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The role of boundary conditions in a simple model
of incipient vortex breakdown

F. Gallairea) and J.-M. Chomaz
Laboratoire d’Hydrodynamique (LadHyX), CNRS, E´cole Polytechnique, 91128 Palaiseau Cedex, France

~Received 22 October 2002; accepted 8 October 2003; published online 15 December 2003!

We consider incipient vortex breakdown and describe how infinitesimal perturbations may
destabilize a columnar swirling jet. The framework is axisymmetric and inviscid following Wang
and Rusak’s@J. Fluid Mech.340, 177~1997!# analysis. The goal of the present study is to relate the
local properties of swirling flows in infinite pipes to their global stability properties in pipes of finite
length. A spatial linear stability analysis is pursued which gives a complementary point of view to
the subcritical/supercritical concept introduced by Benjamin@J. Fluid Mech.14, 593 ~1962!#. In
contrast to supercritical flows which exhibit two neutral spatial branches traveling downstream and
two counterpropagating evanescent spatial branches, subcritical flows exhibit a frequency range
where all spatial branches are neutral, three of which travel downstream and one upstream. By using
global energy budget arguments and monitoring how the upstream wave is reflected into the
downstream waves and conversely, the inlet and outlet conditions are shown to drive the instability
in the limit of long but finite pipes. Various inlet and outlet conditions are proposed that stabilize or
destabilize the flow, depending on their ability to supply energy. The analysis demonstrates therefore
that the global instability accounting for incipient vortex breakdown in Wang and Rusak’s model
may arise from the combination of a locally neutral flow and suitable inlet and outlet conditions.
© 2004 American Institute of Physics.@DOI: 10.1063/1.1630326#
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I. INTRODUCTION

Vortex breakdown is an abrupt change in the vortex c
structure with the appearance of a stagnation point clos
the vortex axis. This widespread phenomenon commonly
curs in industrial or atmospheric conditions. In the labo
tory, it is preferentially studied in vortex tubes, where it
seen in many cases to give rise to an axisymmetric struct
In such a configuration, the swirling flow is open and
should be supplemented with suitable inlet and outlet con
tions. Vortex breakdown often involves hysteresis and
been recognized as a strongly nonlinear phenomenon. N
ertheless, a long series of studies starting with Squire1 and
Benjamin2 have shown that some physical insight may
gained by considering the dynamics of infinitesimal dist
bances. When the swirl is increased slowly enough, tra
tion to vortex breakdown is triggered by the loss of stabil
of the columnar state. The determination of this threshold
incipient vortex breakdown remains a formidable task sin
in open flows, it is important to consider the evolution
perturbations not only in time but also in space3 and to take
into account the advection of the perturbations by the b
flow. This has more recently led to examine the role of a
solute instabilities, i.e., instabilities that grow in place, in t
occurrence of self-sustained oscillations or so-called glo
modes~see Huerre and Rossi4!. In particular, Chomaz and
Couairon5 have analyzed the combined effects of the lo
nature of the instability and the boundary conditions in s
tems of finite length. Absolute instability is not the only e
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planation for global instability since any kind of feedba
mechanism may be destabilizing. In the present paper
identify another example of global instability that resu
from the combination of a flow that can propagate energy
both directions without amplification and of inlet and outl
conditions that serve as energy providers. A similar behav
has recently been identified in fluid conveying pipes
Doaréand de Langre.6

In the context of vortex breakdown in swirling jets
Squire1 introduced the concept of critical state, by which
meant the amount of swirl necessary to sustain a stand7

wave of infinite wavelength. He also added that as the sw
is increased above this critical value, standing waves of fin
wavelength will exist and propagate disturbances upstre
In other words, Squire’s basic idea is the following: if stan
ing waves exist on a vortex flow, then disturbances which
present downstream will propagate upstream along the
tex thereby causing breakdown even if they are not am
fied.

Benjamin2 introduced the concept of supercritica
subcritical swirling flows. Vortices with axial flow are clas
sified according to the propagating behavior of the nond
persive axisymmetric neutral Kelvin waves which th
support in the low-wave-number limit. Such flows are said
be supercritical if they sustain only downstream-travelin
waves andsubcritical if they sustain both upstream an
downstream traveling waves. This criterion is based on
sign of thephase velocity, meaning, for instance, that su
faces of constant phase cannot propagate upstream whe
flow is supercritical. Benjamin2 then criticized Squire’s sug
gestion: ‘‘a serious objection to Squire’s theory is that t
© 2004 American Institute of Physics

 license or copyright, see http://pof.aip.org/pof/copyright.jsp

http://dx.doi.org/10.1063/1.1630326


ed

am
in
s
ou
b

re
t
a

,
,
te
u
as

i-
ve

i
n,
in
u
ur
rte
no

in
to
ak
s

h
w-
pa

b

e

b
e
w
e
-
is
is

t
lo
ve
ng
li-
o

or

ex-
he
lly

rl-

it
It

sta-
al

by
al

for
the

the
ri-
e

ns.
his
bal
er
ces-
ry

s-
ws

be

al

a
n
on-
it

xial
lysis
old
on
ed.

t-
d in
ss

ire’s
in

wn-
vider
n
ry
to
the

275Phys. Fluids, Vol. 16, No. 2, February 2004 The role of boundary conditions in a simple model
group velocity of his standing waves is in fact direct
downstream, which means that the waves can only form
the rear of a disturbing agency and cannot spread upstre

Benjamin’s claim was then generally adopted, for
stance, by Escudier:8 ‘‘whilst the phase velocity of the wave
considered by Squire might be directed upstream, their gr
velocity was directed downstream so that no energy could
transported upstream and waves could only form in the
of a disturbing agency.’’ This has led to many attempts
generalize the concept of supercritical/subcritical flows,
done by Tsai and Widnall9 through anad hocgroup velocity
criterion. More recently Delbende, Chomaz, and Huerre10

Olendraru, Sellier, and Huerre,11 and Loiseleux, Chomaz
and Huerre12 among others have focused on the absolu
convective classification of instabilities, which is nothing b
the natural generalization of the supercritical/subcritical cl
sification to the case of instability waves.

Only Leibovich13 points out that phase and group veloc
ties coincide in the low-wave-number regime where wa
become nondispersive and neutral. He moderates Benjam
objection to Squire: ‘‘Benjamin criticized this conceptio
pointing out that the group velocity at criticality is positive
the downstream direction, so that in a columnar flow, dist
bances cannot spread upstream from a disturbance so
Had Squire described the processes in an evolving vo
core, along the lines above, Benjamin’s objection would
have seemed compelling.’’

All these linear analyses1,2,9–12 are local4,5 in the sense
that the swirling flow is assumed columnar and extend
both upstream and downstream to infinity without taking in
account streamwise boundary conditions. Wang and Rus14

choose instead to consider the nonlinear steady states
tained by an inviscid swirling flow in a pipe of finite lengt
for specific inlet and outlet boundary conditions. The follo
ing bifurcation sequence is then identified as the swirl
rameter is increased. As the swirl reachesV0 , a first saddle-
node bifurcation is encountered which gives rise to a sta
state identified by the authors as breakdown state, and
unstable state, referred to asaccelerated~since the axial ve-
locity is observed to increase on the centerline!, while the
columnar vortex remains stable. AboveV0 , the flow is then
bistable and only finite amplitude perturbations may trigg
vortex breakdown. Above a higher critical swirl valueV1 ,
the columnar vortex loses its stability, as demonstrated
Wang and Rusak,15,16 and vortex breakdown may then b
reached by infinitesimal perturbations of the columnar flo
This loss of stability occurs slightly above the swirl valu
VB of Squire1 at which standing waves of infinite wave
length are sustained and neutral, the small difference van
ing in the long pipe limit. It should be emphasized that th
instability of the columnar state isglobal in nature and takes
place while the vortex remainslocally neutral. The presen
paper seeks to unravel the apparent paradox between g
instability and local neutrality. In particular, the respecti
role of the boundary conditions and the inertial waves livi
in the bulk of the flow is analyzed in terms of energy amp
fication and propagation. This amplification mechanism
infinitely small perturbations is essential to explain how v

tex breakdown develops and this initial stage will be referre
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to as incipient vortex breakdown. The subtle balance
plaining the existence and eventually the stability of t
breakdown state is far more difficult to analyze physica
and is out of the scope of the present paper~the interested
reader is referred to Wang and Rusak14 or Keller, Egly, and
Exley17 for different perspectives on this nonlinear issue!.

We begin with the spatial stability analysis of the swi
ing jet profiles used in Wang and Rusak.15 This spatial study
is complementary to the usual temporal point of view and
clearly brings out the propagation of waves in the flow.
allows one to precisely analyze the feedback loop that de
bilizes the flow and it yields a necessary condition for glob
instability: the flow should be locally subcritical and there
allow energy propagation in both directions for the glob
instability to set in. A lower bound is thereby established
the swirl number corresponding to the development of
global instability in the limit of long but finite pipes.

The energy budget demonstrates the crucial role of
inlet and outlet conditions; furthermore, it leads to the de
vation of a sufficient condition for stability based only on th
consideration of the inlet and outlet boundary conditio
Particular boundary conditions are proposed that fulfill t
stability condition and are indeed seen to quench the glo
instability, whatever swirl setting is considered. In oth
words, the energy budget analysis provides a second ne
sary condition for instability, based solely on the bounda
conditions. In the long but finite pipe limit, and in all pre
ently studied combinations of boundary conditions, flo
that fulfill both necessary conditions are indeed seen to
unstable.

The paper aims at providing a link between the loc
group-velocity criterion of Squire1 and the global picture of
Wang and Rusak.14 In Wang and Rusak’s15 spirit, most re-
sults are derived on a simple model of swirling flows:
column of fluid flowing at constant axial velocity and i
solid body rotation. As shown below, this model has the c
siderable advantage of not only providing a fully explic
dispersion relation but also of decoupling the radial and a
dependence, thereby making the energy propagation ana
tractable. It is expected that the results will continue to h
for other flows provided the overall dynamics is projected
the first Kelvin branch and the coupling terms are neglect
Work is in progress along these lines.

The study is organized according to the following ou
line: the general formulation and equations are introduce
Sec. II. Section III details the classical temporal and le
classical spatial stability analyses and it discusses Squ
and Benjamin’s views. Section IV sets these local results
perspective when compared with Wang and Rusak’s15 global
mode picture. It is demonstrated that the upstream and do
stream boundaries constitute the necessary energy pro
to drive the instability. This clear identification of the origi
of the instability allows us to propose different bounda
conditions in Sec. V, that, depending on their ability
modify the energy budget, may stabilize or destabilize
dcolumnar vortex.
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II. FLOW CONFIGURATION AND FORMULATION

A. Flow configuration

Consider axisymmetric swirling flow in a pipe of radiu
R and lengthl. The viscosity is set to zero so that the flow
governed by the Euler equations. We use cylindrical coo
nates (r ,u,z) and the velocity components (u,v,w) cor-
respond, respectively, to the radial, azimuthal, and axial
locity. The flow variables used in the study are sketched
Fig. 1.

The base flow consists of an axial flow of maximu
velocity wmax superimposed on a rotation around thez axis
defined by the azimuthal velocity profilev(r ). The corre-
sponding value of the axial vorticity measured on the a
equals 2f . Throughout the paper, we adopt the radiusR as
length scale andwmax as velocity scale, so that the dime
sionless columnar base flow reads

u~r !50; v~r !5
AV

2
v0~r !; w~r !5w0~r !, ~1!

for 0<r<1, 0<z<L, with L5 l /R being the nondimen-
sional pipe length andV54 f 2R2/wmax

2 the swirl parameter.
The axial velocity is assumed independent ofV and the azi-
muthal velocity linearly dependent onAV. The model under
consideration is seen to involve two control parameters:
swirl V and the pipe aspect ratioL.

Depending on the velocity profilesv0(r ) andw0(r ) and
on the swirl V, the base flow, if considered infinite, wi
respond differently to external perturbations. It will either a
as a waveguide for neutral waves or as an amplifying~damp-
ing! medium for unstable~stable! waves. Each of these be
haviors is associated with a physical mechanism which s
tains, amplifies, or damps the perturbations.

~1! Due to the restoring action of the Coriolis forc
swirling flows present a remarkable radial ‘‘elasticity
which permits the propagation of longitudinal inertial wave
or so called Kelvin waves~see, for instance, Saffman18!.

~2! The other force active in rotating flows, the centrif
gal force, is able to destabilize the flow when certain requ
ments on the profiles are met: the famous Rayleigh19 crite-
rion is a necessary and sufficient condition for centrifu
instability of the axisymmetricm50 mode in the absence o
axial flow. Howard and Gupta20 have generalized this crite
rion and derived a necessary condition for axisymmetric
stability including the effects of advection. The criterion h

FIG. 1. Essential flow variables and base flow; axisymmetric stream
facesc(y,z,t)5const have been represented by their intersections wi
meridional plane.
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been further extended to nonaxisymmetric perturbations
Ludwieg21 and Leibovich and Stewartson22 but this is out of
the scope of the present contribution.

~3! Independently of the specific azimuthal velocity pr
file, the Kelvin–Helmholtz mechanism may generate an
stable wave when strong shear is present in the axial velo
profile if the quantitydw0(r )/dr has a local extremum~see
for details Batchelor and Gill23!.

It is important to note that flows where none of the
destabilizing agents~centrifugal or shear! are active, remain
neutral if the extent of the flow is infinite in the axial direc
tion. This is the case for the Rankine vortex with unifor
axial flow, the Burgers vortex~i.e., a Lamb–Oseen vorte
with uniform axial flow!, or the Batchelor vortex. Thes
flows have, however, been shown Wang and Rusak15 to be-
come globally unstable when axially finite domains are co
sidered, i.e., when suitable inlet and outlet conditions
added. Moreover, in these cases, Wang and Rusak14 and Ru-
sak, Wang, and Whiting24 have demonstrated that the nonli
ear saturated states resemble vortex breakdown bubbles.
is the primary motivation for restricting our study to profile
that remain locally neutral in an infinite domain.

B. Squire–Long equations

Let us introduce the circulationK(r ,z,t)5rv, the
stream function c(r ,z,t) such that u52cz /r and
w5c r /r , the azimuthal vorticityh and its reduced form
x5h/r . Further defining a rescaled radial coordina
y5r 2/2, the flow is governed by the unsteady Squire–Lo
equations~see Leibovich25!:

Kt1cyKz2czKy50, ~2a!

x t1cyxz2czxy5
1

4y2 ~K2!z , ~2b!

x52~cyy1czz/2y!. ~2c!

Equation ~2a! expresses the conservation of the azimut
circulation K in its transport along the flow. Similarly the
left-hand side of the evolution equation~2b! accounts for the
transport of azimuthal vorticity and its right-hand side for t
tilting of axial vorticity into azimuthal vorticity. Thestretch-
ing of the azimuthal vorticity is implicitly included through
the use of the reduced variablex. As discussed in Szeri an
Holmes,26 the problem is well-posed as soon as an inlet c
dition for K and x is specified as well as four boundar
conditions for c on each boundary of the domain. Sinc
y50 and y51/2 are stream surfaces, the lateral bound
conditions are

c~0, z,t !50, ~3!

c~1/2, z,t !5q, ~4!

where q denotes the nondimensional flow ra
q5*0

1rw0(r )dr. Three inlet conditions are added which e
fectively prescribe that the base flow be maintained at
inlet z50 in the presence of perturbations

c~y,0,t !5c0~y!, ~5!

r-
a
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K~y,0,t !5AVK0~y!, ~6!

x~y,0,t !5x0~y!, ~7!

where c0(y), K0(y) are easily determined from the ba
flow ~1! with the reference valuec0(y50)50 and where
the inlet wall conditionc0(1/2)5q compatible with relation
~4! is imposed. As discussed in Wang and Rusak,14 the
inlet vorticity is assumed to be fixed and equal
x0(y)52c0yy(y). This choice is equivalent to imposing

czz~0,y,t !50 ~8!

at the inlet, letting the radial velocitycz(0,y,t) evolve freely
but requiring the smooth cylindrical development of the flo
leaving the inlet.

The outlet condition is the same as in Wang and Rusa14

cz~y,L,t !50, ~9!

implying a vanishing radial velocity. Note that the column
base flow K(y,z,t)5AVK0(y), c(y,z,t)5c0(y), and
x(y,z,t)5x0(y) is an exact solution of the inviscid nonlin
ear equations~3!–~9!.

In contrast to the downstream boundary conditions,
choice of upstream boundary conditions has been a m
source of concern in the literature. When an inviscid flow
a straight pipe of finite length is analyzed, Wang and Rusa14

have shown that the degree of freedom associated to the
radial velocity is of fundamental importance to sustain no
linear vortex breakdown states. Note that these predic
states have been retrieved by the numerical simulation
Rusak, Wang, and Whiting.24 However, the bifurcation dia-
gram described in the Introduction holds only when con
tion ~8! is prescribed and any deviation from the spec
choice of the inlet vorticity distribution in~8! leads to an
imperfect transcritical bifurcation27 where the modified co-
lumnar state either disappears via a saddle-node bifurca
or transforms continuously into theacceleratedstate.

The boundary conditions to be applied when the fluid
made viscous are even more delicate. While Brown a
Lopez28 or Hafezet al.29 set the inlet radial velocity to zero
Kopecky and Torrance30 or Krause31 preferred to set the inle
azimuthal vorticity to zero. No matter what inlet conditio
was used, it was noticed that in this case, the vortex bre
down bubble tends to migrate upstream until it reaches~and
crashes into! the boundary conditions. When the pipe geo
etry is modified by adding a constriction as in experimen
devices, the influence of the choice of inlet boundary con
tions becomes less crucial: on the one hand, Darmofal32 and
Snyder and Spall33 prescribed a vanishing inlet radial velo
ity and successfully observed a breakdown bubble separ
from the inlet, while, on the other hand, Beran and Culic34

and Lopez35 imposed instead a vanishing inlet vorticity an
obtained similar results.

Snyder and Spall33 have furthermore shown that thes
simulations where the swirling flow is directly imposed
the inlet can satisfactorily reproduce the results of compu
tions where the full geometry including the swirl generati

guiding vanes is taken into account.

Downloaded 07 Sep 2004 to 134.74.76.13. Redistribution subject to AIP
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C. Linearized equations

Following Wang and Rusak,15 perturbations indicated by
primed variables are superimposed on the base flow acc
ing to

K~y,z,t !5AVK0~y!1K8~y,z,t !,

c~y,z,t !5c0~y!1c8~y,z,t !,

x~y,z,t !5x0~y!1x8~y,z,t !.

The Squire–Long equations@~2a!–~2c!# are linearized
around the columnar base flow. Introducing the modified L
placian operator

D̃5
]2

]y2 1
1

2y

]2

]z2 , ~10!

and eliminating x8 through x852D̃c8 yields the two-
dimensional system

F1 0

0 2D̃
G S K̇8

ċ8
D

5F 2
]c0

]y

]

]z
AV

]K0

]y

]

]z

AV
K0

2y2

]

]z 2
]x0

]y

]

]z
2

]c0

]y

]D̃

]z

G S K8
c8 D , ~11!

with the boundary conditions

K8~0,y,t !50; c8~0,y,t !50; czz8 ~0,y,t !50;
~12!

cz8~L,y,t !50;

c8~z,0,t !50; c8~z,1/2,t !50. ~13!

In ~11!, the dot denotes the time derivative. When a glo
analysis is performed, all boundary conditions are taken i
account and a solution is sought in terms of global modes
the form

K8~z,y,t !5Ǩ~z,y!e2 ivt, ~14a!

c8~z,y,t !5č~z,y!e2 ivt. ~14b!

The global eigenfunctions depend both on the streamwisz
and radialy coordinates whereas the long-time behavior
given by the sign of the imaginary part ofv. The flow is
stable if Im(v),0, neutral if Im(v)50, and unstable if
Im(v).0.

When a local analysis is considered the inlet and ou
boundary conditions~12! are ignored and perturbations a
decomposed into Fourier modes according to

K8~z,y,t !5K̂~y!ei ~kz2vt !, ~15a!

c8~z,y,t !5ĉ~y!ei ~kz2vt !, ~15b!

where k denotes the axial wave number. Only the rad
boundary conditions~13! are conserved. The system~10!

then reduces to the Kelvin wave equation~Benjamin2!
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d2ĉ

dy22F k2

2y
1

dx0 /dy

dc0 /dy2c
2

VK0dK0 /dy

2y2~dc0 /dy2c!2G ĉ50,

~16!

wherec5v/k is the phase velocity. This equation has be
widely studied in the literature~see Leibovich13 for a re-
view!. In its stationary form, i.e., whenc is set to zero, it may
be considered either as an eigenvalue problem inV with k
prescribed, or as an eigenvalue problem ink with V pre-
scribed. In its nonstationary form,V is considered as a pa
rameter and ifk ~v! is prescribed and assumed to be re
complex eigenfrequenciesv ~eigenwavenumbersk! are
looked for. The first of these approaches~k given real! is
referred to as the local temporal approach since it exam
the evolution in time of waves periodic in space, whereas
second~v given real! corresponds to local spatial stabilit
theory. For definiteness, we consider the flow made up
a solid body rotation with uniform axial flow. One shou
keep in mind that the reasoning is valid for all neutra
stable profiles confined in pipes. In that case,K0(y)5y,
c0(y)5y, andx0(y)50. Equation~11! becomes

F1 0

0 2D̃
G S K̇8

ċ8
D 5F 2

]

]z
AV

]

]z

AV
1

2y

]

]z 2
]D̃

]z

G S K8
c8 D ,

associated to boundary conditions~12! and~13!, and Eq.~16!
simplifies into

d2ĉ

dy22F k2

2y
2

V

2y~12c!2G ĉ50.

III. LOCAL ANALYSIS

A. Temporal stability

The stability equation~16! is now studied in the tempo
ral framework;k is given, real, and complex eigenfreque
cies v are looked for. Since viscosity has been set to ze
the system is conservative and can only present purely
eigenfrequencies or complex conjugate pairs. Since we fo
on flows that are locally stable to axisymmetric disturbanc
this implies thatv can only be real. Solely neutral tempor
waves are therefore present in the flow.

In the case of swirling flows with uniform axial flow, th
dispersion relation reduces to the one pertaining to a p
vortex with an added Doppler effect according to

v5k6AVv0,n , ~17!

wherev0,n are the axisymmetric Kelvin modes associated
the vortex without axial flow of circulation profileK0(y),
each mode being labeled according to the numbern of zeroes
of its eigenfunction. The reader is referred to the book
Saffman18 for details. Typical Kelvin modes of a pure vorte
are displayed in Fig. 2, here in the case of the vortex in s
body rotation. The first branchv0,1 is the outermost and
fastest branch, characterized by the largest group veloci

vg5
]v0,1

]k
, ~18!
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with an overall maximum reached atk50.
In the particular case of solid body rotation, the eige

functions as well as the dispersion relation may be expres
explicitly. On a given branch, it is found that the eigenfun
tions do not depend onk and take the form

f n~y!5AyJ1~b1nA2y!, ~19!

for n51¯`, whereJ1 is the Bessel function of order unit
andb1n its nth zero. In turn, Eq.~16! leads to the polynomia
dispersion relation

~k21b1n
2 !~v2k!22Vk250. ~20!

In the small wave number limit, expression~20! yields

v;S 16
AV

b1,n
D k. ~21!

This expression reflects the two contributions to the gro
velocity: the Doppler effect and the Kelvin wave weighte
by the swirl parameter. The solutions of dispersion relat
~20! are displayed in Fig. 3, where onlyn51 andn52 are
plotted.

Three different cases are distinguished according to
amount of swirl introduced, with respect to the value
VB5b1,1

2 .
~1! When V,VB @Fig. 3~a!#, the Doppler effect is so

strong that the frequencyv is positive for allk. The group
velocity vg5]v/]k as well as the phase velocityc5v/k are
positive for all branches and allk. According to Benjamin,2

the flow is said to besupercritical since it only sustains
waves of positive phase velocity. It is also noted that,
k→`, v→k6AV, so that both the phase and group velo
ity tend to61 whenk becomes large.

~2! WhenV5VB @Fig. 3~b!#, the group velocity as well
as the phase velocity of then51 lower branch both vanish
whenk→0 but they remain positive fork.0. Let us reiter-
ate with Leibovich36 that the phase velocity atk50 is pre-
cisely the group velocity. The flow is said to becritical.

FIG. 2. Axisymmetric Kelvin waves sustained by a vortex column in so
body rotation of unit rotation rate without axial flow; different branches a
labeled by an indexn indicating the number of zeroes of the correspondi
eigenfunction. Symmetric negativev branches have been added to the po
tive ones to ease the comparison with forthcoming cases where the
velocity is nonzero.
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~3! WhenV.VB @Fig. 3~c!#, the group velocity as wel
as the phase velocity of then51 lower branch are negativ
when k→0. In reference to the negative sign of the pha
velocity, the flow is said to besubcritical. The phase velocity
remains negative in the wave-number range 0<k<kp which
is wider than the wave-number range 0<k<kg where the
group velocity is negative.

It is worth considering the general nature of the pres
discussion. For all stable azimuthal velocity profiles, t
Kelvin branch structure is similar and the effect of adding
uniform axial flow follows along the lines above. If now w

FIG. 3. Temporal stability. Frequencyv as a function ofk for the first two
branches of Kelvin waves for different swirl settings:~a! V,VB , ~b!
V5VB , and~c! V.VB .
add a nonuniform axial flow with minimumwmin and maxi-
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t

mum wmax, a forbidden cone appears defined by the t
straight lines v5w0

mink and v5w0
maxk, as shown by

Chandrasekhar37 or Leibovich.36 The reason lies in the exis
tence of critical layers located at the radial positiony where
the axial phase velocity equals the axial velocity of the b
flow and the termdc0 /dy2c in Eq. ~16! vanishes. This
point is discussed in great detail in Leibovich.36 The generic
picture of Fig. 3 is nevertheless only slightly modified if w
assume the minimum base flow axial velocity to be stric
positive w0

min.0. In that case, Leibovich36 has proven the
existence of a finite nonzero critical swirl.

Squire1 was the first to interpret the valueVB as the
critical swirl necessary to sustain a stationary wave in a m
dium of infinite extent. Since Benjamin2 subsequently intro-
duced the super/subcritical concepts, the subscriptB is com-
monly used to designate Squire’s critical swirlVB and we
will follow this convention. Squire1 also suggested that, a
the swirl is increased aboveVB , stationary waves of finite
wavelength exist and propagate disturbances upstream.
is the point that has been criticized by Benjamin2 on the
grounds that the group velocity of the stationary wave
finite wave numberkp is positive, as readily illustrated in
Fig. 3~c! where the tangent to the Kelvin branch atkp is
indeed positive. Figure 3 nevertheless shows that wave
the range 0<k<kg have negative group velocity and ca
transport energy upstream, although they correspond tv
,0 and are not stationary. As outlined in the Introductio
there has been quite a misunderstanding in the literat
Squire was looking for stationary waves because the bub
form of the vortex breakdown is observed to be a stea
process. He had in mind an infinite domain and was con
ering waves withv50. When the translational invariance
broken by inhomogeneities, as suggested by Leibovich,13 or
by the consideration of inlet and outlet boundary conditio
an unstable global mode can be constructed as a super
tion of traveling waves. A ‘‘static’’ instability may then de
velop with Re(v)50 as in the divergence or buckling of
loaded beam. This line of reasoning is expounded in Sec

B. Spatial stability

In contrast to the temporal analysis, the spatial appro
refers to the development in space of waves generated
localized time-harmonic forcing. It is more appropriate f
the analysis of the global instability of finite-length system
A real frequencyv is prescribed andfour spatial branches
are found for eachn since the dispersion relation~20! admits
four wave-number solutions.

Figures 4~b! and 4~e! display the four spatial branches i
the v2kr plane forn51. The purely real spatial branche
correspond to the solutions already found in the tempo
theory. This is readily seen in Figs. 4~a! and 4~d! deduced
from the temporal waves of Fig. 3 by a simplep/2 rotation
of the axesk2v, in order to present them in thev2k plane.
We have also displayed the configurations of the branche
the negativev half-plane by applying a simple symmetr
When the flow is supercritical (V,VB), only two real k
solutions exist @Fig. 4~a!#, irrespective of the frequency

v, whereas for subcritical flows (V.VB) four real
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280 Phys. Fluids, Vol. 16, No. 2, February 2004 F. Gallaire and J.-M. Chomaz
FIG. 4. Spatial stability.~a! ~~d!!: Rep-
resentation of the real temporal wave
of Fig. 3 for the first branchn51 in
the v2k plane in the supercritical
~subcritical! regime. ~b! ~~e!!: Real
part Re(k) of the spatial branches as
function of real frequencyv in the su-
percritical ~subcritical! regime. ~c!
~~f!!: Corresponding imaginary par
Im(k) as a function ofv. Purely real
wave numbers are denoted by sol
lines and open circles. The sign o
their group velocity is depicted by an
arrow tangent to the curve, positiv
~negative! group velocities corre-
sponding to upward ~downward!
pointing arrows. Complex wave num
bers are denoted by dashed lines a
closed circles. The direction of thei
propagation is then given by the sig
of their imaginary part. The ‘‘neutral’’
range is highlighted in gray.
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spatial branches exist@Fig. 4~c!# in the frequency range
2vg<v<vg . Only in that interval are the four spatia
branches already captured by temporal theory. In the rem
ing part of the frequency domain and in the supercritical c
one has to resort to the general local spatial stability the
in order to determine the remaining complex branches w
Im(k)Þ0. They cannot be determined by this simple ‘‘rot
tion’’ of the temporal results.

Let us analyze the properties of spatial waves gener
by forcing at areal frequencyv. This is done by considering
harmonic forcing of the form

f ~z,t !5d~z!H~ t !e2 ivt, ~22!

whereH(t) is the Heaviside unit step function which mode
the starting of the forcing and thereby allows one to consi
a causal response~see Huerre and Monkewitz38 for details!.
In a temporally stable system, it is well known that the
sponse of the system to this harmonic forcing consists o
linear superposition of all possible spatial waves, each
corresponding to a rootk of the dispersion relation forv.
These spatial waves separate into two groups, thek1 waves
which travel downstream and thek2 waves which travel
upstream. Once the direction of a spatial wave has been
termined, it can be either evanescent or neutral but it can
be amplified since the present conservative system is tem

rally neutral. For aneutralflow, and a given rootk(v) of the
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dispersion relation, itsk1 or k2 nature is either determine
by the corresponding real group velocity ifk(v) is real or
directly by the sign of its imaginary part ifk(v) is complex
~this is generally not the case for anunstablesystem where
one has to resort to contour deformation arguments as
cussed in Bers!.39 In the case wherek(v) is complex, since
there cannot exist spatially amplified waves, a wave w
Im(k),0 necessarily propagates in the downstream direc
and it is ak2 branch, whereas a spatial wave with Im(k)
.0 necessarily propagates in the upstream direction and
a k1 branch.

When the rigidly rotating column is considered, the d
persion relation~20! is polynomial ink and there are always
four spatial waves denotedk1(v), k2(v), k3(v), and
k4(v). This last property is in fact general for other profile
once the dynamics has been projected onto the lowest ra
eigenmode but the polynomial nature of the dispersion re
tion is lost. An interesting property of the system studi
here is that, whatever real frequency is considered, there
always threek1 waves and onek2 wave. The threek1

waves will be denoted by indices 1, 2, and 3, thek2 wave by
an index 4. It should be mentioned that this imbalance
tween the number of upstream and downstream wave
perfectly consistent with the prescribed boundary conditio

~12!. Three inlet conditions are imposed in accordance with
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the three downstream waves whereas only one outlet co
tion is imposed corresponding to one upstream propaga
wave. This perfect matching explains the well-posednes
the problem with the selected boundary conditions.

Figures 4~b! and 4~c! @4~e! and 4~f!# depict the charac-
teristic wave portrait in the supercritical caseV,VB ~in the
subcritical caseV.VB). The transition from supercritica
(V,VB) to subcritical (V.VB) corresponds to the follow
ing evolution in the topology of the spatial branches.

~1! When V,VB , whatever real forcing frequency i
applied, two wavesk1 and k2 are neutral and propagat
downstream as indicated by an arrow tangent to the bra
in Fig. 4~b!. The neutral branchesk1 and k2 in that figure
which are depicted by a full line and open circles, are exa
the same as those found in Fig. 4~a!. Two other waves are
complex conjugate~dashed line with a closed circle!. Figure
4~c! depicts the imaginary part of the spatial branches:
downstreamk1 evanescent wavek3 has a negative imagi
nary part and conversely the upstreamk2 evanescent wave
k4 has a positive imaginary part.

~2! WhenV.VB , there exists a so-called static range
frequencies2vg<v<vg where all four spatial waves ar
neutral. According to Doare´ and de Langre,6 it is called static
because it contains the frequencyv50. Outside of the ‘‘neu-
tral’’ range, the branch portrait is similar as forV,VB and
the reader is referred to the previous paragraph. In the ne
range, all four branches could have been deduced by
simple ‘‘rotation’’ from the temporal theory@compare Figs.
4~d! and 4~e!#. Three branchesk1 , k2 , andk3 have positive
group velocities and propagate downstream whereas
branchk4 has a negative group velocity and propagates
stream.

In neutrally stable flows, the transition from supercritic
to subcritical, when considered from the spatial point
view, involves a pinching process similar to the one tak
place in unstable flows for transition from convective to a
solute instability. This feature is obvious if one compares
topology of Figs. 4~c! and 4~f!.

IV. LINEAR GLOBAL MODES

A. Global analysis

The point of view taken in the previous section was
consider the local properties of inertial waves for swirli
flows in parallel infinite pipes. For a pipe of finite lengt
inlet and outlet conditions~12! must be added and a so
called global stability analysis must be performed. In t
context Wang and Rusak15 have demonstrated that the glob
linear instability onset is equal toV15VB1p2/4L2. This
means that a necessary condition for flows to become
bally unstable appears to be the local subcriticality of
flow. Moreover, whenL is increased to infinity, the globa
critical swirl V1 tends toVB . Such a finite box correction
has also been discovered in the fully nonlinear calculati
of Chomaz and Couairon.5

For fluid conveying elastic pipes, Doare´ and de Langre6

have recently discovered that, in the long pipe limit, glob
instability arises as soon as all spatial waves become ne

in a particular range of forcing frequencies. In the same spir
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as Doare´ and de Langre,6 this section aims at elucidating th
link between the local properties~neutral, evanescent! of the
spatial waves and the existence of a global mode in swir
flows, via a consideration of the boundary conditions.

As already shown for the present swirling flow model
Wang and Rusak,15 perturbations are expanded on the ba
of eigenfunctions~19! according to

K8~y,z,t !5 (
n51

`

K̃ ~n!~z,t ! f n~y!, ~23a!

c8~y,z,t !5 (
n51

`

c̃~n!~z,t ! f n~y!, ~23b!

thereby yielding after substitution into~11! an infinite set of
uncoupled one-dimensional partial differential equations
K̃ (n) and c̃ (n). Each equation corresponds to a particu
Kelvin wave of indexn. We consider here only then51
mode that first leads to destabilization and obeys the sys

F 1 0

0 VB2
]2

]z2
G S K8

c8
D 5F 2

]

]z
AV

]

]z

AV
]

]z

]3

]z32VB

]

]z

G S K̃

c̃
D ,

~24!

whereK̃5K̃ (1) andc̃5c̃ (1) to ease the notation. The bound
ary conditions~12! read

K̃~0,t !50; c̃~0,t !50; c̃zz~0,t !50; c̃z~L,t !50. ~25!

In ~24!, the dot denotes the time derivative. In the spirit
Wang and Rusak,15 global eigenvalues and eigenfunctions
system ~24!–~25! are now expressed in terms of a line
combination of Kelvin waves supported by the column
base state. As noted in Sec. III B, for a givenv, there are
always four spatial branchesk1(v), k2(v), k3(v), and
k4(v) and we consider a combination of the form

K̃~z,t !5(
i 51

4

Aie
i ~kiz2vt !, ~26a!

c̃~z,t !5(
i 51

4

Bie
i ~kiz2vt !, ~26b!

whereAi and Bi are unknown complex amplitudes. Subs
tution into the governing equation~24! leads to the compat
ibility relation

Bi5Ai

ki2v

AVki

, ~27!

and to the dispersion relation~20!. Imposing the boundary
conditions~25! to the linear combination~26! requires that

itthe eigenfrequencyv satisfy theglobal eigencondition
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D~v![U 1 1 1 1

AVk1

k12v

AVk2

k22v

AVk3

k32v

AVk4

k42v

k1
2 k2

2 k3
2 k4

2

k1eik1L k2eik2L k3eik3L k4eik4L

U50.

~28!

The addition of boundary conditions to the dispersion re
tion ~20! is seen to break the conservative nature of the s
tem. Eigenfrequenciesv are not found in complex conjugat
pairs but in anticomplex conjugate pairs, i.e.,v↔2v* . The
leading eigenvalues are plotted in Fig. 5 as a function of
swirl parameterV2VB . The first unstable mode effectivel
appears whenV5V15VB1p/4L2. At this threshold, the
instability is static since the real part of its eigenfrequen
Re(v) is zero. It is seen that several global modes beco
unstable in sequence as the swirl number is further increa
When two static branches of global modes collide, they
teract to yield oscillatory modes with nonzero frequen
Re(v).

B. Reflection coefficients

The global dispersion relation~28! may be reinterpreted
in terms of propagation and reflection of waves in the f
lowing manner. Consider the leading real global eigenf
quency at instability onset. Let us start atz5L with an am-
plitude A4 of the upstream propagating wave; it reachez
50 with the amplitudeA485P2A4 , where the 131 up-
stream propagation matrixP2 equals

P25e2 ik4L. ~29!

The three-component vector of amplitudes (A1 ,A2 ,A3)T that
characterizes the reflected waves at the inletz50 is found by
imposing the three inlet conditions in~25!. In matrix form,
this can be written (A1 ,A2 ,A3)T5R2A48 , where the 331

2

FIG. 5. Growth rate Im(v) of the most unstable global eigenvalues as
function of the swirl parameterV2VB for L510. Eigenvalues with
Re(v)Þ0 are displayed in dashed lines. The unstable region is shaded
upstream reflection matrixR is given by
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R252
1

f 1,21 f 1,31 f 3,1
F f 2,31 f 3,41 f 4,2

f 1,41 f 4,31 f 3,1

f 1,21 f 2,41 f 4,1

G . ~30!

In Eq. ~30! the auxiliary functionsf i , j have been introduced
and they are defined as

f i , j52
~ki2v!~kj2v!~ki2kj !~ki1kj !

Vkikj
. ~31!

The three waves then travel downstream and reachx5L
with amplitudesA1eik1L, A2eik2L, andA3eik3L, respectively.
The downstream propagation may be expressed in ma
form, according to (A18 ,A28 ,A38)

T5P1(A1 ,A2 ,A3)T, where
the 333 propagation matrixP1 is defined by

P15S eik1L 0 0

0 eik2L 0

0 0 eik3L
D . ~32!

Finally, the outlet reflection condition givesA49
5R1(A18 ,A28 ,A38)

T, where the 133 downstream reflection
matrix R1 is defined by

R152
1

k42v
~k12v,k22v,k32v!. ~33!

The different propagation and reflection paths are sketche
Fig. 6.

At the global instability threshold, the amplitude of th
upstream waveA49 , after having completed one roundtrip
should be equal toA4 . This phase and energy closure pri
ciple reads in matrix form

R1P1R2P251. ~34!

After a lot of strenuous algebra, it can be shown that
closure principle~34! is equivalent to the eigenrelation~28!.
The present formulation clearly isolates the role of the pro
gation in the bulk and of the reflection at the boundaries

According to a general property of induced matr
norms,40 the norm of a product of matrices is inferior o
equal to the product of the norms. A necessary condition
Eq. ~34! to be satisfied is therefore

21 1 2 1

FIG. 6. Definition of upstream and downstream propagation and reflec
matricesR1, P1, R2, and P2 applied to the amplitudesA1 , A2 , A3 ,
andA4 .
1<iP i2iP i2iR i2iR i2 . ~35!
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IntroducingR25iR2i2 andR15iR1i2 and taking into ac-
count the fact that the two-norm of a diagonal matrix equ
the maximum of the modulus of its diagonal terms, the n
essary condition~35! translates into

1<exp@$Im~k4!2 max
i 51,2,3

@ Im~ki !#%L#R2R1, ~36!

where we recall thatk4 is the wave number of the upstrea
k2 wave andk1 , k2 , andk3 are thek1 downstream propa
gating waves. Since two of the downstream spatial waves
always neutral, inequality~36! amounts to

1<exp@$Im~k4!%L#R2R1. ~37!

Let us reiterate that a real forcing frequency has been
scribed and that we examine if the finite length pipe is a
to sustain a periodic cycle, in which case the flow will ha
been shown to be at the instability threshold. It should
noticed thatR2 andR1 depend only on the inlet and outle
conditions and not on the length of the pipeL. If V,VB

~supercritical range!, the upstream propagating wave is ev
nescent and the terme$Im(k4)%L decays exponentially to zero a
L goes to infinity and therefore inequality~37! cannot be
fulfilled. The flow is thus globally stable. In contrast, whe
V.VB ~subcritical range! and 2vg<v<vg , e$Im(k4)%L51
and the flow may become globally unstable if the bound
conditions are overreflecting. Inequality~37! in fact imposes
thatR2R1>1. This reasoning demonstrates without solvi
the global dispersion relation~28! that the global instability
thresholdV1 is necessarily above the critical swirlVB when
L goes to infinity. Furthermore, global instability requir
that the boundary conditions provide energy to the pertur
tions. The next section is devoted to the identification of
amplification mechanism that takes place at the pipe i
and outlet.

V. ENERGY BUDGET

The local kinetic energy functionalec(z,t) of the pertur-
bations at a local stationz is now expressed as the integr
along the radial direction

ec~z,t !5E
0

1

@u82~r ,z!1v82~r ,z!1w82~r ,z!#rdr

5E
0

1/2

@u82~y,z!1v82~y,z!1w82~y,z!#dy

5E
0

1/2F S ]c̃~z,t !

]z,
D 2

f 1
2~y!

2y
1K̃2~z,t !

f 1
2~y!

2y

1c̃2~z,t !S ] f 1

]y D 2Gdy. ~38!

Since the radial eigenfunction verifies

]2f 1

]y2 52
VB

2y
f 1 , ~39!
and f 1(0)5 f 1(1/2)50, an integration by parts yields
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E
0

1/2S ] f 1

]y D 2

dy5E
0

1/2

VB

f 1
2~y!

2y
dy. ~40!

Up to a multiplicative constant, the kinetic energy dens
~37! is therefore

ec~z,t !}
1

2
F K̃2~z,t !1VBc̃2~z,t !1S ]c̃

]z
D 2G . ~41!

Denote finally the total kinetic energy by

Ec~ t !5E
0

L

ec~z,t !dz. ~42!

Let us now multiply Eq.~11! by (K,c) according to

~K̃ c̃ !F 1 0

0 VB2
]2

]z2
G S K8

c8
D

5~K̃ c̃ !F 2
]

]z
AV

]

]z

AV
]

]z

]3

]z32VB

]

]z

G S K̃

c̃
D , ~43!

and further integrate between 0 andL. Repeated integration
by parts yield

Ėc5F2
K̃2

2
2VB

c̃2

2
2

1

2

]c̃2

]z
1AVK̃c̃1c̃

]2c̃

]z2

1c̃ S ]ċ̃

]z
D 2G

0

L

. ~44!

The total kinetic energy of the perturbation is seen to grow
the right-hand side of Eq.~44! is positive and decrease if it i
negative. The total kinetic energy of the perturbations m
vary only as a result of the boundary terms. The bulk of
flow conserves the energy of the perturbations, a prop
which reflects the locally neutral nature of the Kelvin wav
in the bulk.

The first case in Table I evaluates the contributions
each of the six boundary terms on the right-hand side of
~44! at each end of the pipe with the boundary conditio
~25! of Wang and Rusak.14 Some contributions vanish~0 in
the table!, some have a constant sign~* or % in the table!,
whereas some other~? in the table! cannot be evaluated with
out resorting to the full eigenmode calculation. For t
boundary conditions prescribed by Wang and Rusak,14 one
term is positive at the inlet and two terms remain undet
mined at the downstream end. The full modal analysis
Sec. IV is necessary in order to conclude.

Since we have proven in the last section that the bou
aries are active in the energy budget driving the instabi
whereas the bulk is either a damping agent in the superc
cal case (V,VB) or at most an honest waveguide in th
subcritical case (V.VB), it is tempting to modify the
boundary conditions and reexamine the global stability of
flow both in terms of a modal analysis, as in Sec. IV, and

the present energy budget analysis.
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TABLE I. Contribution of the different boundary terms in the energy growth equation~44! at each boundary

point z50 and z5L for different sets of boundary conditions. The boundary conditionsc̃(0)50 and

K̃(0)50 that impose the inlet velocity profiles are maintained for all four cases. Reference case 1: bo
conditions of Wang and Rusak~Ref. 14!; case 2: same as case 1 but with modified inlet boundary condit
case 3: same as case 1 but with modified outlet boundary condition; case 4: same as case 1 with two m
boundary conditions capable of quenching the global instability. Boundary terms are, respectively, des

by 0, *, % , and ? according to whether they are, respectively, inactive, stabilizing, destabilizing, ora priori
undetermined.

Case Boundary condition
2

K̃2

2
2VB

c̃2

2
2

1

2
S]c̃

]z
D2

AVK̃c̃
c̃

]2c̃

]z2 1c̃
]ċ̃

]z

1 c̃zz(0)50 0 0 % 0 0 0

cz(L)50 * * 0 ? ? 0

2 cz(0)50 0 0 0 0 0 0
cz(L)50 * * 0 ? ? 0

3 czz(0)50 0 0 % 0 0 0
c(L)50 * 0 * 0 0 0

4 cz(0)50 0 0 0 0 0 0
c(L)50 * 0 * 0 0 0
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Wang and Rusak14 discuss the general nature of the
boundary conditions. The boundary conditionsc̃(z50)50
and K̃(z50)50 that impose the inlet velocity profiles ar
essential and maintained throughout the study. They a
that their analysis is not strongly dependent on the ou
condition ~9!, whereas the inlet condition~8! which lets the
inlet radial velocity unprescribed is of highest importance
let the flow evolve towards vortex breakdown. We therefo
define in addition to the reference case 1 of Wang a
Rusak,14 three other test cases with modified boundary c
ditions. Case 2 has a strongly constrained inlet condition
vanishing radial velocity perturbationc̃z(z50)50 instead
of c̃zz(z50)50. Case 3 has a more constrained outlet c
dition c̃(z5L)50 imposing no axial velocity perturbatio
instead of the zero radial velocity conditionc̃z(z5L)50.
Finally case 4 cumulates both modifications of cases 2 an
These modified boundary conditions are meant to let
mathematical problem be posed. They may be easily im
mented in a numerical code and some of them have alre
been used~Brown and Lopez28 prescribe, for instance, a van
ishing radial inlet velocity perturbation as in our case 2
their numerical treatment of the related viscous swirling fl
p 2004 to 134.74.76.13. Redistribution subject to AIP
ue
t

e
d
-
f

-

3.
e
e-
dy

in a pipe of finite length at Re5250). The experimental fea
sibility of these modified boundary conditions sets~cases 2,
3, and 4! is not the crucial issue here since they have be
designed to analyze the energy budget of the flow. If
boundary conditions can be implemented individually, t
complexity comes from imposing several at the same tim

Zero inlet radial velocity perturbationc̃z(z50)50 ~case 2!
may be achieved for instance by the addition of a rotat
honeycomb at the inlet. However, imposing an inlet a
muthal velocity different from solid body rotation woul
then require a complex experimental device ensuring
radius-depending differential rotation of the honeycomb.

Figure 7 presents the growth rate of the most unsta
global modes in cases 2 and 3~where they are identical! and
case 4 to be compared with Fig. 5 for case 1. In Fig. 7~a!
corresponding to cases 2 and 3 the global instability thre
old is slightly increased toV1

(2)5V1
(3)5VB1p2/L2 to be

compared withV1
(1)5VB1p2/4L2. Imposing zero perturba

tion radial velocity at the inlet or zero perturbation axi
velocity at the outlet is therefore weakly stabilizing whe
compared with case 1. Note, however, that the eigenfu
tions alongz ~not displayed! are different in cases 2 and 3
c-

h

-
as
FIG. 7. Growth rate Im(v) of the most
unstable global eigenvalues as a fun
tion of the swirl parameterV2VB for
L510. ~a! Cases 2 and 3 where bot
curves are identical, and~b! case 4. In
comparison with Fig. 5, the global on
set in cases 2 and 3 is delayed where
case 4 is completely stabilized.
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The result for case 2 demonstrates that the degree of free
of the inlet radial velocity is not a necessary condition
linear instability of the columnar state, contrary to the co
jecture of Wang and Rusak.14 The nonlinear analysis of
Wang and Rusak14 has, however, revealed the importance
this degree of freedom in order to let the flow evolve towa
breakdown.

The most striking outcome is obtained in case 4 wh
both the upstream and downstream boundary conditions
changed. The flow is seen to remain stable, whatever v
of the swirl is considered, as seen in Fig. 7~b!. According to
Table I, all of the 12 boundary terms vanish or are negat
thereby indicating that growth of the total kinetic energy
impossible. In cases 2 and 3, a precise examination of
boundary terms~see Table I! leads to the same conclusion
as in case 1: a full modal analysis is required in order
determine the stable or unstable nature of the flow, as il
trated in Fig. 7~a!. Note that in case 3 only the inlet term
1/2 (]c̃/]z)2u0 is the only destabilizing agent whereas
case 2 only the outlet termsAVK̃c̃uL and c̃(]2c̃/]z2)uL are
destabilizing. The role of the inlet and outlet conditions
therefore subtle since both may have a destabilizing in
ence.

VI. CONCLUSION

The main conclusions of the study may be summari
as follows. The swirling flow in a pipe model proposed
Wang and Rusak15 has been reexamined in light of local an
global linear instability concepts. In the case of solid bo
rotation with uniform axial flow, the swirling flow is locally
neutrally stable and supports traveling Kelvin waves. Wh
suitable inlet and outlet end conditions are imposed, the fl
nevertheless becomes globally unstable, which is suffic
to lead to incipient vortex breakdown. The transition
vortex breakdown does therefore not require the existenc
a local instability mechanism induced either by axial she
azimuthal shear, or centrifugal forces. According
Delbende, Chomaz, and Huerre10 or Yin et al.41 among oth-
ers, the local instability features come into play to determ
the unsteady helical structure which prevails in the wake
breakdown.

A spatial stability analysis in the bulk has been co
bined with a tracing analysis of the fate of the Kelvin wav
as they bounce back and forth between the inlet and ou
boundaries. Through this detailed monitoring we have es
lished a definite relationship between propagation in
bulk, reflection at the boundaries, and global instability.
this process, we have demonstrated that the local subcri
nature of the swirling flow is a necessary condition for glob
instability to arise.

An energy budget analysis has shown that the total p
turbation energy can only grow through boundary contrib
tions at the inlet and outlet. The boundary conditions selec
by Wang and Rusak14 are indeed the most destabilizin
whereas other choices at the inlet and outlet lead to que
ing of the global instability.

We have seen that the essential ingredient behind
global linear instability is the strong inhomogeneity intr

duced by the end conditions. It may also be asked whethe
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weak distributed axial inhomogeneity in the form of, e.
slow pipe area variations is also capable of inducing
destabilization of Kelvin waves. Such a study would be
the same spirit as the asymptotic trapped wave analysi
Randall and Leibovich.42
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