate the
regime corresponding to the far right region of graph Fig. 5(c).
Experimental points strongly deviate from a Newtonian
behavior when V becomes smaller than 2 m s�1, indicating
that velocity in this region decreases faster than exponentially.
To study this regime, we focus on our low velocity experiments
(V0 < 5 m s�1), where we measure the position Z of the sphere,
dened in Fig. 5(a) as the distance between the top of the sphere
and the foam surface: at the moment of impact, Z ¼ 2R0.

In Fig. 6, we plot Z as a function of time and we observe that
the sphere rst sinks into the foam, reaches its maximal depth
and then, instead of stopping at this point, “bounces” upwards.
Aer a few oscillations, it stabilizes at a nal position that is
shallower than the maximal depth. Such rebounds of a projec-
tile in a liquid have been observed in polymer and micellar
solutions and interpreted as a signature of viscoelasticity.23,24

Foams are also known to exhibit viscoelastic behavior. Elasticity
in foams is due to the bubble's surface tension, since bubble
deformations are equivalent to spring deformation, where the
stiffness is given by surface tension.25

3.2.3 Foam deformation. To gain further insight at the way
foam deforms around a projectile, we insert in a tank with at
transparent walls a foam in which several horizontal planes
have been sprinkled with black particles. Seen from the side,
the particle-seeded sheets appear as black lines. We image the
deformation of these lines when a heavy sphere falls into the
foam along the wall. As can be seen in Fig. 7, traces of the
impact are only visible in a region close to the impact site, with a
lateral extension of order R0, suggesting that the size d of the
gradient region is about R0. Measurements of the velocity eld
around a moving plate in other yield stress uids lead to the
observation of a similar-sized boundary layer whose thickness
does not depend on the plate velocity.26

In high velocity experiments, we also observe that some foam
is entrained out of the tube by the sphere. For a 5 mm diameter
polypropylene sphere and a velocity V0 � 20 m s�1, the amount
of ejected foam is about 10 mg. Such a mass corresponds to that
of a layer of thickness xR0 covering the bottom half of the
Soft Matter, 2014, 10, 6696–6704 | 6699
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Fig. 7 To evaluate the extension of the region deformed by an impact,
we prepare layer by layer a foam seeded with black particles, in a tank
with flat transparent walls. We compare the shape of the black lines
formed by these layers, viewed through the side wall, before and after
the impact of a lead sphere of radius R0 ¼ 3 mm. We observe that the
typical distance beyond which no deformation is visible, indicated by
the red dashed lines, is comparable to the sphere radius.
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sphere. This suggests that R0 remains as a relevant scale for the
ow around the sphere even at high velocity. It does not mean
that deformation is limited to a tube of thickness R0 around the
projectile: as the sphere reaches the end of the tube, it crosses
the foam surface, whose displacement is still visible more than
three radii away from the axis of motion.
4 Interpretation and consequences

In this section, our purpose is to discuss the projectile
dynamics. The equation of motion for a sphere decelerating in a
foam is

M
dV

dt
¼ �apR0

2s (1)

where s represents the stress exerted by foam on the sphere and
a a geometrical coefficient. The foam response is computed
using a visco-elasto-plastic model from the literature,27 pre-
sented in Appendix 6. Briey, foam is characterized by three
parameters: its elastic modulus m, its macroscopic viscosity he,
and an elasticity limit UY. The stress s is the sum of an elastic
term proportional to the deformation U and a viscous term
proportional to the strain rate _3:

s ¼ mU + he_3 (2)

As sketched in Fig. 8, we describe the foam as a stack of
visco-elasto-plastic layers of thickness R0, each of them
behaving according to the framework developed by Marmottant
and Graner. The vertical motion of the sphere triggers the
opening of a hole of radius R at the center of the viscoelastic
layer, at a rate _R ¼ V. We assume that the sphere only interacts
with one layer at a time, and experiences a response given by
eqn (2).

According to eqn (2), the stress s depends on elastic defor-
mation and strain rate. The strain rate _3 is dened as the
6700 | Soft Matter, 2014, 10, 6696–6704
gradient of displacement in the foam and expressed as a ratio
between the sphere's velocity and the typical size d of the

gradient region: c3 ¼
cR
d
¼ V

d
. Here we assume that the typical

length d observed of order R0 in Fig. 7 is the same in both
radial and vertical directions, and that it does not vary with
the sphere's velocity, as it is for Carbopol owing around a
plate.26

The sphere's position Z is given by Z ¼ R0

ðt
0

c3ðt0Þdt0. Together
with eqn (10), this provides a closed system of equations that
can be integrated numerically:8>>>>>>>>>><

>>>>>>>>>>:

1

3
rsR0

23
:: ¼ �s

s ¼ mU þ he3
:

dU

dt
¼ 0 if |U |.UY and 3

:
U . 0

dU

dt
¼ 3

:
else

(3)
4.1 High velocity limit

Since |U| is always smaller than UY, in the high velocity regime,
the term in _3 dominates in the rheological law: s� he_3� heV/R0.
The equation of motion can then be rewritten

M
dV
dt

¼ �pR0
2aheV=R0. The right-hand term can be identied

as a Stokes force on a sphere decelerating in a viscous uid,
provided that we dene an apparent viscosity heff such that
ahe ¼ 6heff. As mentioned in Section 3, this equation leads to an

exponential decay for the velocity V ¼ V0e
�t/s with s ¼ 2rsR0

2

9heff
,

that successfully adjusts the data in Fig. 5(c). By measuring
s ¼ 5.1 ms on experimental curves, we nd a foam viscosity

heff ¼
2rsR0

2

9s
¼ 230 mPa s. This value is much larger than the

viscosities of the uids comprising the foam, the gas
(hg � 10�2 mPa s) and the foaming liquid (hl � 2 mPa s).
Similar values were obtained by Krishan et al. by tting
rheometry data acquired at frequencies between 1 and 80 Hz
with a model assuming a viscous-like dissipation at high
frequency.28

At the time of impact, the foam is still intact, so U ¼ 0 < UY.
According to eqn (3), U increases with the rate _3. Because this
strain rate is maximal at the beginning of the experiment,

c30 ¼
V0

R0
, U shortly reaches its maximal value UY. While _3

progressively decreases, U sticks to the value UY, as predicted by

Marmottant and Graner. During this phase, we have
dU
dt

¼ 0

and _3 ¼ _3P. This implies that many plastic events are triggered
during the deceleration and that, apart from the rst few
milliseconds following impact, no energy is stored in elastic
deformation during this phase.

The fact that plasticity dominates the motion is conrmed by
observations. Aer the sphere has crossed a tube lled with
This journal is © The Royal Society of Chemistry 2014
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Fig. 8 (a) Behavior of a single elasto-visco-plastic cell under defor-
mation 3. On the top image, the cell is at rest. There is no deformation,
so 3 ¼ 0 and the spring has its equilibrium length, so U ¼ 0. When 3

starts increasing (middle picture), the spring compresses and absorbs
all the deformation: 3 ¼ U. At this stage, deformation is purely elastic
and 3P ¼ 0. When the spring reaches its limit of elasticity, U can no
more increase and remain equal to UY. As represented in the bottom
picture, any further deformation triggers plastic deformations. 3P starts
growing with the same rate as the total deformation _3P ¼ _3. (b) Sketch
of a foam as an assembly of visco-elasto-plastic layers.
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foam, it leaves a tunnel-shaped hole, similar to the one in the
second picture of Fig. 7, whose diameter is slightly smaller than
that of the sphere. The foam has been irreversibly damaged,
and the material does not heal around the impact site.
4.2 Low velocity limit

At low impact velocities, or at the end of motion, the viscous
contribution to the total stress can be neglected, so that eqn (2)
This journal is © The Royal Society of Chemistry 2014
reduces to: s x mU. Since _3 ¼ V/R0, the acceleration can be
written R0€3, which leads to

MR0€3 + 6pR0
2mU ¼ 0 (4)

Shortly aer impact and during the initial deceleration
phase, the elastic deformation U has a xed value UY. As long as
the sphere is moving downwards, _3 and U have the same sign

and
dU
dt

¼ 0. But when the sphere reaches its maximal depth,

the sign of the velocity changes. This triggers elastic unloading
and the deformation pattern switches again from plastic to

elastic: c3 ¼ dU
dt

and _3P ¼ 0. Eqn (4) becomes that of a harmonic

oscillator

MR0

d2U

dt2
þ 6pR0

2mU ¼ 0 (5)

In the free regime, we expect oscillations of period

T0 ¼ 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2rsR0

2

9m

s
. We perform and image impacts with spheres

of various size and density. We measure the period of oscilla-
tions as indicated in Fig. 6. The results are displayed in Fig. 9. As
predicted, the period T increases linearly with the quantityffiffiffiffiffiffiffiffiffiffiffiffi
rsR0

2
p

. From the slope a of this curve we can deduce an elastic

modulus m ¼ 8p2

9a2
¼ 390 Pa. This value is larger than those

found in the literature for the shear modulus (Gx 300 Pa). Due
to the scatter of experimental data, our measured value for m is
only a rough estimate. The precision Dm/m on the elastic
modulus is twice the relative error on the slope Da/a. Using the
slopes of the two blue lines in Fig. 9 as the extreme acceptable
ts, we nd a¼ 150� 10msm1/2 kg�1/2 and therefore m¼ 390�
80 Pa, still signicantly larger than the shear modulus. This may
be due to a complex combination of shear and compression.
Then we would expect an elastic modulus comprised between
the shear modulus G and the Young modulus E. Assuming the
foam incompressible (n ¼ 0.5), we can estimate E ¼ 2G(1 + n) x
900 Pa. Our experimental value indeed belongs to this range.

4.3 Attenuation

We notice that oscillations are quickly damped. In order to
comment on this, we rewrite the full equation of motion,
including the viscous term:

€3þ 9heff

2rsR0
2

c3þ 9m

2rsR0
2
UY ¼ g

R0

(6)

The coefficient of _3 in eqn (6) can be identied as u0/Q, with
u0 ¼ 2p/T the pulsation of slow impact oscillations and Q the
quality factor. We deduce a value for Q: Q ¼ R0

ffiffiffiffiffiffiffiffiffiffi
2mrs

p
=3heffx2,

consistent with the high dissipation observed experimentally.
In particular, a similar attenuation has been found for surface
waves propagating radially away from the impact site.29 The
value we measured is actually that of a pseudo-period T and
Soft Matter, 2014, 10, 6696–6704 | 6701
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Fig. 9 Period of elastic oscillations T for spheres made of poly-
propylene (C), polyacetal (B), glass (r), and heterogeneous materials
(>). The red line represents the best linear fit and yields a slope a¼ 150
ms m1/2 kg�1/2. The dashed blue lines stress the highest and lowest
acceptable linear fits. 4 or 5 experiments are performed for each
sphere type; vertical error bars represent mean period and standard
deviation. The mass of the flag induces an error on density, taken into
account by horizontal error bars.
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differs from the period of free oscillations T0 by a factorffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

4Q2

r
x3%. Given the size of our error bars, we make a

reasonable assumption when considering that T x T0 to esti-
mate m (Fig. 9).
4.4 Numerical results

Besides the asymptotic behaviors described above, we also
performed a numerical integration of the system (eqn (3)), using
Matlab and a least-square algorithm to numerically nd a set of
parameters minimizing the distance between an experimental
and simulated curve Z(t). We rst tried to run the code with the
values of heff and m found experimentally in the previous para-
graph, using UY as a free parameter. This led to solutions with
exaggerated nal oscillations. When letting free all three
Fig. 10 Experimental (C) and numerical (red line) data showing
the position Z(t) of a polypropylene sphere (R0 ¼ 5 mm) penetrating at
3.3 m s�1 in a foam. Integration of eqn (3) is performed with the
parameters: heff ¼ 220 mPa s, m ¼ 164 Pa and UY ¼ 0.415.

6702 | Soft Matter, 2014, 10, 6696–6704
parameters, the most satisfying agreement was reached for
heff ¼ 220 mPa s, m ¼ 164 Pa and UY ¼ 0.415 (Fig. 10).

The value for the viscosity coefficient is the same as the one
obtained by tting the high velocity experimental curves with a
Newtonian model (heff ¼ 230 � 15 mPa s).

The elastic modulus, however, is two-fold smaller. An
explanation for this may be that the elastic deformation does
not take place in the immediate surrounding of the sphere: the
sheared region around the projectile moves in a uid way. This
layer might generate a larger effective radius for the moving
object.

In eqn (2), the viscous term dominates as long as _3 > mUY/heff.
This allows us to compute a velocity V* below which an impact
results in a response that is only a balance between elasticity
and plasticity. We nd that V* ¼ mUYR0/heff ¼ 0.7 m s�1. This is
consistent with experimental observations, since the value of
the velocity of the rst outlier seen on the deceleration curve in
Fig. 5(c) is 0.5 m s�1.

4.5 Capture length

We now dene the capture length L as the distance needed to
stop a projectile, that is, the distance between the initial foam
level and the lowest altitude of the bottom of the sphere.
Experimental capture lengths are found by connecting high-
and low-speed experiments with the velocity matching method
presented in Section 2. Fig. 11 shows a comparison between the
experimental capture length and the one predicted by the
model for 5 mm polypropylene spheres. It takes about 15 cm of
foam to stop a polypropylene sphere of radius 2.4 mm arriving
at 40 m s�1, that is, about 150 km h�1.

Fig. 11 shows that L scales with the impact velocity V0 on
both experimental and numerical curves. Many data points are
located to the right of the red curve. This can be seen as a
signature of yield stress. Because the spheres used for this
experiment are “oating”, a nite velocity (about 2.5 m s�1) is
required for them to penetrate into the foam.
Fig. 11 Capture length L for a polypropylene sphere of radius
R0 ¼ 2.4 mm, as a function of impact velocity V0. Black dots represent
experimental data and the solid line represents numerical predictions
obtained with the following set of parameters: heff ¼ 220 mPa s,
m ¼ 164 Pa and UY ¼ 0.415.

This journal is © The Royal Society of Chemistry 2014
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The same sphere hitting an air–water interface would
decelerate in an inertial way: MdV/dt x 0.5rCDpR0

2V2. This
leads to an exponential decrease of velocity V ¼ V0e

�z/zi with the

inertial deceleration length zi ¼ 8
3CD

rs

r
Rx9:4 mm. In a more

viscous uid (5 < Re0 ¼ R0V0/n < 100), we have shown that the
typical deceleration scale is z*x1:3R0

ffiffiffiffiffiffiffiffi
Re0

p
rs=rx32 mm.21 A

water layer of thickness zi, or an oil layer of thickness z*, is
therefore sufficient to slow down the sphere. We can compare
the mass of material needed to arrest spheres in a liquid foam
and in other liquids. The ratio between specic masses of foam
and water is the liquid volume fraction of foam Fl. We have:

Mfoam

Mwater

¼ FlL
zi

x1:2 (7)

Mfoam

Moil

¼ rwaterFlL
roilz*

x0:35 (8)

This indicates that, regardless of the material used, the mass
required to stop a projectile is roughly constant. In a Newtonian
uid, once the impact kinetic energy has been dissipated, the
projectile is still subjected to buoyancy forces. Depending on its
density, it will eventually stabilize either at the top or at the
bottom of the uid sample. In a yield stress uid such as foam
or Carbopol,23 it reaches a nite equilibrium depth. In order to
protect a surface from particle impacts with a Newtonian uid, a
tank of appropriate size is required, otherwise, whatever its
initial thickness, the uid sample will spread and become
thinner. Yield stress uids like foam can, to a certain extent,
sustain their own weight. Samples as thick as several centime-
ters can stand as if they were solid.

For violent impacts, the energy dissipated in this phase
can be so high that the particle gets damaged. This happens
when interstellar particles collide at 5 km s�1 with a 3 cm
thick aerogel.30 To avoid destruction of fragile particles,
materials with a density gradient can be used for inducing a
progressive deceleration, for example foams with a gradient
of liquid fraction. This strategy is employed in nature: the
density of the foam-like material that constitutes the thick
skin of pomelos gradually changes between the outer skin
and the fruit esh.10

4.6 Discussion

The most intriguing result of this study is the fact that a model
assuming a constant viscosity for the foam seems to be relevant
for a large part of our experiments, while classical foam
rheology studies never report Newtonian behavior. Our experi-
mental data can be t with a Newtonian model as long as _3 [

_3* ¼ V*/R0 x 300 s�1. This means that the Newtonian regime
can only be seen at values larger than 0.3 kHz, beyond the range
classically explored in rheology experiments. Gopal and
Durian16 measured the apparent viscosity of Gillette foam in a
Couette rheometer by imposing a constant shear rate. They
found that apparent viscosity decreases with shear rate, with heff

x 500 mPa s when _3 ¼ 300 s�1. Our experiments extend these
data, and seem to suggest that viscosity at very high _3 reaches a
This journal is © The Royal Society of Chemistry 2014
plateau (since we could understand our experiments at different
_3 with a single value for viscosity).

The model of Marmottant and Graner was initially written
to describe quasi-static motion of foams. It is expected to
break down when the strain rate _3 becomes as large as the
inverse of the microscopic relaxation time of the foam srelax.
The exact composition of Gillette foam is not known, but
measurements of surface rheology have shown that it
behaves similar to surfactant solutions containing fatty acids
as cosurfactants. Such mixtures exhibit a high surface
modulus, meaning that surface tension takes a long time to
go back to its equilibrium value aer a change of interface
shape or area. The relaxation time aer a plastic event in
Gillette foam is therefore quite long (about 0.2 s). This would
lead to a limit _3c ¼ 5 s�1 much lower than the typical values
that we have at impact _30 x 10 000 s�1. However, the key
feature of the model is the fact that the rate of plastic rear-
rangements is xed by _3. Marmottant and Graner assumed
that this is true in the quasi-static case because _3�1 is the only
available time scale in this regime. However, experiments on
shear bubble clusters revealed that even beyond the quasi-
static regime, the dynamics of a single plastic rearrangement
is still governed by _3.31 This might explain why the model
seems to function well even so far from its initial validity
range.
5 Conclusions

Our rst motivation was to quantify liquid foam's efficiency as a
kinetic energy absorber. We show that a sphere can be stopped
by a liquid foam, whatever its initial velocity, provided its mass-
to-surface ratio is small enough to avoid sinking under its own
weight. We proposed a simple model predicting the amount of
foam needed to capture such a projectile, and showed that this
quantity, for the spheres used in this study, corresponds to a
foam sample size of about 20 cm. The idea of using liquid foams
to slow down and conne solid particles seems to be promising.
Particle capture takes advantage of the uid nature of foams
(during the viscous deceleration phase), as well as its ability to
sustain its own weight and that of light projectiles. Under-
standing of the mechanical behavior of foams can help
designing smart materials with heterogeneous properties that
could adapt to the specic needs of a given application.

From amore fundamental point of view, we also report that a
liquid foam, despite its complex heterogeneous structure,
might behave like a Newtonian uid at very high shear rates, in
a range previously uncharted. Shooting in a foam gives access to
its rheology, in a way that is not always possible in standard
rheometers. We estimated the limits of this viscous-like
behavior and show that it is restricted to frequencies of the
order of, or above 0.2 kHz. A deep understanding of the value of
this viscosity plateau would require further experiments, in
which parameters such as the bubble size, volume fraction and
surfactant chemistry would be varied. In the context of kinetic
energy absorption, this would allow to adjust the foam's
formulation to the specic needs of each application.
Soft Matter, 2014, 10, 6696–6704 | 6703
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6 Appendix: visco-elasto-plastic
model for foam flow

Foam is a complex uid, exhibiting viscous, elastic and plastic
behavior. Much work has been done and is still going on to
properly describe its rheology.7,32 When a foam is sheared, some
bubbles are elastically stretched, but the structure can also be
irreversibly modied by plastic events. Marmottant and Graner
proposed to separate elastic and plastic contributions in the
strain rate:27

c3 ¼ dU

dt
þ c3P (9)

where U is the elastic deformation, that is, a state variable
describing the current deformation state of the foam, while _3 is
the total strain rate and _3P is the plastic deformation rate. The
rheological model is sketched in Fig. 8(a). The image at the top
corresponds to a situation with zero deformation 3 ¼ 0. The
spring is at rest, and its length is the equilibrium length. When
the deformation 3 increases, the spring compresses in a purely
elastic way, resulting in a strain 3 ¼ U.

Plastic events occur when the amplitude of the elastic
deformation reaches a yield value �UY and when it tends to
increase, that is, when U and _3 have the same sign. If the second
condition is not fullled, the deformation may be large, but the
strain rate leads to reversible elastic unloading. When plastic
rearrangements occur, their rate is given by the only time scale
in the problem, _3, so _3P ¼ _3. This results in the following
equations for the elastic deformation8>><

>>:
if |U |.UY and c3U . 0 then

dU

dt
¼ 0

otherwise
dU

dt
¼ c3

(10)

The link between stress and strain is given by writing the
stress s as a sum of a viscous and an elastic component, with m

an elastic modulus, he a macroscopic viscosity and a a non-
dimensional coefficient depending on the geometry of the
system:

s ¼ mU + ahe_3 (11)

The material is therefore described by 3 parameters: its yield
deformation UY, its viscosity he and its elastic modulus m.
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