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We consider incipient vortex breakdown and describe how infinitesimal perturbations may
destabilize a columnar swirling jet. The framework is axisymmetric and inviscid following Wang
and Rusak’$J. Fluid Mech.340, 177(1997] analysis. The goal of the present study is to relate the
local properties of swirling flows in infinite pipes to their global stability properties in pipes of finite
length. A spatial linear stability analysis is pursued which gives a complementary point of view to
the subcritical/supercritical concept introduced by BenjafdinFluid Mech.14, 593 (1962]. In
contrast to supercritical flows which exhibit two neutral spatial branches traveling downstream and
two counterpropagating evanescent spatial branches, subcritical flows exhibit a frequency range
where all spatial branches are neutral, three of which travel downstream and one upstream. By using
global energy budget arguments and monitoring how the upstream wave is reflected into the
downstream waves and conversely, the inlet and outlet conditions are shown to drive the instability
in the limit of long but finite pipes. Various inlet and outlet conditions are proposed that stabilize or
destabilize the flow, depending on their ability to supply energy. The analysis demonstrates therefore
that the global instability accounting for incipient vortex breakdown in Wang and Rusak’s model
may arise from the combination of a locally neutral flow and suitable inlet and outlet conditions.
© 2004 American Institute of Physic§DOI: 10.1063/1.1630326

I. INTRODUCTION planation for global instability since any kind of feedbacl
mechanism may be destabilizing. In the present paper \
Vortex breakdown is an abrupt change in the vortex corgdentify another example of global instability that result:
structure with the appearance of a stagnation point close tRom the combination of a flow that can propagate energy
the vortex axis. This widespread phenomenon commonly ogoth directions without amplification and of inlet and outle
curs in industrial or atmospheric conditions. In the labora-conditions that serve as energy providers. A similar behavi
tory, it is preferentially studied in vortex tubes, where it is has recently been identified in fluid conveying pipes b
seen in many cases to give rise to an axisymmetric structurgypareand de Langré.
In such a configuration, the swirling flow is open and it |n the context of vortex breakdown in swirling jets,
should be supplemented with suitable inlet and outlet condigquire introduced the concept of critical state, by which h
tions. Vortex breakdown often involves hysteresis and hag,eant the amount of swirl necessary to sustain a stahdir
been recognized as a strongly nonlinear phenomenon. Negaye of infinite wavelength. He also added that as the sw
ertheless, a long series of studies starting with Squirél s increased above this critical value, standing waves of fini
Benjamirf have shown that some physical insight may beyayelength will exist and propagate disturbances upstrea
gained by considering the dynamics of infinitesimal distur-|n other words, Squire’s basic idea is the following: if stand
bances. When the swirl is increased slowly enough, transiyg wayes exist on a vortex flow, then disturbances which a
tion to vortex breakdown is triggered by the loss of stabilitypresem downstream will propagate upstream along the v
of the columnar state. The determination of this threshold fogg, thereby causing breakdown even if they are not amp
incipient vortex breakdown remains a formidable task sincefjgq.
in open flows, it is important to consider the evolution of Benjamirf introduced the concept of supercriticall
perturbations not only in time but also in sp_%\amd totake  gpcritical swirling flows. Vortices with axial flow are clas-
into account the advection of the perturbations by the basgifiaq according to the propagating behavior of the nondi
flow. This has more recently led to examine the role of ab'persive axisymmetric neutral Kelvin waves which they
solute instabilities, i.e., instabilities that grow in place, in thesupport in the low-wave-number limit. Such flows are saidf
occurrence of self-sustained Qscillatiqns or so-called globalq supercritical if they sustain only downstream-traveling
modes(see Huerre and Ro$si In particular, Chomaz and \yaves andsubcritical if they sustain both upstream and
Couairor? have analyzed the combined effects of the localyonstream traveling waves. This criterion is based on tt
nature of the instability and the boundary conditions in SYSsign of thephase velocitymeaning, for instance, that sur-
tems of finite length. Absolute instability is not the only ex- 5.5 of constant phase cannot propagate upstream when
flow is supercritical. Benjaminthen criticized Squire’s sug-
dElectronic mail: francois@ladhyx.polytechnique.fr gestion: “a serious objection to Squire’s theory is that th
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group velocity of his standing waves is in fact directedto as incipient vortex breakdown. The subtle balance ex
downstream, which means that the waves can only form implaining the existence and eventually the stability of the
the rear of a disturbing agency and cannot spread upstreamgteakdown state is far more difficult to analyze physically
Benjamin’s claim was then generally adopted, for in-and is out of the scope of the present pafike interested
stance, by Escudiérwhilst the phase velocity of the waves reader is referred to Wang and Ru¥aér Keller, Egly, and
considered by Squire might be directed upstream, their grouByley!” for different perspectives on this nonlinear issue
velocity was directed downstream so that no energy could be e begin with the spatial stability analysis of the swirl-

transpprted _upstream and waves could only form in the re3hq jet profiles used in Wang and RusKThis spatial study
of a disturbing agency.” This has led to many attempts 0 complementary to the usual temporal point of view and if

generalize the conc_ep'zgof supercritical/subcritical ﬂOV.VS’ asclearly brings out the propagation of waves in the flow. It
done by Tsai and Widnathrough amad hocgroup velocity allows one to precisely analyze the feedback loop that dest:

criterion. More recently Delbende, Chomaz, and Huétre, .. = 0
Olendraru. Sellier. and Huerté and Loiseleux. Chomaz bilizes the flow and it yields a necessary condition for global
: ’ : ’ ’te}nstability: the flow should be locally subcritical and thereby

and Huerr& among others have focused on the absolu o ; -
convective classification of instabilities, which is nothing but &10W €nergy propagation in both directions for the global

the natural generalization of the supercritical/subcritical clasinStability to set in. Alower bound is thereby established for
sification to the case of instability waves. the swirl number corresponding to the development of the
Only Leibovich®® points out that phase and group veloci- global instability in the limit of long but finite pipes.
ties coincide in the low-wave-number regime where waves The energy budget demonstrates the crucial role of th
become nondispersive and neutral. He moderates Benjaminislet and outlet conditions; furthermore, it leads to the deri-
objection to Squire: “Benjamin criticized this conception, vation of a sufficient condition for stability based only on the
pointing out that the group velocity at criticality is positive in consideration of the inlet and outlet boundary conditions
the downstream direction, so that in a columnar flow, disturParticular boundary conditions are proposed that fulfill this
bances cannot spread upstream from a disturbance sour@gapility condition and are indeed seen to quench the glob:
Had Squire described the processes in an evolving vortejstapility, whatever swirl setting is considered. In other
core, along the lines above, Benjamin’s objection would NOtyords, the energy budget analysis provides a second nece

havc;\”seﬁmedl'com|Oellin|g."égyg_12 ocalS in th sary condition for instability, based solely on the boundary
these linear analys are local™in the sense . itions. In the long but finite pipe limit, and in all pres-

that the swirling flow is assumed columnar and extendin : L -
o - ntly studied combinations of boundary conditions, flows
both upstream and downstream to infinity without taking into . . :
that fulfill both necessary conditions are indeed seen to b

account streamwise boundary conditions. Wang and Rfisak
choose instead to consider the nonlinear steady states sd@Stable' . o .

tained by an inviscid swirling flow in a pipe of finite length ~ 1he Paper aims at providing a link between the local
for specific inlet and outlet boundary conditions. The follow- 9roup-velocity criterion of Squifeand the global picture of
ing bifurcation sequence is then identified as the swirl pa\vang and Rusak: In Wang and Rusak's spirit, most re-
rameter is increased. As the swirl reackies a first saddle- sults are derived on a simple model of swirling flows: a
node bifurcation is encountered which gives rise to a stabl€olumn of fluid flowing at constant axial velocity and in
state identified by the authors as breakdown state, and aolid body rotation. As shown below, this model has the con
unstable state, referred to asceleratedsince the axial ve- siderable advantage of not only providing a fully explicit
locity is observed to increase on the centeplinghile the  dispersion relation but also of decoupling the radial and axia
columnar vortex remains stable. AboUk, the flow is then dependence, thereby making the energy propagation analy:
bistable and only finite amplitude perturbations may triggefractable. It is expected that the results will continue to holc
vortex breakdown. Above a higher critical swirl val@l,  for other flows provided the overall dynamics is projected or

the columnar vorte1>é loses its stability, as demonstrated byng first Kelvin branch and the coupling terms are neglectec
Wang and Rusak!® and vortex breakdown may then be Work is in progress along these lines.

reached by infinitesimal perturbations of the columnar flow.
This loss O.f stablllty_occurs s_llghtly above t_he_ S.W'rl value line: the general formulation and equations are introduced i
Qg of Squird at which standing waves of infinite wave- . . .

Sec. Il. Section Ill details the classical temporal and les:

length are sustained and neutral, the small difference vanish-I ical tial stability anal nd it di Squir
ing in the long pipe limit. It should be emphasized that thig'assical spatial stability analyses a SCUSSES Squire

instability of the columnar state iglobalin nature and takes and BenJ.am|n’s views. Sectlon. IV sets these local results i
place while the vortex remairiscally neutral. The present Perspective when compared with Wang and Rusaiiobal
paper seeks to unravel the apparent paradox between gIoUBPde picture. It is demonstrated that the upstream and dow
instability and local neutrality. In particular, the respective Stréam boundaries constitute the necessary energy provid
role of the boundary conditions and the inertial waves |ivingt0 drive the |nStab|l|ty This clear identification of the Origin
in the bulk of the flow is analyzed in terms of energy ampli- of the instability allows us to propose different boundary
fication and propagation. This amplification mechanism ofconditions in Sec. V, that, depending on their ability to
infinitely small perturbations is essential to explain how vor-modify the energy budget, may stabilize or destabilize the
tex breakdown develops and this initial stage will be referreccolumnar vortex.

The study is organized according to the following out-
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i been further extended to nonaxisymmetric perturbations by
Ludwieg* and Leibovich and Stewartstfrbut this is out of
the scope of the present contribution.

(3) Independently of the specific azimuthal velocity pro-
file, the Kelvin—Helmholtz mechanism may generate an un-
stable wave when strong shear is present in the axial velocity
profile if the quantitydwg(r)/dr has a local extremurtsee
for details Batchelor and Gfff).

It is important to note that flows where none of these

FIG. 1. Essential flow variables and base flow; axisymmetric stream surdestabilizing agentécentrifugal or shearare active, remain
facesy(y,z,t)=const have been represented by their intersections with aneutral if the extent of the flow is infinite in the axial direc-
meridional plane. tion. This is the case for the Rankine vortex with uniform
axial flow, the Burgers vortexi.e., a Lamb—Oseen vortex
with uniform axial flow), or the Batchelor vortex. These
Il. FLOW CONFIGURATION AND FORMULATION flows have, however, been shown Wang and Rirsakbe-
come globally unstable when axially finite domains are con-
sidered, i.e., when suitable inlet and outlet conditions are
Consider axisymmetric swirling flow in a pipe of radius added. Moreover, in these cases, Wang and Rlsaid Ru-
R and IengtH. The ViSCOSity is set to zero so that the flow is sak, Wang, and Whmr?d have demonstrated that the nonlin-
governed by the Euler equations. We use cylindrical coordiear saturated states resemble vortex breakdown bubbles. Th
nates (,6,z) and the velocity componentsufv,w) cor- s the primary motivation for restricting our study to profiles
I’espond, reSpeCtively, to the radial, aZimUthal, and axial Vethat remain |Oca||y neutral in an infinite domain.
locity. The flow variables used in the study are sketched in
Fig. 1. B. Squire—Long equations
The base flow consists of an axial flow of maximum
velocity w2 Superimposed on a rotation around thexis .
defined bya?he azimuthal velocity profike(r). The corre- stream funct|onl (r.z,1) s.ugh that 9:_"/12” and
sponding value of the axial vorticity measured on the axisV = Y/, the a2|mutha_l vorticity and its re_duced fo_rm
equals 2. Throughout the paper, we adopt the radRias X~ Z/r. Further_ defining a rescaled radial co_ordmate
length scale andv,,,, as velocity scale, so that the dimen- y=r*/2, the flow is governed by the unsteady Squire-Long

sionless columnar base flow reads equationssee Leibovich):
Ki+ 'nyKz_ l//zKy: 0, (29)

A. Flow configuration

Let us introduce the circulatiorK(r,z,t)=rv, the

NO)
u(r)=0; v(r)=—-vo(r); w(r)=wo(r), (1)
for O=r=<1, O=z=<L, with L=I/R being the nondimen-
sional pipe length an€) =4f?R?/w?, the swirl parameter.
The axial velocity is assumed independentband the azi- xX= =Yyt ¢42y). (20)

muthal velocity linearly dependent off. The model under Equation (2a) expresses the conservation of the azimuthal
consideration is seen to involve two control parameters: th%irculation K in its transport along the flow. Similarly the

swirl € and the pipe aspect ratla left-hand side of the evolution equati¢@b) accounts for the
Depending on the velocity profilag(r) andwo(r) and  transport of azimuthal vorticity and its right-hand side for the

on the swirl (), the base flow, if considered infinite, will iing of axial vorticity into azimuthal vorticity. Thetretch-
respond differently to external perturbations. It will either acting of the azimuthal vorticity is implicitly included through

as a waveguide for neutral waves or as an amplifyd@mp- e yse of the reduced variabje As discussed in Szeri and

ing) medium for unstablestable waves. Each of these be- 5jmes26 the problem is well-posed as soon as an inlet con-

haviors is associated with a physical mechanism which susgition for K and y is specified as well as four boundary
tains, amplifies, or damps the perturbations. conditions for ¢ on each boundary of the domain. Since

(1) Due to the restoring action of the Coriolis force, y_ o andy=1/2 are stream surfaces, the lateral boundary
swirling flows present a remarkable radial “elasticity,” -ynditions are

which permits the propagation of longitudinal inertial waves,

1
Xt+l//sz_ 'szy:4_y2(K2)zv (2b)

or so called Kelvin wavegsee, for instance, Saffm&ih #(0, z,t)=0, (3
(2) The other force active in rotating flows, the centrifu-
gal force, is able to destabilize the flow when certain require- P(1/2, z,t)=q, (4)

ments on the profiles are met: the famous Rayighite- where q denotes the nondimensional flow rate
rion is a necessary and sufficient condition for Cemrifugalquérwo(r)dr. Three inlet conditions are added which ef-

ins_tability of the axisymmetricn=0 mode in t_he abs_ence_ of fectively prescribe that the base flow be maintained at the
axial flow. Howard and Gupf have generalized this crite- inlet z=0 in the presence of perturbations

rion and derived a necessary condition for axisymmetric in-
stability including the effects of advection. The criterion has  (y,0t) = ¢o(y), (5)
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K(y,01) = VQK(y), (6)  C. Linearized equations
Following Wang and Rusak, perturbations indicated by
x(¥,00)=xo(Y), (7) primed variables are superimposed on the base flow acco
where y(y), Ko(y) are easily determined from the base Ing to
flow. (1) with the r_e.ference valu%(yzo_)zo gnd wh(_ere K(y,z,t) = VOKo(Y)+K'(y,zt),
the inlet wall conditiony,(1/2)=q compatible with relation
(4) is imposed. As discussed in Wang and Ru¥akhe Wy, 2,0)=o(y)+ ¥ (y,z,1),
inlet vorticity is assumed to be fixed and equal to ,
xo(Y) == thoyy(Y). This choice is equivalent to imposing X(Y,2,5) = xo(Y) + X' (y,Z,1).

,40y,t)=0 ®) The Squire—Long equationg(2a—(2c)] are linearized
around the columnar base flow. Introducing the modified Le

at the inlet, letting the radial velocity,(0,y,t) evolve freely ~ Placian operator

but requiring the smooth cylindrical development of the flow

: : - # 1 &P
leaving the inlet. A=—+——>, (10)
The outlet condition is the same as in Wang and Rd$ak: gy* 2y oz
P (y,L,1)=0, (99 and eliminating x’ through X' =—Ay' yields the two-
dimensional system
implying a vanishing radial velocity. Note that the columnar 1 0 .,
base flow K(y,z0)= V0Ko(y), #(y,20=o(y), and (K )
x(¥,z,1)=xo(y) is an exact solution of the inviscid nonlin- |0 —A |\ ¢’
ear equation$3)—(9).
In contrast to the downstream boundary conditions, the _ ‘9_% i ‘9_K° i
choice of upstream boundary conditions has been a main dy 9z ady dz K’
source of concern in the literature. When an inviscid flow in =~ = Ko @ Ixo @ O IA (,//)1 1D
a straight pipe of finite length is analyzed, Wang and Rtfsak Qz—z % A
have shown that the degree of freedom associated to the inlet y duy oz oy oz
radial velocity is of fundamental importance to sustain nonjith the boundary conditions
linear vortex breakdown states. Note that these predicted
states have been retrieved by the numerical simulations of K’(0y,t)=0; #'(0y,t)=0; ¢;,0y,1)=0;
Rusak, Wang, and Whitingf. However, the bifurcation dia- , (12
gram described in the Introduction holds only when condi- ~ #2(L.y,1)=0;
tion (8) is prescribed and any deviation from the specific W (2.00)=0: o' (2,1/21)=0. 13)

choice of the inlet vorticity distribution in8) leads to an

imperfect transcritical bifurcatidh where the modified co- |n (12), the dot denotes the time derivative. When a globs

lumnar state either disappears via a saddle-node bifurcatioghalysis is performed, all boundary conditions are taken ini

or transforms continuously into thecceleratedstate. account and a solution is sought in terms of global modes
The boundary conditions to be applied when the fluid isthe form

made viscous are even more delicate. While Brown and

LopeZ® or Hafezet al?® set the inlet radial velocity to zero, K'(z,y,t)=K(z,y)e ', (149
Kopecky and Torranc8 or Krausé! preferred to set the inlet 3 _
azimuthal vorticity to zero. No matter what inlet condition U (z,y, 1) =(z,y)e et (14b

was used, it was noticed that in this case, the vortex brea

down bubble tends to migrate upstream until it readiaes kI'he global eigenfunctions depend both on the streamwise

hes intbthe bound ditions. When the i _a_nd radialy coqrdinates vyheregs the long-time behav_ior i
crashes intbthe boundary conditions en the pipe geom given by the sign of the imaginary part of. The flow is

etry is modified by adding a constriction as in experimenta ; . N .
devices, the influence of the choice of inlet boundary condi—Stable if Im@)<0, neutral if Im)=0, and unstable if

tions becomes less crucial: on the one hand, Darrffoéaid Im(‘;’lﬁo' local vsis | idered the inlet and outl
Snyder and Spaff prescribed a vanishing inlet radial veloc- €n a local analysis 1S considered the Iniet and out

ity and successfully observed a breakdown bubble separat(-gpO undary an.dittiogilz.) are ignored an(;al_ petrturbations are
from the inlet, while, on the other hand, Beran and Cuifick ecomposed Info Fourier modes according to

and LopeZ® imposed instead a vanishing inlet vorticity and ) R (v e (kz- o)
K l !t - K I} 15
obtained similar results. (zy.H)=Kiye (159
Snyder and Spaff have furthermore shown that these W (Z,y,t) = d(y)e ke eV (15b)

simulations where the swirling flow is directly imposed at

the inlet can satisfactorily reproduce the results of computawhere k denotes the axial wave number. Only the radis
tions where the full geometry including the swirl generatingboundary conditiong13) are conserved. The syste(fh0)
guiding vanes is taken into account. then reduces to the Kelvin wave equatid@enjamirf)
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d?) [k dyo/dy QKdKo/dy .
ay? |2y T dueldy—c 2yEdgoldy—c2)V"% [T
y y dioldy y“(dio/dy—c) 0sl |
(16) '
wherec= w/k is the phase velocity. This equation has been
widely studied in the literaturésee Leibovick® for a re-
view). In its stationary form, i.e., wheais set to zero, it may o
be considered either as an eigenvalue problerf iwith k
prescribed, or as an eigenvalue problemkimvith Q) pre-
scribed. In its nonstationary fornf) is considered as a pa-
rameter and ik (w) is prescribed and assumed to be real,

0.4+ 4 5

complex eigenfrequencies (eigenwavenumberk) are 08y

looked for. The first of these approachésgiven real is [ 7777777777 "77"77-77ooooomomoooooooos
referred to as the local temporal approach since it examines  -1-2; 5 3 s g 10
the evolution in time of waves periodic in space, whereas the k

second(w glver? rea] corresponds .tO local spatial stability FIG. 2. Axisymmetric Kelvin waves sustained by a vortex column in solid

theory. For definiteness, we consider the flow made up Ofody rotation of unit rotation rate without axial flow; different branches are

a solid body rotation with uniform axial flow. One should labeled by an index indicating the number of zeroes of the corresponding

keep in mind that the reasoning is valid for all neutrally eigenfunction. Symmetric negativebranches have been added to the posi-
. . . . tive ones to ease the comparison with forthcoming cases where the axi

stable profiles confined in pipes. In that cagg(y)=y, velocity is nonzero.

Yo(y)=y, andxo(y)=0. Equation(11) becomes

_ _ 9 \/ﬁi with an overall maximum reached kt 0.
L0k _ 9z 9z (K') In the particular case of solid body rotation, the eigen-
o -Al\ly) 19 oA |\ ) functions as well as the dispersion relation may be expresse
2y iz oz explicitly. On a given branch, it is found that the eigenfunc-

tions do not depend ok and take the form
associated to boundary conditiofi®) and(13), and Eq.(16)

simplifies into fa(y) = VyJdi(b1nv2y), (19

a2y (K2 Q for n=1---0, whereJ; is the Bessel function of order unity
g {__ 5 ,},: 0. andb,, its nth zero. In turn, Eq(16) leads to the polynomial

dy” |2y 2y(1-c) dispersion relation

IIl. LOCAL ANALYSIS (K?+bf)(0—k)*~Qk?=0. (20)

A. Temporal stability In the small wave number limit, expressi¢20) yields
The stability equatiori16) is now studied in the tempo- . JO

ral framework;k is given, real, and complex eigenfrequen- o~ 1% in k. 21

cies w are looked for. Since viscosity has been set to zero

the system is conservative and can only present purely re;i[lh's expression reflects the two contrlbu_tlons to the_ grou
\éelocny: the Doppler effect and the Kelvin wave weighted

eigenfrequencies or complex conjugate pairs. Since we foc . . . . :
on flows that are locally stable to axisymmetric disturbance;%go)thaiesgi'gpg;r:gﬁt%;ge V‘T‘/ﬁgjrtéogf";j f'?ﬁgﬁ?g frlzt'or

this implies thatw can only be real. Solely neutral temporal
P y y P plotted.

waves are therefore present in the flow. Th i distinauished di h
In the case of swirling flows with uniform axial flow, the ree d e'rer?t cases are .|st|ngws ed according to t
mount of swirl introduced, with respect to the value of

dispersion relation reduces to the one pertaining to a pur@

: . Qg=b?,.

vortex with an added Doppler effect according to BT -1
PP g (1) When Q<0 [Fig. (@], the Doppler effect is so
0=K*\Qawq,, (17)  strong that the frequency is positive for allk. The group

wherew,, are the axisymmetric Kelvin modes associated to’€10CIy vg= Jw/dk as well as the phase velocity- w/k are

the vortex without axial flow of circulation profil&(y), positive ff_” all _branches and d{l ACCF’“"”Q to Benjamlfr,
each mode being labeled according to the nunnirzeroes the flow is saygl to besupercrltl_cal since it only sustains
of its eigenfunction. The reader is referred to the book ofVaves of positive phase velocity. It is also noted that, a:
Saffmart® for details. Typical Kelvin modes of a pure vortex K—%» @—~K= V2, so that both the phase and group veloc-
are displayed in Fig. 2, here in the case of the vortex in solid €nd to=1 whenk becomes large. _

body rotation. The first branchy,; is the outermost and (2) WhenQ = Qg [Fig. 3b)], the group velocity as well

fastest branch, characterized by the largest group velocity @S the phase velocity of the=1 lower branch both vanish
whenk—0 but they remain positive fdt>0. Let us reiter-

dwo 1 ate with Leibovich® that the phase velocity &=0 is pre-

Yo" Tk (18) cisely the group velocity. The flow is said to batical.
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FIG. 3. Temporal stability. Frequenay as a function ok for the first two
branches of Kelvin waves for different swirl settingg) Q<Qpg, (b)

0=Qg, and(c) O>05.

(3) WhenQ > Qg [Fig. 3(c)], the group velocity as well
as the phase velocity of the=1 lower branch are negative
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mum W, a forbidden cone appears defined by the two
straight lines o=w{""k and w=wg?k, as shown by
Chandrasekhaf or Leibovich®® The reason lies in the exis-
tence of critical layers located at the radial positiowhere
the axial phase velocity equals the axial velocity of the base
flow and the termdy,/dy—c in Eq. (16) vanishes. This
point is discussed in great detail in LeibovithThe generic
picture of Fig. 3 is nevertheless only slightly modified if we
assume the minimum base flow axial velocity to be strictly
positive wg"™>0. In that case, Leibovich has proven the
existence of a finite nonzero critical swirl.

Squird was the first to interpret the valu@g as the
critical swirl necessary to sustain a stationary wave in a me-
dium of infinite extent. Since Benjanfisubsequently intro-
duced the super/subcritical concepts, the subsBrigtcom-
monly used to designate Squire’s critical swit and we
will follow this convention. Squir also suggested that, as
the swirl is increased abov@gy, stationary waves of finite
wavelength exist and propagate disturbances upstream. Thi
is the point that has been criticized by Benjafon the
grounds that the group velocity of the stationary wave of
finite wave numbek, is positive, as readily illustrated in
Fig. 3(c) where the tangent to the Kelvin branchlgf is
indeed positive. Figure 3 nevertheless shows that waves ir
the range 8<k<ky have negative group velocity and can
transport energy upstream, although they correspond to
<0 and are not stationary. As outlined in the Introduction,
there has been quite a misunderstanding in the literature
Squire was looking for stationary waves because the bubble
form of the vortex breakdown is observed to be a steady
process. He had in mind an infinite domain and was consid-
ering waves withw=0. When the translational invariance is
broken by inhomogeneities, as suggested by Leibotidr,
by the consideration of inlet and outlet boundary conditions,
an unstable global mode can be constructed as a superpos
tion of traveling waves. A “static” instability may then de-
velop with Re)=0 as in the divergence or buckling of a
loaded beam. This line of reasoning is expounded in Sec. V.

B. Spatial stability

In contrast to the temporal analysis, the spatial approach
refers to the development in space of waves generated by
localized time-harmonic forcing. It is more appropriate for
the analysis of the global instability of finite-length systems.
A real frequencyw is prescribed andour spatial branches
are found for each since the dispersion relatid20) admits
four wave-number solutions.

Figures 4b) and 4e) display the four spatial branches in

when k—0. In reference to the negative sign of the phasghe w—k; plane forn=1. The purely real spatial branches
velocity, the flow is said to bsubcritical The phase velocity correspond to the solutions already found in the temporal

remains negative in the wave-number rangekB<k, which
is wider than the wave-number rangesR<k, where the

group velocity is negative.
It is worth considering the general nature of the preseniWe have also displayed the configurations of the branches ir
discussion. For all stable azimuthal velocity profiles, thethe negativew half-plane by applying a simple symmetry.
Kelvin branch structure is similar and the effect of adding awhen the flow is supercritical({<(Qg), only two realk
uniform axial flow follows along the lines above. If now we solutions exist[Fig. 4(a)], irrespective of the frequency

add a nonuniform axial flow with minimum,,,;,, and maxi-

theory. This is readily seen in Figs(a} and 4d) deduced
from the temporal waves of Fig. 3 by a simpté2 rotation
of the axek— w, in order to present them in the—k plane.

o, whereas for subcritical flows (X>Qg) four real
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spatial branches exidtFig. 4(c)] in the frequency range dispersion relation, itk* or k= nature is either determined
—wgSswsog. Only in that interval are the four spatial by the corresponding real group velocitykfw) is real or
branches already captured by temporal theory. In the remairtirectly by the sign of its imaginary part K(w) is complex
ing part of the frequency domain and in the supercritical casgthis is generally not the case for amstablesystem where
one has to resort to the general local spatial stability theorpne has to resort to contour deformation arguments as di
in order to determine the remaining complex branches withyyssed in Beps®® In the case wher&(w) is complex, since
Im(k)#0. They cannot be determined by this simple “rota- there cannot exist spatially amplified waves, a wave witt
tion” of the temporal results. _ Im(K)<0 necessarily propagates in the downstream directio

Let_ us analyze the propertles_ of spatial waves _gen_erategnd it is ak~ branch, whereas a spatial wave with kin(
by forcing at areal frequencyw. This is done by considering 4 necessarily propagates in the upstream direction and it
harmonic forcing of the form ak* branch.

f(z,t)=38(z)H(t)e ', (22 When the rigidly rotating column is considered, the dis-
whereH (t) is the Heaviside unit step function which models persion relatior(20) is polynomial ink and there are always

the starting of the forcing and thereby allows one to considefoU" SPatial waves denotedt;(w), ka(w), ks(w), and

a causal respongsee Huerre and Monkewffor detail. k4(w). This last property is in facF general for other profiles
In a temporally stable system, it is well known that the re-Once the dynamics has been projected onto the lowest rad
sponse of the system to this harmonic forcing consists of &i9enmode but the polynomial nature of the dispersion relz
linear superposition of all possible spatial waves, each on#on is lost. An interesting property of the system studiec
corresponding to a rodt of the dispersion relation fow. ~ here is that, whatever real frequency is considered, there a
These spatial waves separate into two groupskthevaves ~ always threek” waves and oné~ wave. The threek”

which travel downstream and the  waves which travel ~waves will be denoted by indices 1, 2, and 3, khewave by

upstream. Once the direction of a spatial wave has been den index 4. It should be mentioned that this imbalance be
termined, it can be either evanescent or neutral but it canndween the number of upstream and downstream waves
be amplified since the present conservative system is tempgerfectly consistent with the prescribed boundary condition
rally neutral. For aneutralflow, and a given rook(w) of the  (12). Three inlet conditions are imposed in accordance witl
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the three downstream waves whereas only one outlet condas Doareand de Langré this section aims at elucidating the
tion is imposed corresponding to one upstream propagatiniink between the local propertidseutral, evanescenof the
wave. This perfect matching explains the well-posedness dapatial waves and the existence of a global mode in swirling
the problem with the selected boundary conditions. flows, via a consideration of the boundary conditions.

Figures 4b) and 4c) [4(e) and 4f)] depict the charac- As already shown for the present swirling flow model by
teristic wave portrait in the supercritical ca@e<Qy (in the ~ Wang and Rusak® perturbations are expanded on the basis
subcritical caseQ)>(g). The transition from supercritical of eigenfunctiong19) according to
(2<Qp) to subcritical £2>Qg) corresponds to the follow-
ing evolution in the topology of the spatial branches. o

(1) When Q<Qg, whatever real forcing frequency is K'(y,zt)= 2, KM(z,t)f(y), (233
applied, two wavesk; and k, are neutral and propagate =t
downstream as indicated by an arrow tangent to the branch
in Fig. 4(b). The neutral branches, andk, in that figure
which are depicted by a full line and open circles, are exactly
the same as those found in Figa® Two other waves are
complex conjugatédashed line with a closed cirgleFigure  thereby yielding after substitution intd.1) an infinite set of
4(c) depicts the imaginary part of the spatial branches: theincoupled one-dimensional partial differential equations for
downstreamk © evanescent wavk; has a negative imagi- g gng ™. Each equation corresponds to a particular
nary part and conversely the upstream evanescent wave Kelyin wave of indexn. We consider here only the=1

w(y,z,t):n; PV () f(y), (23b)

k, has a positive imaginary part. mode that first leads to destabilization and obeys the syste
(2) WhenQ > g, there exists a so-called static range of

frequencies— og<w<=wy where all four spatial waves are 9 9

neutral. According to Doarand de Langréiit is called static 1 0 5 ~ 3 \/5(9— ~

because it contains the frequensy: 0. Outside of the “neu- g2 ( }f) — z z (f)

tral” range, the branch portrait is similar as fr<<(Q)g and 0 Q- -7 ] /a g _q |\’

the reader is referred to the previous paragraph. In the neutral 9z 972 " Baz

range, all four branches could have been deduced by the (24

simple “rotation” from the temporal theorycompare Figs.
4(d) and 4e)]. Three branchek;, k,, andks; have positive  whereK =K®) andy="(!) to ease the notation. The bound-
group velocities and propagate downstream whereas orgy conditions(12) read
branchk, has a negative group velocity and propagates up-
stream. y . K(00)=0; ¥(0)=0; ¥,A0)=0; Yy(L,t)=0. (25

In neutrally stable flows, the transition from supercritical
to subcritical, when considered from the spatial point of|, (24) the dot denotes the time derivative. In the spirit of
view, involves a pinching process similar to the one tak'nQWang and Rusa global eigenvalues and eigenfunctions of
place in unstable flows for transition from convective to ab‘system(24)—(25) are now expressed in terms of a linear
solute instability. This feature is obvious if one compares the.qmpination of Kelvin waves supported by the columnar

topology of Figs. 4c) and 4f). base state. As noted in Sec. Il B, for a given there are
always four spatial branchek;(w), k,(w), kz(w), and
IV. LINEAR GLOBAL MODES k4(w) and we consider a combination of the form

A. Global analysis 4

The point of view taken in the previous section was to R(z,t):E A,elkizmet, (263
consider the local properties of inertial waves for swirling =1
flows in parallel infinite pipes. For a pipe of finite length,
inlet and outlet condition§12) must be added and a so- - iz wt)
called global stability analysis must be performed. In this w(z,t)=izl Bie™n Y, (26b)
context Wang and Rus&khave demonstrated that the global

linear instability onset is equal t0,=Qg+7%/AL% This whereA, andB; are unknown complex amplitudes. Substi-

means that a necessary condition for flows t(_)_begome glo['ution into the governing equatiof24) leads to the compat-
bally unstable appears to be the local subcriticality of thelbility relation

flow. Moreover, wherL is increased to infinity, the global
critical swirl ), tends toQ)z. Such a finite box correction
has also been discovered in the fully nonlinear calculations g — A ki—o
of Chomaz and Couairch. ok
For fluid conveying elastic pipes, Doaaad de Langré
have recently discovered that, in the long pipe limit, globaland to the dispersion relatiof20). Imposing the boundary

instability arises as soon as all spatial waves become neutrabnditions(25) to the linear combinatiori26) requires that
in a particular range of forcing frequencies. In the same spirithe eigenfrequency satisfy theglobal eigencondition

4

(27)
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In Eq. (30) the auxiliary functiond; ; have been introduced
and they are defined as
1 1 1 1
i,] k. '
D(w)E kl—w k2—w k3—w k4—w =0. Qk|kl
k2 k3 k3 k3 The three waves then travel downstream and reeeh.
kel kel koelkat  kelkat with amplitudesA e'*1-, A ekt andAze’st, respectively.

(28) The downstream propagation may be expressed in matrix
form, according to A;,A},AL)T=P"(A;,A;,A3)T, where

The addition of boundary conditions to the dispersion relath€ 3<3 propagation matriP" is defined by

tion (20) is seen to break the conservative nature of the sys- aikil 0 0

tem. Eigenfrequencies are not found in complex conjugate .

pairs but in anticomplex conjugate pairs, i@ — w*. The pr=| 0 ek 0 |. (32
leading eigenvalues are plotted in Fig. 5 as a function of the 0 0 eikst

swirl paramete) — Qg . The first unstable mode effectively

appears wherf)=,=Qg+ w/4L2. At this threshold, the Finally, the outlet reflection condition givesA),
instability is static since the real part of its eigenfrequency=R " (A1,A3,A3)", where the &3 downstream reflection
Re() is zero. It is seen that several global modes becomé@atrix R™ is defined by

unstable in sequence as the swirl number is further increased.

When two static branches of global modes collide, they in- R+=_ L(kl— w,Ky— »,Ks— ). (33)
teract to yield oscillatory modes with nonzero frequency Ky— o
Re().

The different propagation and reflection paths are sketched in
Fig. 6.
At the global instability threshold, the amplitude of the
The global dispersion relatiof28) may be reinterpreted upstream waved), after having completed one roundtrip,
in terms of propagation and reflection of waves in the fol-should be equal té,. This phase and energy closure prin-
lowing manner. Consider the leading real global eigenfreciple reads in matrix form
quency at instability onset. Let us startzat L with an am-
plitude A, of the upstream propagating wave; it reackzes RTPTRP =1 (34)
=0 with the amplitudeA,=P~A,, where the X1 up-
stream propagation matriR™ equals

B. Reflection coefficients

After a lot of strenuous algebra, it can be shown that the
closure principle(34) is equivalent to the eigenrelatidg8).

The present formulation clearly isolates the role of the propa-
gation in the bulk and of the reflection at the boundaries.

] T According to a general property of induced matrix
The three-component vector of amplitudés (Az,Az) " that  n6rms? the norm of a product of matrices is inferior or

characterizes the reflected waves at the ide0 is found by equal to the product of the norms. A necessary condition for
imposing the three inlet conditions i25). In matrix form, Eq. (34) to be satisfied is therefore

this can be written A,,A,,A;)T=R"A}, where the X1
upstream reflection matriR~ is given by 1<[[P YL IPT IR IR I5- (35

P =g ke, (29)
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IntroducingR ™~ =||R7||, andR " =||R"||, and taking into ac-

count the fact that the two-norm of a diagonal matrix equals
the maximum of the modulus of its diagonal terms, the nec-

essary conditiorf35) translates into

1<exg {Im(k,)— max[Im(k)J}LIR"R™, (36)
i=1,2.3

where we recall thak, is the wave number of the upstream
k™ wave andk,, k,, andk; are thek™ downstream propa-

gating waves. Since two of the downstream spatial waves are

always neutral, inequality36) amounts to

1<exd{Im(k,)}L]R"R". (37

Let us reiterate that a real forcing frequency has been pr
scribed and that we examine if the finite length pipe is able
to sustain a periodic cycle, in which case the flow will have
been shown to be at the instability threshold. It should b

noticed thatR ~ andR™ depend only on the inlet and outlet
conditions and not on the length of the pipelf Q<Qg

(supercritical range the upstream propagating wave is eva-

nescent and the tered™*9!- decays exponentially to zero as
L goes to infinity and therefore inequalitd7) cannot be

fulfilled. The flow is thus globally stable. In contrast, when

Q>Qg (subcritical rangeand — wy<w<wy, elMkit=1

and the flow may become globally unstable if the boundar

conditions are overreflecting. Inequalit$7) in fact imposes

thatR =R =1. This reasoning demonstrates without solving

the global dispersion relatiof28) that the global instability
threshold(), is necessarily above the critical switly when

L goes to infinity. Furthermore, global instability requires

that the boundary conditions provide energy to the perturba-
tions. The next section is devoted to the identification of the
amplification mechanism that takes place at the pipe inlet

and outlet.

V. ENERGY BUDGET

The local kinetic energy functional.(z,t) of the pertur-
bations at a local statiomis now expressed as the integral
along the radial direction

ez,t)= fol[u'z(r,z)+v’Z(r,z)+w’2(r,z)]rdr

Ollz[u’z(y,Z) +v'2(y,2)+w'?(y,z)]dy

_fl/z Fz.n | fiy) R t)1‘§<y>
o 9z, 2y SR
7 7)° d 38
+y(z1) Ty | (38)
Since the radial eigenfunction verifies
#f, Qg
EV AR TVALY (39

andf,(0)=f,(1/2)=0, an integration by parts yields

The role of boundary conditions in a simple model 283
12 f9f1) 2 J’1/2 f2(y)

—| dy= Q dy. 40

f 0 ( ay| V7)o Py W 40

Up to a multiplicative constant, the kinetic energy density
(37) is therefore

1] - Ju\’
e(zt)x 5| KA(z,)+QpgP(z,t)+| — (41
2 0z
Denote finally the total kinetic energy by
L
Ec(t)zj e.(z,t)dz (42
0
é:et us now multiply Eq.(11) by (K, ) according to
1 0 .
® %) 2 (%)
e 0 —— 1\
Qo= || ¥
J J
I 05 1k )
=(K ) i (43
9z 9z Boz

and further integrate between 0 ahdRepeated integrations

yby parts yield

K2 e~ PP
+ QK+ %—Z}/’

2

l

The total kinetic energy of the perturbation is seen to grow if
the right-hand side of Eq44) is positive and decrease if it is
negative. The total kinetic energy of the perturbations may
vary only as a result of the boundary terms. The bulk of the
flow conserves the energy of the perturbations, a propert
which reflects the locally neutral nature of the Kelvin waves
in the bulk.

The first case in Table | evaluates the contributions of
each of the six boundary terms on the right-hand side of Eq
(44) at each end of the pipe with the boundary conditions
(25) of Wang and Rusak! Some contributions vanist® in
the table, some have a constant si¢® or @ in the table,
whereas some othé€?P in the table cannot be evaluated with-
out resorting to the full eigenmode calculation. For the
boundary conditions prescribed by Wang and Ruéabne
term is positive at the inlet and two terms remain undeter-
mined at the downstream end. The full modal analysis of
Sec. IV is necessary in order to conclude.

Since we have proven in the last section that the bound
aries are active in the energy budget driving the instability
whereas the bulk is either a damping agent in the supercriti
cal case <) or at most an honest waveguide in the
subcritical case @>Qg), it is tempting to modify the
boundary conditions and reexamine the global stability of the
flow both in terms of a modal analysis, as in Sec. IV, and of
the present energy budget analysis.

W1 ay?

B2 2 4z

-\ 27L
2|
E .

0

E,

(44)
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TABLE I. Contribution of the different boundary terms in the energy growth equdddhat each boundary

point z=0 and z=L for different sets of boundary conditions. The boundary conditig(6)=0 and

K(0)=0 that impose the inlet velocity profiles are maintained for all four cases. Reference case 1: boundary
conditions of Wang and RusdRef. 14; case 2: same as case 1 but with modified inlet boundary condition;
case 3: same as case 1 but with modified outlet boundary condition; case 4: same as case 1 with two modified
boundary conditions capable of quenching the global instability. Boundary terms are, respectively, designated
by 0,6, @, and ? according to whether they are, respectively, inactive, stabilizing, destabiliziagyrimri
undetermined.

K2 0 P 1 ((f)z _ Yy

Case Boundary condition 2 Ty “2\& JOK Y 92 T
1 7,0)=0 0 0 ® 0 0 0
P (L)=0 © S) 0 ? ? 0
2 #,(0)=0 0 0 0 0 0 0
U (L)=0 o e 0 2 2 0
3 4,40)=0 0 0 ® 0 0 0
#(L)=0 o 0 o 0 0 0
4 #,(0)=0 0 0 0 0 0 0
y(L)=0 © 0 S 0 0 0

Wang and Rusak discuss the general nature of their in a pipe of finite length at Re250). The experimental fea-
boundary conditions. The boundary conditiopi&z=0)=0 sibility of these modified boundary conditions sé&tases 2,
and K(z=0)=0 that impose the inlet velocity profiles are 3, and 4 is not the crucial issue here since they have bee
essential and maintained throughout the study. They argudesigned to analyze the energy budget of the flow. If a
that their analysis is not strongly dependent on the outleboundary conditions can be implemented individually, thi
condition (9), whereas the inlet conditiof8) which lets the complexity comes from imposing several at the same tim
inlet radial velocity unprescribed is of highest importance tozero inlet radial velocity perturbatiot,(z=0)=0 (case 2
let the flow evolve towards vortex breakdown. We thereforemay be achieved for instance by the addition of a rotatin
define in addition to the reference case 1 of Wang antyoneycomb at the inlet. However, imposing an inlet azi
Rusak,” three other test cases with modified boundary conmuythal velocity different from solid body rotation would
ditions. Case 2 has a strongly Const1a|ned inlet condition ofyen require a complex experimental device ensuring
vanishing radial velocity perturbatios,(z=0)=0 instead radius-depending differential rotation of the honeycomb.
of ¥,{z=0)=0. Case 3 has a more constrained outlet con-  Figure 7 presents the growth rate of the most unstab
dition (z=L)=0 imposing no axial velocity perturbation global modes in cases 2 and\8here they are identicaand
instead of the zero radial velocity conditiof,(z=L)=0. case 4 to be compared with Fig. 5 for case 1. In Fi@) 7
Finally case 4 cumulates both modifications of cases 2 and Zorresponding to cases 2 and 3 the global instability thres
These modified boundary conditions are meant to let th@ld is slightly increased t€{?=Q{=0g+7%L? to be
mathematical problem be posed. They may be easily implecompared with{"= Qg+ 7%/4L2. Imposing zero perturba-
mented in a numerical code and some of them have alreadjon radial velocity at the inlet or zero perturbation axial
been usedBrown and Lope? prescribe, for instance, a van- velocity at the outlet is therefore weakly stabilizing wher
ishing radial inlet velocity perturbation as in our case 2 incompared with case 1. Note, however, that the eigenfun
their numerical treatment of the related viscous swirling flowtions alongz (not displayedl are different in cases 2 and 3.

0.15 0.15
(a) (b)
0.1F 0.1f
FIG. 7. Growth rate Img) of the most
unstable global eigenvalues as a func-
oosr e N i 1 tion of the swirl parametef) — O for
Im{o) e o) m{co) L=10. (a) Cases 2 and 3 where both
0 2 e 0 ] curves are identical, an) case 4. In
/ ,x” comparison with Fig. 5, the global on-
s set in cases 2 and 3 is delayed whereas
=05 —0.08 / 1 case 4 is completely stabilized.
70—2)2 0 0.2 .4 0.6 0.8 1 _0-'232 0 0.2 0‘6 0.6 0.8 1
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The result for case 2 demonstrates that the degree of freedoweak distributed axial inhomogeneity in the form of, e.g.,
of the inlet radial velocity is not a necessary condition forslow pipe area variations is also capable of inducing &
linear instability of the columnar state, contrary to the con-destabilization of Kelvin waves. Such a study would be in
jecture of Wang and RusaR.The nonlinear analysis of the same spirit as the asymptotic trapped wave analysis «
Wang and Rusak has, however, revealed the importance ofRandall and LeibovicH?
this degree of freedom in order to let the flow evolve towards
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