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Modal and transient dynamics of jet flows
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(Received 11 May 2012; accepted 26 March 2013; published online 16 April 2013)

The linear stability dynamics of incompressible and compressible isothermal jets
are investigated by means of their optimal initial perturbations and of their temporal
eigenmodes. The transient growth analysis of optimal perturbations is robust and
allows physical interpretation of the salient instability mechanisms. In contrast, the
modal representation appears to be inadequate, as neither the computed eigenvalue
spectrum nor the eigenmode shapes allow a characterization of the flow dynamics
in these settings. More surprisingly, numerical issues also prevent the reconstruction
of the dynamics from a basis of computed eigenmodes. An investigation of simple
model problems reveals inherent problems of this modal approach in the context of
a stable convection-dominated configuration. In particular, eigenmodes may exhibit
an exponential growth in the streamwise direction even in regions where the flow is
locally stable. C© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4801751]

I. INTRODUCTION

Jets are known to sustain large-scale perturbation structures, both in the laminar and turbulent
flow regime. These structures are commonly interpreted as wavepackets developing within a laminar
steady base state, or a turbulent mean flow, due to inflectional instability mechanisms. The spatial
shape of the wavepacket envelope then depends on the downstream development of the base or mean
flow. In order to fully account for the effects of non-parallelism, the present study seeks to identify
wavepacket structures in the form of temporal eigenmodes of the linearized equations of motion in
a two-dimensional domain. Linear “global modes” of this kind have been investigated for a large
variety of flow configurations in recent years; examples include vortex shedding in the cylinder wake1

or in a three-dimensional jet in crossflow,2 and the flapping of a separated boundary layer.3 Weakly
nonlinear flow dynamics may in some cases be described by a combination of several dominant
global modes;4, 5 furthermore, passive6 as well as active7 control strategies for the suppression of
flow oscillations have been devised based on the knowledge of the global mode spectrum. However,
Barbagallo et al.8 showed that a model reduction based on eigenmodes successfully captures the
unstable structures but fails to represent the stable dynamics.

All of the above examples represent oscillator-type flows, where intrinsic flow oscillations
observed in the nonlinear regime are found to be linked to the presence of at least one unstable linear
global mode. In open shear flows, global instability is typically associated with the presence of a
locally absolutely unstable flow region,9 although feedback mechanisms may also be responsible
for the flow destabilization. In contrast, amplifier-type flows are characterized by a stable global
eigenspectrum. Consistent with the notion of local convective instability, non-normal interaction of
stable global modes may give rise to transient perturbation growth,10 but ultimately all perturbations
decay in time. Jets, unless sufficiently hot,11, 12 are prominent examples of amplifier-type flows. Crow
and Champagne13 measured the flow response in low-Mach number turbulent jets as a function of
the forcing frequency, and found maximum amplification to occur at a Strouhal number of 0.3.
This approximate value for the preferred mode has been confirmed in numerous later studies to be
remarkably universal over a large range of operating conditions, even in the supersonic regime.14
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Huerre and Monkewitz9 hypothesized that the preferred mode was the manifestation of a “slightly
damped oscillator” character of the flow, i.e., that the strong flow response may be interpreted as a
resonance of the least stable global mode in the presence of external forcing. Such an eigenmode
has been identified by Cooper and Crighton15 by extending the dispersion relation of the local shear-
layer mode into the complex X-plane. The authors report a Strouhal number based on the diameter
of 0.44 for this mode, in agreement with experimental observations.16 This analysis is based on
the hypothesis of the contribution of one single local mode to the global response and of a slow
streamwise development of the flow.

Motivated by these results, the first objective of the present study is to compute the global
spectrum of subsonic jets. A laminar steady state as well as a turbulent mean flow are considered
in the incompressible limit, and the turbulent mean flow is further investigated in the compressible
setting at a Mach number of 0.75.

Stable global spectra have been successfully computed for supersonic jets by Nichols and
Lele.17, 18 In weakly non-parallel laminar settings, these calculations required extremely large nu-
merical domains, extending over up to 800 jet radii in the downstream direction, in order to capture
the wavepacket maximum and reach convergence. In turbulent mean flows obtained from Reynolds
averaged calculations, the dominant modes were sufficiently localized near the nozzle to be ac-
curately resolved on much shorter domains. However, difficulties with the computation of stable
global modes have been reported for a variety of flow configurations. Barkley et al.19 obtained
easily converged modes that are localized within the recirculation bubbles behind a backward-facing
step, but no convergence was achieved for a family of stable modes exhibiting spatial growth far
downstream of the step; these modes therefore were not further explored. Similar problems were
encountered in planar wakes with surface tension.20, 21 In a flat plate boundary layer,22 all modes are
stable and spatially growing. Convergence with respect to the domain length was achieved in this
case through the use of carefully designed boundary conditions, based on the local dispersion rela-
tion. Amplitudes at the in- and outflow differed by two orders of magnitude. Much larger variations
occurred in the analysis of a Batchelor vortex by Heaton et al.;23 amplitude differences on the order
of 106 were found to prevent convergence. The second and principal objective of the present paper
is to expose the root cause for such computational problems of stable global modes, and to delineate
circumstances under which convergence may be impossible to achieve.

It has been shown that individual eigenmodes may carry a limited physical meaning in the
context of amplifier flows and that non-modal stability analyses are more suitable24, 25 to represent
instability features in this case. An eigenmode representation of the dynamics can, however, be
used to carry out these analyses, and previous studies have shown that this provides a robust means
of analyzing non-normal effects22, 26 as well as of performing control7 for weakly unstable flows.
Optimal perturbations are therefore computed in order to characterize transient growth phenomena in
jets. Results obtained using both an adjoint method27 and a modal representation of the propagator28

are discussed.
The significance and challenges of a modal representation of the dynamics for advection dom-

inated flows is first investigated by means of model systems in Sec. II. The flow configuration of
a round jet with a solid nozzle is then presented in Sec. III, together with the numerical procedure
and the different base flows that are investigated. The results of optimal perturbation (Sec. IV) and
eigenmode (Sec. V) computations are then presented. Although most of the discussion is established
in the context of incompressible flows, compressibility effects are also mentioned. Conclusions are
offered in Sec. VII.

II. MODEL PROBLEMS: EIGENMODES OF ADVECTIVE SYSTEMS

Reddy and Trefethen29 investigated the features of the spectrum and pseudo-spectrum of a 1D
convection-diffusion problem with homogeneous Dirichlet conditions at the inflow and outflow, a
well posed Sturm-Liouville type of problem. The eigenmodes exhibit an exponential spatial growth,
and a boundary layer forms at the outflow. In contrast in the model under consideration in Cossu
and Chomaz30 eigenmodes have a Gaussian envelope. The two models presented below aim at
reproducing some of the features of a flow where instability mechanisms act in an upstream region,
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creating structures that are convected downstream by a neutrally stable flow. These models show
features similar to the problem considered by Reddy and Trefethen and provide an understanding of
the relationship between the decay rate of a mode, its spatial structure and local instability features.

A. Advection equation with upstream boundary forcing

The simplest possible model for the evolution of perturbations in an advection-dominated flow
is given by a pure advection equation with one spatial direction x and a constant advection velocity
U0 > 0. The system is forced by an unsteady upstream boundary condition with its own dynamics,

∂ψ

∂t
(x, t) + U0

∂ψ

∂x
(x, t) = 0 x > 0, (1a)

ψ(0, t) = ψ0(t), (1b)

ψ̇0(t) = −aψ0(t) a ∈ C. (1c)

The dynamics of this system are imposed by the linear ordinary differential Equation (1c). The
system (1) only has one single mode of the form ψ(x, t) = ψ̃(x) exp(−iωt), with eigenvector ψ̃(x)
and eigenvalue ω given by

ψ̃(x) = exp

(
a

U0
x

)
, ω = −ia. (2)

If the system is stable, ar ≥ 0 (subscripts r and i denote, respectively, the real and imaginary parts of
complex scalars and vectors), the amplitude of the mode grows exponentially in x and diverges as
x → ∞. A lower advection velocity U0 leads to stronger spatial growth of ψ̃(x).

It is quite clear from this simple example how a temporally decaying source of perturbations
under pure advection gives rise to a spatially growing structure, since all perturbations generated
at a later time must be exponentially smaller than those generated earlier. Furthermore, this model
also serves to exemplify the occurrence of spurious numerical modes. If (1) is discretized using a
first-order upwind scheme on a uniform mesh, the mode (2) is recovered independently of the size
of the numerical domain, but a second eigenvalue is found as −1/h, where h is the grid spacing.
The corresponding spatial structure is localized at the outflow discretization point. If a general non-
uniform mesh with n points is used, then n distinct modes exist, localized anywhere on the grid. In
this particular example, n − 1 of them have no physical meaning because they do not correspond
to modes of the continuous problem. In a more general case where no a priori knowledge about
the modal structure is available, care must be taken with numerically computed modes. Although
the discretization method is suitable for transient problems, it is possible that even the least stable
modes computed numerically may have no physical meaning.

B. Unforced advection–diffusion–reaction equation

It may be argued that the above model is indeed too simple for a comparison with jet dynamics,
since information can only propagate downstream. This property, however, is not the cause for the
exponential spatial growth. A similar reasoning can be applied to the linear advection–diffusion–
reaction equation (also referred to as linear Ginzburg–Landau equation), given as

∂ψ

∂t
+ U0

∂ψ

∂x
= −a(x)ψ + ∂2ψ

∂x2
x > 0, (3a)

ψ(0, t) = 0. (3b)

In this generalized form, with the extra term a(x)ψ , (3a) is often referred to as the linear Ginzburg–
Landau equation in the literature. At each individual location x, the system is known31 to be
locally stable if a(x) > 0, convectively unstable if −U 2

0 /4 < a(x) < 0 and absolutely unstable if
a(x) < −U 2

0 /4.
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Cossu and Chomaz30 considered solutions of a problem of the form (3a) that are bounded in
R, and assumed the instability parameter a(x) to be of a parabolic shape a(x) = αx2 + β, with
α > 0, such that the spatial and temporal growth rates tend to −∞ as x → ±∞. Eigenmode shapes
are recovered analytically, and they are found to decay as exp (−x2) for large x.

On the contrary, if a reaches a finite value a∞ as x → ∞, perturbations do not experience
arbitrarily strong spatial or temporal decay. For a demonstration of the spatial behavior, this limiting
value a∞ can be taken as 0 without loss of generality, as it only affects the temporal eigenvalue but
not the corresponding eigenfunction. In order to model a situation where instability mechanisms are
active around a given position, while passive convection and diffusion of perturbations is dominant
throughout the rest of the domain, let the instability parameter a(x) be of the form

a(x) = a0(i − 1)e−(x−2)2
, a0 > 0. (4)

In order to numerically solve (3)–(4) on the interval [0, xmax], a boundary condition has to be imposed
at the outflow x = xmax. While a homogeneous Dirichlet boundary condition can be imposed for
a(x) = αx2 + β with α > 0, this would result in the formation of a boundary layer at the outflow
in our present case.32 In order to take into account convective effects at the outflow, ψ ′′(xmax) = 0
is imposed. This “convective outflow”-type boundary condition neglects viscous effects at x = xmax.
Results are qualitatively similar when imposing a homogeneous Neumann boundary condition, but
the truncation effect is stronger.

Figure 1 shows the effect of the different parameters on the spectrum as well as on the leading
eigenmode ψ (0). Figure 1(a) shows that, for a0 = 1, the system changes from globally unstable to
stable as U0 is increased. At low values of U0, the leading eigenmode reaches a maximum around
x = 2 and decays exponentially downstream (Figure 1(b)). As U0 increases, the temporal decay of
the mode becomes stronger, and the spatial maximum eventually disappears: exponential growth is
observed essentially throughout the entire domain. As observed previously,22 the spatial growth rate
of the global mode corresponds to the local spatial growth rate at the global frequency.

For U0 = 4 and U0 = 5, the largest values of U0 considered in Figures 1(a) and 1(b), the overall
shape of the spectrum completely changes. Figure 1(b) shows that in these cases, exponential growth
occurs throughout the domain, and the amplitude of the mode varies by a factor of 1016 between
x = 0 and the outlet at x = 25: the modes, and in particular the region 1 < x < 3 where instability
mechanisms act, cannot be resolved numerically. This phenomenon can also be seen as the length of
the domain is increased for fixed U0 and a0. The same behavior is observed for a(x) ∈ R, in which
case the spectrum should lie on the imaginary axis, indicating that none of these computed modes
actually correspond to modes of the continuous problem. Figure 1(c) shows that the eigenvalues
returned by the eigensolver for U0 = 5 approximately lie on the 10−14 contour of the pseudospectrum
of the discrete operator which, in this case, does not provide a good approximation to the spectrum.
In situations where the amplitude of the mode cannot be represented throughout the domain, even
the QZ algorithm fails to compute an accurate approximation to the discrete spectrum.

The relative effect of the instability parameter and of the advection velocity is summarized in
Figure 1(d), where the spatial growth rate of the leading eigenmode is represented as a function of
the two parameters U0 and a0. From this growth rate, it is possible to evaluate the maximum domain
length for which the computation is possible using double precision arithmetic. The dashed lines
displayed in Figure 1(d) correspond to values of (a0, U0) for which the numerical truncation errors
prevented the computation.

C. Conclusions from model problems

The above examples have shown that the spatial behavior to be seen in Sec. V A for the
eigenmodes of the Navier–Stokes equations is not inconsistent, and that it does not correspond to a
spatial instability within a local framework. In the case where the flow dynamics are dominated by
convection and diffusion effects, the downstream evolution of the modes results from two opposing
mechanisms: the local stability of the flow tends to decrease the amplitude of the mode in the
streamwise direction, but the advection of the globally stable structures has the opposite effect. In
the case of a parabolic profile for a, the local stability eventually dominates for large x and the global
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(a) (b)

(d)(c)

FIG. 1. (a) and (b) effect of U0 on the leading eigenmodes for the advection–diffusion–reaction model (for xmax = 25 and
a0 = 1). The least stable part of the eigenvalue spectrum is shown in (a), and the leading eigenmode for each value of
U0 (represented in (a) by circles) are displayed in (b). (c) spectrum (+ symbols) and iso-contours of the pseudo-spectrum
for xmax = 25, U0 = 5, and a0 = 1 (logarithmic scale). (d) Spatial growth rate of the leading global mode (measured as
ψ (0) ′(10)/ψ (0)(10)) as a function of parameters a0 and U0. The solid contour represents the limit between growing and
decaying modes, the dashed lines give the maximum value of the advection parameter for which computation is possible in
a domain of a given length (indicated on the curve).

modes decay to 0. On the contrary for a → a0 as x → ∞ the local stability is not necessarily strong
enough to prevent exponential spatial growth. The second model pointed out that, when convec-
tive effects dominate as x → ∞, the size of the computational domain should be small enough
that the amplitude of the mode can be resolved throughout the domain, otherwise numerical ac-
curacy becomes problematic as the 10−15-pseudospectrum can extend far from the spectrum.29

Section V will present details on how this affects the computation and the convergence of modes for
the Navier–Stokes system.

III. SETUP OF THE JET PROBLEM

A. Flow configuration

1. Incompressible setting

A cylindrical jet of a Newtonian fluid with viscosity ν∗, of radius R∗ and exit velocity U ∗
0 is

considered. The two latter quantities are used to make lengths and velocities non-dimensional. The
outer fluid is at rest. The Reynolds number is taken as

Re = U ∗
0 R∗

ν∗ = 103.

Frequencies f ∗ will be reported in terms of the non-dimensional circular frequency ω, related to the
Strouhal number St as

St = 2 f ∗ R∗

U ∗
0

= ω

π
.
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(a) (b)

FIG. 2. Flow configuration for (a) incompressible and (b) compressible computations. The incompressible Navier–Stokes
equations are solved on the 2D domain 	 using a finite element formulation, with an inflow boundary condition (BC) on 
i

(thin solid line), a no slip BC on 
w (thick solid line), a stress-free BC on 
o (dashed line), and compatibility conditions
on the axis 
a (dashed-dotted line). No sponge layers are used in this case. The compressible Navier–Stokes equations
are discretized using high order Finite Differences (FD) on the rectangular domain represented in (b). The shaded regions
correspond to sponge layers, and the presence of an infinitely thin adiabatic wall for r = 1 and x ≤ 0 is taken into account by
means of appropriate FD schemes.

The axisymmetric flow domain, described in terms of cylindrical coordinates r, θ , and x,
is represented in Figure 2(a). The steady solution of the nonlinear Navier–Stokes equations (see
Sec. III B) is assumed to be axisymmetric. This assumption is no longer made for the perturbations,
but in a linear context all perturbation quantities can be decomposed into independent Fourier-modes
in θ , by introducing the azimuthal wavenumber m ∈ N. Consequently, only the two-dimensional
(r, x) plane needs to be discretized for both nonlinear and linear calculations.

The boundary of the computational domain 	 consists of 
i, 
w, 
t, 
o, and 
a, corresponding
to the inlet, a solid wall, the outer radial boundary, the outflow, and the jet axis. The inflow velocity
is imposed on 
i, a no-slip condition on 
w, and stress-free boundary conditions are applied on 
t,33

1

Re

∂u
∂n

− pn = 0,

where n is the outgoing normal at the boundary (cf. Eq. (10.67) in Ref. 33). Compatibility conditions
on 
a ensure a smooth solution on the axis.34 Unless stated otherwise, stress-free boundary conditions
are imposed at the outflow 
o.

The length of the pipe included in the numerical domain is set to xp = 5, and it has been
verified that setting the domain height to rmax = 10 does not affect the results of all incompressible
calculations.

2. Compressible setting

In addition to the flow parameters introduced above, the compressible setting is characterized
by density and temperature scales ρ∗

∞ and T ∗
∞, defined as the respective values in the outer fluid at

rest. Natural choices for the Mach and Prandtl numbers are

Ma = U ∗
0

c∗∞
, Pr = μ∗C∗

P

κ∗ ,

where c∗
∞ = √

γ r∗T ∗∞ denotes the ambient speed of sound and Cp the specific heat at constant
pressure.

In order to capture the acoustic radiation, the typical extent of the numerical domain has to be
of the same order in the axial and radial direction. High resolution Finite Differences (FD) on a
rectilinear grid are used to treat such a large problem. Consequently, the geometry (schematically
displayed in Figure 2(b)) is slightly different than in the incompressible case. In compressible studies,
the jet pipe is modeled as an infinitely thin adiabatic wall located at r = 1 and x ≤ 0. Its presence is
taken care of by using appropriate FD schemes. The treatment of the far field boundary conditions
depends on the type of study performed. As will be shown later, the eigenmodes of the linearized
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Navier–Stokes equations are not spatially localized, so an accurate treatment of the outer boundaries
is needed. To limit as much as possible the reflection of vortical or acoustic waves, the non-reflecting
boundary conditions described by Bogey and Bailly35 are used together with sponge layers. This is
not required for the computation of the optimal perturbations which have a limited spatial extent. In
the latter case, the sponge layers alone suffice to ensure that the solution decays to zero at the outer
boundaries without affecting the flow in the physical region.

B. Base flows

Two types of base flows are investigated in this study: a laminar steady-state solution of the
Navier–Stokes equations, and a parametric model of a turbulent mean flow. The incompressible
analysis is performed on both these base flows, whereas only the turbulent case is considered in the
compressible study.

1. Laminar steady state

A steady flow state is computed as an exact solution of the Navier–Stokes equations (see
Sec. III C). The inflow velocity is prescribed on 
i as

ux (−x p, r ) = tanh (5(1 − r )) ur (−x p, r ) = 0 uθ (−x p, r ) = 0.

This profile has a momentum thickness

δ =
∫ 1

0
rux (1 − ux ) dr ≈ 1

20
.

Stress-free boundary conditions are employed at the outflow 
o. The resulting base flow is weakly
non-parallel, as seen in Figure 3(a). A slight growth of the boundary layer in the pipe leads to an
increase in the centerline velocity between x = −xp and 0, so that the exit centerline velocity is 1.06
at x = 0.

2. Turbulent mean flow

Based on experimental measurements, Monkewitz and Sohn36 proposed a model for the turbulent
mean flow of compressible jets. The flow field comprises two regions: a potential core extending
over a distance of eight jet radii downstream of the nozzle, and an adjoining self-similar region with
Gaussian profile shapes. This model is extended in our study by a parallel flow region inside the
pipe, which smoothly connects to the free jet over the interval 0 ≤ x ≤ 1. The full model is described
in detail in Garnaud et al.37 The resulting streamwise velocity field is displayed in Figure 3(b) for

(a)

(b)

FIG. 3. Axial velocity field of the two base flows. (a) laminar base flow, computed as a steady solution of the Navier–Stokes
equations. (b) turbulent mean flow, adapted from an analytical model.36
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the zero-Mach-number case. The formulation does take into account compressibility effects, and
finite-Mach-number configurations are used for the compressible analysis. The inflow momentum
thickness is prescribed as δ−1 ≈ 23, similar to the laminar case.

Following Hussain and Reynolds,38 the stability of turbulent flows can be analyzed using a triple
decomposition of the flow field into a mean flow, coherent perturbations and fine-scale turbulence.
Using this decomposition, turbulent scales affect the motion of instability waves through Reynolds
stresses, for which a closure model needs to be provided.39, 40 For turbulent jet flows, successful
stability analyses41, 42 have been performed while neglecting the effect of Reynolds stresses, and
this approach is also followed here as a first approximation. Local stability analyses show that
perturbations with low azimuthal wavenumber m are amplified in the potential core region, whereas
the self-similar downstream region of the base flow is unstable only to helical m = 1 perturbations.

C. Numerical methods

1. Incompressible setting

The incompressible Navier–Stokes equations are discretized using P2-P1 Finite Elements (FE),
and the zero-divergence condition for the flow velocity is enforced by a penalty method.43 The
incompressible laminar steady flow is computed using Newton’s method and the FreeFEM++
software.43 A direct solver44 is used for linear systems. Given this steady state or a model turbulent
mean flow (see Sec. III B 2), the linearized Navier–Stokes equations that govern the evolution of
perturbations may be written as

B
∂q
∂t

= Lq, (5)

where q is the state vector, containing the values of all degrees of freedom of the velocity and
pressure fields. Equation (5) is discretized using FreeFEM++ and the resulting sparse matrices are
exported for the linear analysis. The solution of all the problems in Secs. IV and V A relies on the
software libraries PETSc,45 SLEPc,46 and MUMPS.44 Eigenvalue problems arising in Sec. V A are
non-Hermitian, so the Krylov-Schur method is used. In order to compute the least stable eigenmodes
the “shift-invert”47 spectral transformation is applied using a direct linear solver.

In the study of optimal perturbations the amplitude of a perturbation needs to be measured.
The square root of the perturbation kinetic energy integrated over the entire domain 	 is used for
incompressible flows. This results in a pseudo-norm, as pressure is not taken into account. For the
problem to be well posed, the amplitude of the initial condition needs to be measured in terms of a
norm. The initial disturbance is therefore assumed to consist only of a velocity perturbation. Let qu

be a vector containing only velocity-related degrees of freedom, and P be a matrix that associates
qu to a state vector where pressure-related degrees of freedom are zero. Conversely, the operator P†

removes these degrees of freedom from a full state vector q. The pseudo-norm is then obtained as

‖q‖2 = q†
u Ququ = q† P Qu P†q = q† Qq, (6)

where Qu is a Hermitian definite matrix.
The computation of optimal perturbations described in Sec. IV requires (i) a direct time stepper,

(ii) an adjoint time stepper, and (iii) an eigenvalue solver. The linear equations of motion are marched
forward in time using the Crank-Nicolson method (steps (i) and (ii)). A discrete adjoint is used for
step (ii), based on the Hermitian transpose of the discretization matrices. Finally, as the eigenvalue
problem to be solved is Hermitian, the Lanczos method is used.

2. Compressible setting

The linearized compressible Navier–Stokes equations are spatially discretized using a finite-
difference scheme designed for aero-acoustic studies.48 The resulting discretization matrix is sparse,
but with an important number of nonzero elements, in particular due to the stencil of the cross
derivative terms which involves here 121 discretization points. Another consequence of the large
FD stencils is that the bandwidth of the sparse discretization matrices becomes relevant, leading
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to excessive memory requirements for direct solvers. Iterative solvers could be used instead,49 but
these methods are very sensitive to the design of an efficient preconditioner and robustness may be
an issue. In order to circumvent these problems, all of the analysis is performed using an algorithm
based on time stepping of linear equations (an explicit third order Runge-Kutta method is used here).
In such a framework, the structure of the discretization matrices is not needed; therefore, a matrix-
free approach is used. Compressible eigenmodes are computed by use of a relaxation method,50

which is based on the application of a bandpass frequency filter to the equations of motion. This
method allows to solve very large eigenvalue problems with low memory requirements. However,
our experience shows that the relaxation method in general does not reach the machine-precision
accuracy that is possible with the shift-invert method.

The adjoint Navier–Stokes operator is needed for the computation of optimal perturbations
(Sec. IV). A discrete adjoint formulation is chosen, following the memory-efficient approach of
Fosas et al.51 The norm used is that of Hanifi et al.52 Care is taken with the selective spatial filter so
that the discrete propagator of the adjoint equations is the adjoint of the discrete direct propagator
up to machine precision.

IV. TRANSIENT GROWTH OF PERTURBATIONS

The initial condition q(0) that is most amplified over a finite time interval T is referred to
as the optimal perturbation for T. Reddy and Henningson32 established the notion of optimal
perturbations in order to characterize the transient (short-term) linear dynamics of flow systems. Let
the amplification factor be defined as

Gm(T ) = max
q(0)

‖q(T )‖
‖q(0)‖ . (7)

Furthermore, let PT be the propagator, i.e., the linear operator that advances an initial condition
over the time interval T according to Equation (5). The optimal gain Gm(T) is found as the leading
eigenvalue of the operator Q−1

u PP†
T QPT P†, and the associated eigenvector represents the optimal

perturbation. The eigenvalue problem is solved using the Lanczos method, as implemented in
the SLEPc library. The operators PT and P†

T are applied using the time steppers described in
Sec. III C, and Q−1

u is determined using a Cholesky decomposition (in the case of a finite-difference
discretization, this decomposition is easily performed by hand).

A. Incompressible flow

In the incompressible setting, the length of the computational domain is chosen as xmax = 40,
and stress-free boundary conditions are employed at the outflow. The convergence of the results with
respect to the spatial and temporal discretizations has been verified by using (i) a halved time-step
and (ii) a finer mesh where the cell size in the near-nozzle region is divided by more than 3. For
both the laminar and the turbulent base flows, and for all azimuthal wavenumbers and time horizons,
the optimal perturbation is found in the form of structures localized in the boundary layer upstream
of the nozzle, and the perturbations are amplified as they travel downstream. A typical example is
shown in Figure 4, which displays the evolution of the optimal perturbation of the turbulent jet for
m = 0 and T = 10, along the line r = 0.9.

The optimal gain as a function of time horizon T is displayed in Figure 5 for both base flows.
In the case of the laminar base flow, this amplification factor grows monotonically with T as long
as the perturbation is contained inside the numerical domain. Very large amplitudes are reached,
comparable to similar computations in the supersonic regime by Nichols and Lele.17 In the case of
the turbulent base flow (Figure 5(b)), the gain reaches a maximum for a finite time horizon Topt,m.
This maximum is particularly pronounced for axisymmetric perturbations (m = 0), with Topt,0

≈ 10. This interval roughly corresponds to the advection time of the initial perturbation across the
potential core. Downstream of the potential core, axisymmetric perturbations decay as they travel
on. Non-axisymmetric perturbations may still experience further growth beyond the potential core,
and the decay of Gm(T) with T is slower as a consequence. This observation is consistent with the
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FIG. 4. Spatio-temporal evolution of the optimal initial condition for m = 0 and T = 10 for the turbulent jet mean profile in
the incompressible case. The value of the axial velocity along the line r = 0.9 is represented at various time steps, as indicated
next to the curve.

fact that profiles in the self-similar regime may be unstable for m �= 0 but not for axisymmetric
perturbations.53 Both the laminar and the turbulent settings display the largest gains for helical
perturbations m = 1. It may be conjectured that a lift-up mechanism54 is responsible for the strong
growth of helical perturbations, since such a mechanism can only exist at azimuthal wavenumbers
m �= 0. However, no firm evidence of lift-up effects can be reported at present.

B. Effects of compressibility

Corresponding results of optimal perturbations of the turbulent mean flow at Ma = 0.75 are
displayed in Figure 6. The qualitative behavior of Gmax(T) (shown in Figure 6(a)) is similar to
that obtained for incompressible flows (Figure 5(b)), and the amplification levels are comparable,
although perturbations are not measured in the same norm. The spatial shape of optimal perturbations
for short time horizons also resembles those found in the incompressible setting. Figures 6(b) and
6(c) show the optimal perturbation for T = 12: vortical structures in the pipe boundary layer are
amplified as they travel through the jet shear layer. However, compressibility allows a different
scenario at longer time horizons T � 25, as shown in Figures 6(d) and 6(e): the optimal initial

(a) (b)

FIG. 5. Gains associated with the optimal perturbations for (a) the laminar and (b) the model base flows. Thick solid line:
m = 0, dashed line: m = 1, dashed-dotted line: m = 2, dotted line: m = 3, and thin solid line: m = 4.
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(a) (b)

(c)

(d) (e)

FIG. 6. (a) Optimal perturbations for the model subsonic jet at Ma = 0.75 for m = 0 (solid line) and m = 1 (dashed line).
(b) and (c) Azimuthal vorticity field for the optimal initial condition for m = 0 and T = 12, and the corresponding perturbation
at t = 12. (d) and (e) Dilatation field for the optimal initial condition for m = 0 and T = 30, and the corresponding perturbation
at t = 30.

condition takes the form of a spherical acoustic pulse that contracts and hits the nozzle at a finite
time. A vortical wavepacket is thus created at the nozzle, which is amplified while it propagates
through the potential core. This result illustrates that acoustic waves can be very efficiently converted
into vortical perturbations at the nozzle tip.55–57

V. MODAL ANALYSIS

A. Incompressible global modes

1. Spectrum of the laminar base state

Eigenmodes of the linear equations (5) are sought in the form q(t) = q̃ exp(−iωt), such that q̃
and ω satisfy the generalized eigenvalue problem

− iωB q̃ = L q̃. (8)

Stress-free boundary conditions are used at the outflow 
o, and eigenmodes are computed for
xmax = 60 with various shift parameters. The resulting spectra for the laminar base flow are shown
in Figure 7(a).

All eigenvalues have a negative growth rate ωi ≤ 0 and therefore are stable. This finding is
consistent with local instability results from the literature, which have shown isothermal jets to be
convectively unstable,36 except in rare circumstances.58

Several families of modes can be identified from Figure 7(a). A first branch of modes, starting
at the origin, is represented as circles (blue). The least stable of these modes correspond to vortical
structures in the free-stream, as displayed in Figure 7(b). The wavelength of these nearly stationary
modes scales with the size of the numerical domain. As the growth rate decreases along this branch,
the branch is distorted and the mode structure tends to be localized more towards the jet shear-
layer. This is an effect of the finite extent of the numerical domain that has been observed in other
studies.26, 59 A second branch is represented by × symbols (black). These eigenmodes are localized
inside the shear layer. At the lowest frequencies, an exponential spatial growth in the streamwise
direction is observed throughout the computational domain, as shown in Figure 7(c). This behavior
is similar to what was observed in the model problems of Sec. II, and by this analogy we attribute
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FIG. 7. Global modes computed for m = 0 on the laminar base flow. (a) eigenfrequency spectrum. (b)–(e) axial velocity
magnitude of four selected modes, in logarithmic scale, as indicated in (a).

the exponential spatial growth to the temporal decay of these modes. At higher frequencies
(Figure 7(d)), spatial growth is still found downstream of the nozzle, but the mode reaches a
maximum amplitude within the computational domain. The maximum growth rate along this branch
occurs around the frequency (ωr ≈ 1) for which the location of maximum amplitude of the mode
enters the computational domain, suggesting that the maximum in ωi is an artifact of the finite
domain size. Domain truncation effects are investigated in Sec. V A 2. The phase velocity of all
modes along this branch corresponds approximately to half the jet velocity on the centerline; modes
at higher frequency therefore display shorter wavelengths, as can be seen in Figure 8.

(a)

(b)

FIG. 8. Axial velocity for global modes (c) and (d) of Figure 7, in linear scale.
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A third family of modes is found, represented by plus signs (red) in Figure 7(a). None of these
eigenvalues are recovered identically with different shift parameters, indicating a lack of convergence.
However, these modes have been computed by the eigenvalue solver with the specified convergence
criterion, namely, ‖Lq + iωq‖ < 10−10‖q‖. We attribute this class of modes to spurious effects
arising from finite machine precision. The spatial structure of one such spurious mode is represented
in Figure 7(e).

All modes represented in Figure 7 display very large amplitude variations throughout the free-jet
region. If these variations are of the order of machine precision, the low-amplitude dynamics near the
nozzle cannot be accurately resolved. The perturbation amplitudes shown in Figures 7(b)–7(d) do
not span more than ten orders of magnitude in the free-jet region, and appear to be well-converged.
The spurious mode in Figure 7(e), in contrast, varies over 14 orders of magnitude, and seems to
be affected by the double-precision round-off error as a consequence. In fact, it may be surmised
that its very existence is due to the round-off error; this conjecture will be further investigated in
Sec. V A 2. A similar observation has been made by Heaton et al.23 in their modal stability analysis
of the Batchelor vortex. Those authors report that modes with amplitude variations above a factor of
106, between the inlet and outlet of the computational domain, cannot be accurately resolved with
their numerical method. With the present algorithm, this limiting factor is approximately 1014.

2. Influence of domain truncation

All eigenmodes displayed in Figure 7 reach their maximum amplitude at or near the downstream
boundary of the numerical domain. It may therefore be expected that the position of this boundary, as
well as the numerical treatment of the outflow condition, should affect the results. In order to evaluate
this influence, different domain lengths between 40 and 100 radii have been tested. The results are
compared in Figure 9(a), which shows that the branches of eigenmodes computed are not domain-
independent. A similar behavior has been obtained in the analysis of the Blasius boundary layer,22

and is attributed to the fact that the wavepackets travel throughout the domain. Most importantly,
the maximum growth rate of the shear-layer branch shifts to lower frequencies as xmax is increased.
An inspection of the associated spatial amplitude distributions reveals that this maximum growth
rate occurs roughly at the frequency at which the mode maximum amplitude is first captured inside
the numerical domain. At low real frequencies, the true amplitude maximum lies on the outflow
boundary of the numerical domain, and the eigenvalues are strongly affected by truncation. With
increasing real frequency, this amplitude maximum moves further upstream, and the influence of the

(a) (b)

FIG. 9. Spectra computed for various domain lengths using stress-free (a) and convective outflow (b) boundary conditions
at the outlet. Crosses: xmax = 40 (black). Triangles: xmax = 60 (blue). Plusses: xmax = 80 (green). Circles: xmax = 100 (red).
The dashed lines correspond to the estimated decay rate (11).
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domain truncation lessens. The mode shapes shown in Figure 7 are consistent with this observation.
If the trend with increasing domain size is extrapolated, one may expect that the growth rate of the
shear-layer branch decreases monotonically with increasing frequency in an infinitely long domain.

While the spectra in Figure 9(a) have been computed with stress-free outflow conditions,
Figure 9(b) displays corresponding results obtained with a “convective outflow” formulation.60 Both
boundary conditions are found to give very similar results. It is inferred from this comparison that
the outflow boundary conditions do not have a significant impact on the eigenmode computations in
this study.

It appears that the spurious branches become less and less stable as the domain length increases.
This branch is interpreted as a consequence of finite precision arithmetic. Under the assumption of
a quasi-parallel flow, let Cg be the group velocity of a spurious spatial instability wave forced by
numerical noise in the vicinity of the jet pipe,

ψsp = ψ̂(r ) exp(i(kr + iki )x) exp(−iωt), (9)

where ω is the complex forcing frequency. This forced wave will be considered an eigenmode by the
solver if the forcing amplitude is of the order of the numerical precision εm, i.e., if the amplitudes of
this forced wave at the inlet and at the outlet are such that

ψ(x = 0) ∼ εmψ(x = xmax ).

In this case, (9) gives ki = −log (εm)/xmax. Let ωt
i (kr ) be the local temporal growth rate associated

with the axial wavenumber kr. In the limit of long wavelengths, jet flow profiles are approximately
marginally stable. Following an approach similar to that of the Gaster transformation,61 the global
temporal decay rate ωi can be related to the global spatial growth rate ki by

ωi ≈ Cgki + ωt
i (kr ) ≈ Cg

log(εm)

xmax
. (10)

As the group velocity Cg is of the order of the base flow velocity U0, the decay rate associated with
such pseudomodes can be estimated as

σ ≡ U0
log(εm)

xmax
. (11)

Figure 9 shows that the above expression provides a reasonable estimate for the decay rate of the
spurious modes. Since σ varies as 1/xmax, this spurious branch will eventually become less stable
than the other two branches as xmax increases, preventing their computation. It is thus impossible
to obtain converged results for the spectra, at least using standard double precision arithmetic
(εm = 10−15).

It appears that machine precision imposes severe constraints on global mode computations for
convective flows such as jets. The streamwise extent of the numerical domain must be sufficiently
large to capture the amplitude maximum of the mode, but the amplitude variations must also be
within the range of machine precision. At the same time, spurious modes contaminate an increasingly
large portion of the spectrum as the numerical domain length is increased.

3. Spectrum of the turbulent mean flow

One may intuitively expect that the much faster spreading of the turbulent mean flow, compared
to the laminar base flow considered in Sec. V A 1, will lead to global mode structures that decay
spatially within a shorter distance from the nozzle. In view of the discussion in Sec. V A 2, such
a behavior would be favorable for the numerical analysis. However, the mean flow spreading also
implies a decreased advection velocity, which in turn strengthens the spatial growth due to the
advection of stable structures.The estimate for the decay rate of spurious structures given by (11)
can be modified to account for the significant variation of the base velocity on the jet axis, giving

σ ′ ≡ log(εm)

(∫ xmax

0

1

u0
x (0, x)

dx

)−1

. (12)
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FIG. 10. Global spectra computed for m = 0 for the model base flow. Crosses: xmax = 40 (black). Triangles: xmax = 60
(blue). Plusses: xmax = 80 (green). The dashed lines correspond to the estimated decay rate of the spurious branch given
by (11).

The spectra displayed in Figure 10 show that this estimate is also reasonably accurate. This implies
an even more stringent constraint on the size of the computational domain than in the case of a
nearly parallel flow.

Figure 11 displays selected global modes computed for xmax = 60: as for all the modes presented
in Figure 10, the exponential growth continues throughout the computational domain. Indeed, in
light of the discussion of the model problems, there is no guarantee that a maximum will ever be
reached: the maximum amplitude may well continue towards infinity. Against all expectations, it is
found that the faster spreading of the present mean flow does not lead to more upstream-localized
mode structures. Therefore, the computation of the spectrum is not any more accessible than in the
laminar base flow case.

B. Compressible eigenmodes

Eigenmodes have been computed for the model mean flow at Ma = 0.75. The computed spec-
trum is displayed in Figure 12(a). Similar to the incompressible case, it is worth pointing out that

(a)

(b)

(c)

FIG. 11. Axial velocity fields of selected global modes computed for m = 0 for the model base flow with xmax = 60 and
stress-free outflow boundary conditions (logarithmic scale). (a) ω = 0.22 − 0.11i, (b) ω = 1.0 − 0.17i, (c) ω = 0.98 − 0.23i.
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FIG. 12. Global modes computed for m = 0 on the model subsonic jet at Ma = 0.75. (a) eigenvalue spectrum. (b)−(d)
azimuthal vorticity of three selected modes, as indicated in (a).

the spectrum does not show any preferred frequency. The decay rates of the modes are, however,
significantly less stable than in the incompressible case, by more than a factor of five. Although the
solver used for this computation is less accurate than the one used for incompressible computations,
the results displayed in Figure 12 are converged with respect to the iterative eigenvalue solver. As
a consequence of the very low decay rate, the spatial growth of eigenmodes is weaker than in the
incompressible case, and at high frequencies the global modes decay right after the end of the jet
pipe (see Figures 12(b)–12(d)).

Several reasons may explain such a slow temporal decay. As it was seen in Sec. IV, acoustic
disturbances efficiently excite vortical structures, and, as the Mach number increases, the acoustic
wavelength gets closer to the wavelength of vortical wavetrains, so that excitation can be efficient
and lead to a feedback loop. The feedback could also be spurious: indeed, although the optimal
perturbation results of Sec. IV are quite insensitive to the treatment of the outer boundaries, this
significantly affects the eigenmodes. In spite of the use of non-reflecting boundary conditions and
very weak sponge regions, it is expected that an effect is still present here. Similarly, as the vorticity
field grows in space due to the temporal stability, the acoustic field also grows exponentially with the
distance to the acoustic sources. As a consequence, even for weakly damped modes, reflection can
be significant in large numerical domains. Finally, the low decay rate may be related to the fact that
the numerical dissipation is lower with the present FD formulation than with the FE discretization
used for incompressible flows. Indeed, in situations where structures are convected outside of the
numerical domain, dissipative effects can be important at large times.

VI. PROJECTION OF THE TRANSIENT DYNAMICS ONTO THE SPACE
SPANNED BY EIGENMODES

Optimal perturbations have been computed in Sec. IV using a direct-adjoint technique. An
alternative method is to approximate the propagator using a reduced-order basis consisting of the
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FIG. 13. Optimal transient amplification of axisymmetric perturbations for the laminar incompressible jet. (Thick line)
computation using the adjoint equations, as computed in Sec. IV. (Thin lines) optimal gains computed by projecting the
dynamics onto the space spanned by the N least stable eigenmodes.

computed eigenmodes. This technique has, for example, been successfully used by Akervik et al.7

for the global analysis of an amplifier flow. Regardless of the relevance of the eigenmodes to describe
the dynamics, such an analysis is expected to yield accurate results provided the eigenmodes are
computed accurately. Figure 13 displays the optimal gains computed for the laminar incompressible
jet with m = 0: the N least stable eigenmodes have been used for the computation, with N varying
from 5 to 183.62 It appears that even when all the computed eigenmodes are taken into account, the
optimal gains are underestimated by up to two orders of magnitude. Eigenmodes are therefore not
relevant individually, which is already well known for amplifier flows, but also as a superposition
to represent transient dynamics. A similar study on a stable lid-driven cavity flow (not shown
here) yielded substantially better convergence towards transient energy gains when the number of
included eigenmodes is increased. This further emphasized the role of advection in the representation
of transient phenomena by global modes. The above finding is contrary to that of Akervik et al.7 and
is related to the much stronger streamwise growth of eigenmodes in the present configuration. Indeed
the optimal initial conditions consist of structures in the jet pipe. In this region, all eigenmodes have
very small amplitudes and numerical inaccuracies (due to both the eigenmode computation and the
projection) become significant.

VII. CONCLUSIONS

The linear dynamics of perturbations in jet flows is the result of two mechanisms, advection by
the base flow and shear layer instability. In order to investigate the effect of these two features on the
modal and non-modal stability properties of the flow, two types of base flows have been considered.
The first one is a laminar steady solution of the Navier–Stokes equation, for which both advection
and instability remain approximately constant in the streamwise direction. A turbulent mean flow
has also been used: in this case, instability is limited to a region of about eight radii downstream
of the jet pipe, referred to as the potential core, where advection remains approximately constant.
Further downstream the base flow velocity decreases significantly and the jet profiles become stable
to axisymmetric perturbations.

An optimal perturbation analysis has been performed on these two base flows, revealing that
vortical structures are amplified throughout the laminar jet, but only in the potential core for turbulent
mean flows. In both cases the flow is globally stable.

In order to investigate the preferred frequency observed in jet experiments, a modal analysis
has then been performed, but several difficulties were encountered. The eigenmodes, computed on
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a finite domain, exhibit an exponential growth in the streamwise direction. Intuitively, one might
expect that eigenmodes should spatially decay in locally stable flow regions, and that therefore such a
decay will eventually occur if the numerical domain is long enough in the streamwise direction. This
is actually not the case, and longer computational domains in fact tend to aggravate the numerical
difficulties.

The cause of these problems has been discussed for model equations that mimic the advection
and instability properties of jet flows. Indeed, when eigenmodes represent the advection of stable,
temporally decaying structures, they grow exponentially in the streamwise direction. When comput-
ing such modes, difficulties therefore arise due to the domain truncation, the modeling of outflow
boundary conditions and the finite precision of computer arithmetic.

Eigenmodes have been computed for jets in laminar and turbulent, compressible and incom-
pressible settings, and results display the same properties as those obtained from the model problems.
It has been shown that convergence of the spectrum of incompressible jets is inhibited by the presence
of spurious pseudomodes which impose strict constraints on the size of the numerical domain.

As was shown with simple models, the exponential spatial growth of the stable modes is not an
indication of a local spatial instability, it is merely a reflection of the fact that the eigenfrequency
ω has a negative imaginary part. This has been further exemplified through the computation of
eigenmodes for turbulent mean flows that grow even faster than those computed for a laminar base
flow, while the flow is stable downstream of the potential core for m = 0. The temporally stable
structures observed in the modes, generated by a shear layer instability downstream of the nozzle,
are convected downstream in a quasi-neutral flow resulting in an apparent spatial growth. For both
mean flows the global decay rates of shear layer modes are of the same order of magnitude since the
inflow shear layer thickness is similar. As the advection velocity is much smaller for the turbulent
mean flow, the spatial growth is therefore larger.

For compressible flows, the computed eigenmodes are less stable than in the incompressible
case. As a consequence, the local stability of shear layer structures dominates over the growth due
to stable advection such that the exponential growth is not observed. However, this growth not only
affects vortical structures but also acoustic waves. For acoustic perturbations the exponential growth
due to the advection of stable structures eventually dominates over the algebraic decay: the acoustic
waves radiated from a mode reach their maximum amplitude at the boundaries of the computational
domain, which represents considerable challenges to avoid spurious reflections.

The present results found for jet flows are consistent with the literature on the stability of the
Blasius boundary layer. The qualitative features of the eigenmodes are similar for jets and boundary
layers, but the physical settings are quite different, and eigenmodes are much less temporally stable
for the boundary layer problem. Consequently, the spatial growth of boundary layer modes is weaker
and numerical issues are less important than in the jet configuration.

All the numerical challenges faced in the modal analysis of jet flows cannot be attributed to
a poor discretization and other numerical influence, since the numerical tools used in this study
provided robust results for the transient flow analysis. As the numerical schemes employed for
this study are linear, the transient simulations can be viewed as a superposition of all eigenmodes
of the discrete problem. The issues are not related to the convective nature of the flow, since the
transient analysis successfully and robustly reproduced the flow behavior; they rather lie with the
description of stable convective dynamics by global modes, and their interpretation as coherent
invariant structures.

ACKNOWLEDGMENTS

This work was supported by DGA Grant No. 2009.60.034.00.470.75.01 and by a fellowship
from the EADS Foundation. Calculations were performed using HPC resources from GENCI (Grant
No. 2012-026451). The authors thank F. Gallaire for his help.

1 D. Barkley, “Linear analysis of the cylinder wake mean flow,” Europhys. Lett. 75, 750–756 (2006).
2 S. Bagheri, P. Schlatter, P. Schmid, and D. Henningson, “Global stability of a jet in crossflow,” J. Fluid Mech. 624, 33

(2009).

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  129.104.29.2 On: Mon, 22 Feb

2016 15:30:06

http://dx.doi.org/10.1209/epl/i2006-10168-7
http://dx.doi.org/10.1017/S0022112009006053


044103-19 Garnaud et al. Phys. Fluids 25, 044103 (2013)

3 U. Ehrenstein and F. Gallaire, “Two-dimensional global low-frequency oscillations in a separating boundary-layer flow,”
J. Fluid Mech. 614, 315 (2008).

4 P. Meliga, J. Chomaz, and D. Sipp, “Global mode interaction and pattern selection in the wake of a disk: A weakly nonlinear
expansion,” J. Fluid Mech. 633, 159 (2009).
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