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Instability mechanisms in swirling flows
F. Gallaire and J.-M. Chomaz
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~Received 14 March 2002; accepted 12 May 2003; published 5 August 2003!

We investigate the stability of the screened Rankine vortex with added plug flow where the
azimuthal velocity decreases abruptly outside the core of the vortex. The jump in circulation is
known to induce centrifugal and azimuthal Kelvin–Helmholtz instabilities. Their effect on the
stability of the different azimuthal wave numberm is discussed using physical considerations
associated with asymptotic expansions and numerical computations of the dispersion relation. It is
shown that the axial shear and centrifugal instability are active for allm, and that modes withumu>2
are also destabilized by azimuthal shear. In contrast, the bending modesm561 are stabilized by a
coupling with Kelvin waves in the core. Effects of rotation on the absolute/convective transition are
also discussed. The absolute instability of positive helical modes is seen to be promoted by
centrifugal instability and azimuthal shear. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1589011#
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I. INTRODUCTION

Coherent structures and their stability are known to
very important in geophysical1 or industrial flows.2 They
control momentum or passive scalar~often pollutants! trans-
fer from one scale to another and from one physical loca
to another. For large-scale geophysical flows these struct
are mainly two-dimensional vortices, famous examples be
the earth polar vortex and the Jovian red spot. Many stu
have been devoted to the stability of two-dimensional~2-D!
screened vortices since the instability that develops at
periphery of such a structure will act as a precursor to mix
between the vortex core and the surrounding fluid that w
be crucial, e.g., in the depletion of the Earth’s ozone.3 In that
2-D case, centrifugal effects are not active and the dynam
is only governed by the azimuthal shear. In particular, Car
and McWilliams4 and Carnevale and Kloosterziel5 have
shown that, due to the azimuthal shear, instabilities of w
numbersm52,3,4 develop in the region of azimuthal she
eventually leading to stable dipoles, tripoles, or quadrupo
Similar results have recently been obtained by the numer
simulation of Bergeronet al.6 Experimentally, the dynamics
of 2-D screened vortices have been studied either in a clo
geometry7–9 or in an open parabolic tank,10 and the circular
shear layer was observed to roll up into a finite, eventua
large number of barotropic vortices, that subsequently p
due to a secondary instability. In all the experiments
number of vortices that appeared was roughly proportiona
the ratio of the circular shear layer diameter to its thickne

In the planetary atmosphere or in the ocean, the 2
approximation~or equivalently the barotropic approxima
tion! breaks down when vortices are of small scale or wh
equatorial flows are considered. In this case the mean r
tion ceases to dominate and three-dimensional~3-D! insta-
bilities may occur. Since the azimuthal shear is also ass
ated with a decrease in azimuthal circulation, centrifu
instabilities are likely to render the flow three-dimension

similar to Taylor–Couette experiments. This centrifugal in
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stability has been used to explain the asymmetry betw
cyclonic and anticylonic motion observed in laborato
experiments,11 Jovian atmosphere,12 or on Earth1 when the
local Rossby number quantifying the local vorticity com
pared to the mean rotation is larger than unity. Experim
tally, the centrifugal instability has been observed by A
nasyev and Peltier13 and by Coletteet al.,14 who report that
the destabilization occurs through an axisymmetric mo
(m50) as in the Taylor–Couette or Dean15 experiment.
However, in the presence of axial flow, the bulging mo
m50 is not the only mode destabilized by the decrease
circulation, as shown theoretically by Ludwieg16 and Leibo-
vich and Stewartson,17 who have extended the Rayleigh cr
terion for centrifugal axisymmetric instabilities to nonax
symmetric perturbations. In the casemÞ0, both azimuthal
Kelvin–Helmholtz instabilities and centrifugal instabilitie
should be actually taken into account, even in the presenc
axial flow. The destabilization of a tornado into a multip
vortex mode with three or four tornadoes described
Snow18 is due to such a spiral instability mode when t
tornado is viewed as a screened swirling jet. In indust
applications, swirling flows are commonly used in burners
flame stabilization devices or in the laboratory as models
the study of vortex breakdown.19 In that case, the swirling je
produced at the nozzle directly enters a large quiet ta
Away from the jet axis the circulation decreases rapidly
zero. In other experiments such as the one by Escu
et al.,20 the swirling flow is confined in a diverging tube, an
the boundary layer is also subject to centrifugal~Görtler! and
shear instabilities.

The temporal as well as spatiotemporal stability of sw
ing jets and wakes has received considerable attentio
recent years. The temporal studies of the well-known Bat
elor vortex21–23 have recently been completed by spatiote
poral studies24–27 to analyze in detail the behavior o
‘‘smooth’’ swirling jets that are stable with respect to ax
-symmetric centrifugal and Kelvin–Helmholtz instabilities.

2 © 2003 American Institute of Physics
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2623Phys. Fluids, Vol. 15, No. 9, September 2003 Instability mechanisms in swirling flows
Simple swirling jet models, for which the dispersion relati
can be derived analytically, have been also introduced
better understand the competition between azimuthal
streamwise vorticity. In their study of the Rankine vort
~consisting of a core in solid body rotation surrounded b
potential flow with constant circulation! with top-hat axial
velocity profile, Loiseleuxet al.28 ~further referred to as
LCH! have pointed out the stabilizing role of the sw
through a coupling between the Kelvin waves and the a
shear Kelvin–Helmholtz mode. These authors have a
shown that the absolute nature of instabilities was enhan
by swirl, both for swirling jets and wakes. The Caflish vort
with top-hat axial velocity profile also received a lot
attention.29–31 Its stability properties were seen to depend
whether the vortex was centrifugally stable or unstable.
core is modeled by a filament and cannot sustain Ke
waves. Finally, Lim and Redekopp31 introduced a screene
Rankine vortex with a top-hat axial velocity profile, which
intermediate between the two previous models, since the
culation decreases at the vortex periphery like in the centr
gally unstable Caflish model and, on the other hand, the
ner core is in solid body rotation typical of a Rankine vorte
In the spirit of Monkewitz and Sohn,32 Lim and Redekopp31

have investigated variable density ratio effects, which
known to have a strong influence on the A/C nature of
instabilities. But they have merely determined the absolu
convective transition for the axisymmetric modem50. For a
homogeneous swirling jet in a medium at rest, the axisy
metric m50 mode is seen to remain convective when
swirl is increased for swirl parameters studied by the auth

It is worth reexamining this rich swirling jet model in th
case of three-dimensional perturbations withm nonequal to
zero, because inertial effects in the rigidly rotating core, c
trifugal force, axial and azimuthal shear are then all in int
play, as they most generally are in experimental profiles
the present study we first establish the temporal instab
curves, analyzing thereby the role of the different mec
nisms by means of asymptotic expansions and physical
siderations. The A/C transition curves are then determi
for all azimuthal wave numbersm both for jets and wakes
For large enough swirl parameters, the predominance
positive helical modes for wakes is clearly established,
well as for jets. Only for a small swirl parameter does t
axisymmetric modem50 become first absolutely unstabl
For higher swirl numbers, large azimuthal wave numb
first become absolutely unstable, though for high swirl j
this result should be considered with care because the s
difficulties in the application of the pinching point criterio
as those mentioned by Lim and Redekopp31 or LCH are en-
countered. Finally, though the present model faithfully d
scribes swirling jet experiments for which the circulatio
drops to zero outside the core, it lacks an essential ingred
to make it fully realistic: the shear is infinitely concentrat
in the model whereas in experiments the shear layer th
ness is finite. For the planar mixing layer~Drazin and
Reid15!, the finite thickness is known to modify radically th
temporal stability properties at high wave number. Keep
in mind that the effect of a finite shear thickness may only

addressed rigorously by a full stability analysis of real pro
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files ~a study beyond the scope of the present paper!, we
tentatively discuss the robustness of the present mode
sults based on physical arguments.

Our paper is organized as follows. In the first section,
base flow is defined and some physical considerations
presented, letting the derivation of the dispersion relation
Sec. III. Section IV is devoted to asymptotic expansions a
numerical computations. In addition to the results of the fi
section, the dominant physical mechanisms are thereby id
tified. In Sec. V we discuss the absolute/convective~A/C!
nature of the instability under the influence of the mean
vection and magnitude of rotation. Finally, some conclusio
and discussions are drawn in the last section.

II. BASIC FLOW

A. Screened Rankine vortex with plug flow

The basic swirling flow under consideration is
screened Rankine vortex with plug flow, as introduced
Lim and Redekopp.31 We assume the fluid to be inviscid. Th
basic flow sketched in Fig. 1 is defined as the following:

If r<R: Ur50; Uu5Vr ; Uz5U j5U`1DU ;

P5P`2r
V2 D2R2

2
1r

V2

2
~r 22R2!;

~1!

if r .R: Ur50; Uu5
V DR2

r
; Uz5U` ;

P5P`2r
V2 D2R4

2r 2 ,

and represents a solution of the Euler equations. The m
characteristics of the basic flow are easily identified: an a
flow with the shearDU at radiusR, a core of radiusR in solid

FIG. 1. Screened Rankine vortex with plug flow.
-body rotation with angular velocityV surrounded by a po-

P license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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tential flow extending to r→` with a circulation G
5VR22pD ~where DP@0,1#). When D50 the vortex is
referred to as totally screened and an azimuthal velo
shear occurs at the radiusR from VR to 0. WhenD is non-
zero, the vortex is only partially screened and whenD51 the
azimuthal velocity is continuous and the usual Rankine v
tex is recovered as in LCH. We will focus onD50, which
applies to free swirling jets, however, varyingD will allow
us to identify more easily the contribution of different inst
bility mechanisms. In order to describe this family of vor
ces, we nondimensionalize usingR and DU as length and
velocity scales, respectively. This leads to the following no
dimensional parameters that characterize the flow.

~i! a5U` /DU , the ratio of the outer axial stream t
axial shear. The external and core flows are coflow
when a<21 or a>0 and counterflowing when21
<a<0. Jets correspond toa>20.5 and wakes toa
<20.5. Of course, a change ina is equivalent to a
change of Galilean reference frame. Therefore, it d
not affect the temporal instability theory and is re
evant only for the spatial instability results and for t
determination of absolute/convective instabilities.

~ii ! S5VR/DU , the swirl ~as defined in LCH! that ex-
presses the importance of the rotation of the core v
sus the axial shear.

~iii ! D, the ratio of outer to inner circulation. The produ
(12D)S is a measure of the azimuthal shear w
respect to the axial shear.

This model combines the instability mechanisms o
jet33 and a screened vortex column as discussed in the In
duction and its dynamics involves four different physic
mechanisms.

~i! Axial sheargives rise to axialKelvin–Helmholtz in-
stabilitieswell known in nonrotating jets.33

~ii ! The solid rotation of the coresupports confinediner-
tial waves, as we will discuss in the next sectio
Physically, inertial waves are due to the restoring
tion of the Coriolis force in the reference frame rota
ing with the vortex core. For the Rankine vortex wit
out axial flow, the core acts as a wave guide and
resulting discrete set of inertial waves corresponds
Kelvin waves as described by Saffman.34

~iii ! Centrifugal instabilitiesare active whenD,1: the
circulation decreasesbetween the core and the su
rounding fluid and Rayleigh’s criterion implies tha
axisymmetric perturbations are centrifugally unstab

~iv! Azimuthal sheardestabilizes the flow whenD,1 or
D.1 since the associated jump in azimuthal veloc
induces anazimuthal Kelvin–Helmholtz instability
fully described in the 2-D context, i.e., in the absen
of axial flow, by Carton and McWilliams4 and
Carnevale and Kloosterziel.5

It is worthwhile distinguishing between centrifugal an
azimuthal shear instabilities. We will explain in the next se
tion that, while the latter originates in a difference of a
muthal speed, centrifugal instabilities result from a stratifi
Downloaded 13 Oct 2003 to 129.104.38.4. Redistribution subject to AI
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tion in kinetic momentum. Furthermore, centrifug
instabilities are three dimensional in the sense that they
not exist for a 2-D flow, whereas the azimuthal Kelvin
Helmholtz instability does. They both also correspond to t
different criteria, both attributed to Rayleigh. On the o
hand, the well-known Rayleigh criterion for centrifugal ax
symmetric (m50) instability stipulates that an instability oc
curs if the square of the angular momentumr 2Uu

2 decreases
with r. This sufficient condition reads as

Uu~r !3W~r !,0, ~2!

at somer, whereW(r )5(1/r )(]rU u /]r ) is the axial vortic-
ity. On the other hand, a necessary condition for purely 2
shear instability (k50), also due to Rayleigh, is the exten
sion to circular geometry of the inflection point theorem a
requires a change in the sign ofdW(r )/dr.15 Therefore, if
the circulation of a vortex decreases, as in the present m
for D,1, both instability mechanisms are active whereas
the circulation increases (D.1), only the azimuthal shea
instability is active, which is the case for a core with a fas
annular flow outside.

B. The physics of the instabilities

Before deriving the dispersion relation in the next se
tion, we study separately each physical mechanism in o
to gain some physical insight in the dynamics involved. W
first consider the neutral Kelvin modes sustained by the s
rotation of the core and show that they induce a cut-off f
quency for the penetration of perturbations inside the co
The role of shear and centrifugal instability are then analy
by estimating the associated destabilizing forces as
function of the axial wave numberk and azimuthal wave
numberm.

1. Solid rotation of the core and role of the Coriolis
force

We will briefly recall some well-known34 results about
Kelvin waves and their interpretation in terms of inerti
waves for which the vortex core plays the role of a wa
guide.

In a rotating media of infinite extension, the Coriol
force may be viewed as a restoring force that opposes
displacement of particles normal to the rotation axis. It lea
to inertial waves, associated to the dispersion relationv j

52V cos(u), whereu is the angle between the rotation ax
and the wave vector and wherev j is the inertial wave fre-
quency in the rotating frame. In the rotating frame, th
frequency is therefore limited by a cut-off at62V and, con-
sequently, their frequency in the laboratory frame belongs
]mV22V,mV12V@ .

The introduction of the confinement of the waves in
cylindrical core in solid body rotation discretizes this co
tinuous set of inertial waves. Building on the work o
Kelvin35 and studying the unbounded Rankine vortex~with-
out axial flow andD51), Saffman34 demonstrates for eac
azimuthal wave numberm the existence of an infinity of
Kelvin modeswith a frequency given in the low-wave num
ber limit (kR!1) by
P license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 2. Kelvin waves of the Rankine vortex withD51 andDU50 @following Saffman~Ref. 34!#; ~a! m50, ~b! m511.
v5mV6
2V

j m,n
kR, ~3!

where j m,n is thenth zero of the Bessel functionJm .
All these modes have a frequency equal tomV at k

50 and a finite group velocity of62V/ j m,n . The frequen-
cies of the modes as a function ofk are shown for the bulg-
ing modem50 and one bending modem51 in Fig. 2. They
separate into cograde and retrograde17 modes according to
the sign of the group velocity atk50.

Note the existence of a particular mode with vanish
group velocity atk50 in Fig. 2~b!. This special mode tha
exists for mÞ0 and has, atk50, a frequency equal to
V„m2sign(m)… as well as a vanishing group-velocity; it
called a slow mode.34

We shall retain that for eachm, there exists a countabl
infinity of neutral modes of frequency belonging to the pa
ing band ]mV22V;mV12V@ that corresponds to the pas
ing band of unconfined inertial waves.

2. Kelvin –Helmholtz instability

In our swirling jet model, the shear layer is formed b
the interface between the core in solid body rotation and
external potential flow. We assume, in a first approximati
that the perturbed flow is potential on both sides of the sh
layer. More precisely, the deformation at the interface co
bines an axial perturbation~of wave numberk! and an azi-
muthal deformation of wave numberm. If m andkRare large
enough, the curvature effect on the shear is expected t
negligible. The shear at the border of the jet can therefore
interpreted as a plane 2-D velocity jump,DU , in the (ez)
direction andS(12D)DU in the azimuthal direction (eu).
This plane shear, associated with the total shear ve
DUW tot5DU@eWz1S(12D)eWu#, is then perturbed by a 2-D wav
vector kW tot5keWz1(m/R)eWu . The growth rate~cf. Drazin and
Reid15! reads as

s5
1

2
ukW tot"DUW totu5

1

2 UDUS k1
mS

R
~12D! D U. ~4!
In nondimensional variables, this leads to the expression
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which will be later referred to as the ‘‘tilting shear’’ approx
mation. For a givenk>0, Eq.~5! shows that the more posi
tive m, the stronger the instability. Each negative2m mode
is less unstable than its positive1m counterpart since the
total wave vectorkW tot is ‘‘less’’ aligned with the total shear
DUW tot .

Estimate~5! takes into account neither the centrifug
instability nor the effect of the core in solid body rotation. T
understand how these effects may interact with the Kelv
Helmholtz instability, we first recall the physical mechanis
that drives the shear instability.

As before, let us first assume that the perturbed flow
potential on both sides of the shear layer. We take plac
the reference frame moving at the mean speed of the
layers and consider an artificially frozen stationary interfa
deformation of wavelengthl and amplitudeA. This defor-
mation modifies the streamline pattern away from the int
face on a length scale equal tol, as shown in Fig. 3~see the
discussion below!. Convergence of the streamlines implie
acceleration of the fluid and, therefore, according to Berno
li’s theorem, a pressure drop. Conversely, divergence of
streamlines causes a deceleration of the fluid and henc
increase in pressure. The perturbation pressure grad
across the interface that would exist if the interface w
frozen is balanced by the acceleration of the fluid norma
the interface and causes infinitesimal perturbations to gr
This destabilizing effect of the dynamical pressure is at
base of the Kelvin–Helmholtz instability.

As outlined previously, in order to compare the Kelvin
Helmholtz shear mechanism to other physical effects pre
in the swirling jet, the destabilizing force is estimated. W
freeze the interface and use the steady version of Bernou
theorem along a streamline to estimate the pressure varia
between the unperturbed point A where the velocity isŪ and
point B, located at a distancel/4 from A, where the velocity
is Ū1dU,
dp5rŪdU. ~6!

P license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 3. Kelvin–Helmholtz shear layer instability mechanism.
The scaling of the velocity perturbationdU with respect to
the amplitude of the wave,A, crucially depends on the dis
tance along which the flow lines are bent. The irrotatio
nature of the flow outside of the interface causes a sinuso
deformation in sin(kz) to generate a flow perturbation th
vanishes away from the interface likee2ky. In other words,
the velocity perturbations decay away from the interface o
length scale of orderl and the conservation of the flow-ra
in the flow-tube AA8BB8 ~cf. Fig. 3! gives

dU;
AŪ

l
. ~7!

The variation of pressure therefore equals

dp;
rŪ2A

l
. ~8!

The destabilizing force per square unit length is hence p
portional to the wave numberk,

FKH;r
Ū2A

l
;rŪ2kA. ~9!

What are the points hidden behind this argument, wh
fail when the 2-D plane potential shear layer assumption
relaxed? First, we have taken advantage of they↔2y sym-
metry of the base flow and assumed implicitly that the ins
bility preserves this symmetry, implying, in particular, th
its phase velocity is zero in that frame. In another frame
reference, where the phase velocityvf is nonzero, the un-
steady Bernoulli theorem should have been used to estim
the driving force of the instability. This results in

dp;
rA
2l

~ uU12vfu21uU22vfu2!, ~10!

with U1 ~resp.,U2) as the speed in the upper layer~resp.,
lower layer!. From the symmetry argument invoked abo
we know thatvf5(U11U2)/2 for the Kelvin–Helmholtz
instability. If another instability mechanism modifies th
phase speed, formula~10! describes the change in the des
bilizing force. Of course, if the symmetry is broken~as it is
for circular jets!, the phase velocity is given by the comple

solution of the dispersion relation@see Eq.~21! in the next

Downloaded 13 Oct 2003 to 129.104.38.4. Redistribution subject to AI
l
al

a

-

h
is

-

f

te

-

section# and the present physical analysis determines h
the Kelvin–Helmholtz instability is modified.

The second subtle point concerns the knowledge of
crosswise penetration of the perturbation in order to estim
the velocity defect that generates the destabilizing pres
difference. For Kelvin–Helmholtz instability, the decrease
exponential since the flow is potential outside the shear la
But if vorticity is present on one side of the interface, t
flow is no longer potential, and the penetration length a
therefore the destabilizing pressure are modified. This is
case for swirling jets since vorticity is present inside t
core. Indeed, whenv j , the frequency of the perturbation i
the frame moving with the core, is in the range#22V;2V@,
inertial waves~Kelvin waves! may be excited inside the vor
tex. In that case the penetration length on the core side o
shear becomes infinite~in fact, limited by the radiusR!, the
velocity perturbations parallel to the interface vanish on t
side and so does the pressure that was previously driving
instability ~see Fig. 4!. This demonstrates how the couplin
with inertial waves may be stabilizing and elucidat
former28 results on the Rankine vortex with no azimuth
shear. LCH28 have effectively showed that there is a res
nance between the Kelvin waves contained in the core
the axial Kelvin–Helmholtzm51 instability wave, leading
to a stabilization. The physical argument proposed here l
its the possibility of such a stabilizing coupling to cas
where the frequencyv j in the core is in the range
#22V;2V@. This will be confirmed in the present analysis.

3. Centrifugal instability

To estimate centrifugal effects, one considers, as bef
perturbations withkR and m sufficiently large. In the core
the centrifugal force equalsUu

2(r )/r 5V2r . Close to the in-
terface but still inside the core, it is compensated by
centrifugal pressure gradient that maintains equilibriu
] r P(R2)5rUu

2(R2)/R where the notationR2 ~resp.,R1)
means that, for any functionf (r ), f (R2) @resp., f (R1)] is
the value off asr tends toR from below~resp., from above!.
Outside the core the azimuthal velocity is, in general,
zero and also there a pressure gradient counteracts the
trifugal force. Its variation inr, however, differs from the

expression inside the core. The pressure gradient close to the

P license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



2627Phys. Fluids, Vol. 15, No. 9, September 2003 Instability mechanisms in swirling flows
e
su
r

ep
at

ba
ce
su
e
u
is
g

th

ath-
zed
the
asic

f the
by

a
rm

ng

a
as
cy

he
-

-
ex-
-

FIG. 4. The rotating core reduces the strength of the K–H instability.
interface but outside the core equals] r P(R1)
5rUu

2(R1)/R. Centrifugal instability occurs when] r P(R2)
is larger than] r P(R1).

In the present case, as soon asDÞ1, due to of the azi-
muthal velocity jump, the centrifugal force is lower outsid
the core than inside and is balanced by a smaller pres
gradient~see Fig. 5!. When the interface undergoes a defo
mation, a fluid particle from the core displaced outside ke
experiencing a high centrifugal force when we assume th
conserves its angular momentum~the fluid being inviscid!
while it is subjected to a smaller pressure gradient. The
ance is reversed when a particle from outside is displa
toward the core since now it experiences a large pres
gradient and a small centrifugal force. The equilibrium b
tween centrifugal forces and radial pressure is therefore
stable and any initial deformation will be amplified by th
mechanism. An estimate for the force per unit square len
is

Fc5rV2~12D2!AR, ~11!

and does not depend onl contrary to the K–H instability
force that is inversely proportional tol. Comparing Eq.~9!
and Eq.~11!, we expect a dominance of the shear over
centrifugal effect whenktot is large.
FIG. 5. Centrifugal destabilizing force.
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III. THE DISPERSION RELATION

Although the computation is rather standard,31 it is de-
tailed here to emphasize the physics embedded in the m
ematical expression. The Euler equations are lineari
around the base flow and normal mode perturbations in
axial and azimuthal directions are assumed. Since the b
flow is discontinuous atr 5R, perturbations in velocity and
pressure separate into two expressions valid in the core o
vortex and outside the core of the vortex, and are linked
jump conditions across the interfacer 5R.

a. Core structure.In the core region, the basic flow is
solid-body rotation and the perturbed solution takes the fo

ur~r !5 iA1

k2

rv jb
2 S 22mV

rv j
Jm~br !1bJm8 ~br ! D ,

~12!
p~r !5A1Jm~br !,

whereu andp are the perturbed velocity and pressure,Jm is
the modified Bessel function of orderm, A1 is a constant,
andv j is the frequency in the frame rotating and translati
with the core fluid,

v j5v2mV2U jk, ~13!

b is given by

b25k2S 4V2

v j
2 21D . ~14!

When b2 is positive, this perturbation corresponds to
trapped internal wave associated with the Coriolis force,
discussed in Sec. II B 1. The cut-off effect on the frequen
v j is recovered, considering that, forv j real, if v j,2V, b
is real, the Bessel functionJm is oscillatory in structure, and
the eigenfunction is of order unity everywhere inside t
core whereas ifv j.2V, b is purely imaginary and the per
turbation is evanescent from the interface to the axis.

b. Outer structure.The solution in the outer region cor
responds to a potential flow perturbation and may be
pressed by using theKm Bessel function only, since pertur
bation should vanish atr→`,

ur~r !56B2kKm8 ~skr!,
~15!
p~r !5 irB2vext~r !Km~skr!,
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wheres is the sign of the real part ofk to ensure the decreas
toward zero at larger, vext(r ) is the frequency in the frame
rotating and translating with the fluid at the locationr outside
the core

vext~r !5v2m
DVR2

r 2 2U`k, ~16!

andB2 is a constant. As mentioned in Sec. II B, the decre
at larger is exponential with a typical decrease-rate equa
Ak21m2/R2 for kR andm sufficiently large.

c. Jump conditions.The inner and outer solutions have
satisfy two jump conditions. The kinematic condition im
poses

ur~R2!

v j
5

ur~R1!

vext~R1!
5 ih, ~17!

whereh is the amplitude of the perturbation of the interfa
position relative to the cylindrical surfacer 5R at equilib-
rium. The general dynamical condition enforces the conti
ity of pressure,

~18!

The mean pressure gradient term@] r P(R1)2] r P(R2)# is
associated with the centrifugal instability, whereas the p
turbation pressure jumpp(R1)2p(R2) leads to the K–H
instabilities. With the notationv15vext(R

1) for the fre-
quency in the frame rotating with the outside fluid atr 5R,
we obtain

v jB2skKm8 1 i
v1k2

rv jb
2 A1S 2

2mV

v j r
Jm1bJm8 D50,

~19!

i
sB2kKm8

v1
r~D2V2R2V2R!1 irv1B2Km2A1Jm50.

This yields the dispersion relation:

S v1
2 1skR

Km8 ~skR!

Km~skr!
~D2V22V2! D

3S 2
2Vm

v j
1bR

Jm8 ~bR!

Jm~bR!
D 52

v j
2R2b2

skr

Km8 ~skR!

Km~skr!
,

~20!

identical to the relation found by Lim and Redekopp.31 It is
convenient to express the dispersion relation in terms of n
dimensional parameters by introducingR and DU as length

and velocity scales. Without a change of notation, we find
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~21!

with the new nondimensional variables

v j5v2mS2~11a!k, ~22!

b5kA4S22v j
2

v j
2 , ~23!

wherea, S, andD have been defined previously. In order
simplify the physical interpretation of the dispersion relatio
the origin of each term has been labeled in Eq.~21!, traced
back from the kinematic~17! or dynamic~18! jump condi-
tions.

IV. TEMPORAL INSTABILITY

The next two sections deal with the temporal stabil
problem. We assumek to be real and solve the dispersio
relation for a complex frequencyv. The dependence on ex
ternal flow parametera manifests itself as a simple Dopple
frequency shift, and we therefore seta50 for the temporal
stability analysis. On the other hand, ifk is complex ~as
assumed for the spatial instability theory!, the advection pa-
rametera is of fundamental importance.

A. Asymptotic results of the temporal instability
analysis

To understand the interplay of the axial and azimut
shear, the centrifugal instability and the effect of the core,
expand the dispersion relation both in the limitk@1 andk
!1. As the reader will see, thek@1 limit will confirm the
physical considerations presented in Sec. II B.

The procedure is as follows: since the magnitude ofb
5kA(4S22v j

2)/v j
2 with respect tok is unknown, we as-

sumeb a priori to be large, order unity or small, then deriv
the asymptotic expression for the dispersion relation, co
pute the solutionv as a function ofk and finally verify the
validity of the previous assumptions on the size ofb. As was
already mentioned, although we are mostly interested in
sults for D50, we still treat the general case to identi
precisely the different dominant terms.

1. High wave number regime k š1

Assuming b!k, the only solution is a neutral mod
given to leading order by

v5~m12a!S1~11a!k, ~24!

wherea is the sign ofm. This asymptotic formula appears t

be an exact solution of the dispersion relation. It corresponds
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to b50 and represents a Kelvin wave of frequencyv j

52aS, with phase planes normal to the axis of rotation.
Assumingb;k, we get an unstable wave with

v;S 16 i

2 D k1ak, ~25!

which corresponds to a Kelvin–Helmholtz mode associa
with the axial shear. Note the existence of a pair of compl
conjugate frequencies, with one unstable branch and
evanescent one. This is due to the inviscid character of
model. In what follows, only the unstable branch will b
considered. The leading-order expression of this unsta
mode does not involveS, confirming that, for any finitem,
the axial shear dominates over other mechanisms at largk.
To obtain the contribution of the azimuthal shear and c
trifugal instability, we expandv to the next order in 1/k,
using the expansions for the Bessel functions

lim
k→1`

Km8 ~k!

Km~k!
5211

1

2k
1OS 1

k2D , ~26!

lim
b→`

Jm8 ~b!

Jm~b!
52 i 2

1

2b
1OS 1

b2D , ~27!

we get the following expression forDÞ1:

~28!

In expression~28!, the real part ofv shows that the wave
will be stationary in the frame moving at the mean spe
uz51/2 in r 51 and rotating at the mean angular veloc
SD/2. Using this asymptotic analysis, we recover the heu
tic results of Sec. II B for the growth-rate of the ‘‘tilted she
instability’’ added with the centrifugal instability. The ba
ance of the azimuthal and axial shear and centrifugal in
bilities is now given by the imaginary part of Eq.~28!. The
axial shear gives a contribution to the growth rate equa
k/2 since the jump in axial velocity is equal to unity in no
dimensional variables, the azimuthal shear tom/2 weighted
by the jump in azimuthal velocity (12D)S. The centrifugal
instability contribution is independent of bothk and m, as
already discussed in Sec. II B and equalsS2(12D2)/2.
Whenm is positive, the azimuthal shear and the centrifu
effect cooperate to destabilize the flow, whereas whenm is
negative a competition ensues, but except forD close to
unity or largeS, the azimuthal shear dominates and redu
the growth rate. More precisely, form,0, when S
,2m/2(11D), an increase in swirl will have a stabilizin
effect whereas whenS.2m/2(11D), it will have a desta-
bilizing effect. These effects were already discussed
physical arguments in Sec. II B and were attributed to
tilting of the shear with respect to the local wave number.
shall point out that, at highk, the instability is driven at
leading order by the axial shear and at the next order by

azimuthal shear and the centrifugal instability.
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2. Low wave number regime k ™1

a. m50, bulging mode.The asymptotic analysis for th
axisymmetric modem50 for k!1 is not reproduced here
but detailed in Appendix A. ForDÞ1, the compatibility con-
dition requiresb5O(1), which gives

v05k~11a!1 i
2S

YD
k, ~29!

whereYD is the solution of Eq.~A3! which has to be deter
mined numerically. This mode is stationary (v r50) in a
frame moving with the core and centrifugally unstable with
vanishing growth rate ask→0. This behavior is common
among centrifugally unstable configurations such as Tayl
Couette flow.

b. mÞ0: bending modes(m561) and spiral modes
(umu.1). We present the results formÞ0 and assumeb
!1 since other assumptions onb do not give rise to unstable
branches. Using the expansions for the Bessel functions

lim
b→0

b
Jm8 ~b!

Jm~b!
5umu2

b2

2umu11
1O~b4!, ~30!

lim
k→0

k
Km8 ~k!

Km~k!
5211O~k2!, ~31!

the dispersion relation may be written to leading order ink as

~32!

Stability is then determined by the sign of its discriminantd,

~33!

In Eq. ~32! and Eq.~33!, we have traced back the physic
origin of various terms from Eq.~21!. From Eq. ~33! we
clearly see that the core has a stabilizing effect, whereas
azimuthal shear and the centrifugal instability have a de
bilizing effect. The largerm, the stronger the dominance o
the shear instability, as expected from physical consid
ations given in Sec. II B.

In Fig. 6, we plotd(m,D) as a function ofD for different
values ofm. For eachumu.1, there is a critical value ofD,
Dm , such that the mode is unstable whenD,Dm and neutral
to order 0 ink whenD>Dm . The thresholdDm equals

Dm5
m22m2A2~m22m!

m222m
, ~34!

and grows withm. The value ofDm results from the interplay
between the stabilizing effects of the core and the destab
ing effect of the azimuthal shear and the centrifugal for
For m51, D150, the effects of azimuthal shear, centrifug
force, and core balance at leading order and it becomes
essary to go to higher order, as explained in Appendix B. I

found that stabilization occurs for large enough swirl.
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For m.1, when D,Dm , i.e., when the jump in azi-
muthal velocity between the core and the surrounding flui
large enough, the modes are unstable atk50 with a finite
growth rate that equalsA2d/2. Note that this growth rate is
independent of the sign ofm. WhenD50, the destabilizing
centrifugal term is entirely balanced by a core term ands
5AS2(m221)/2 is solely due to an azimuthal shear instab
ity weakened by a core effect. For largem, thek50 growth
rate may be approximated bys5umuS/2, which is compat-
ible with the physical prediction of Sec. II B 2 taking int
account only the azimuthal shear.

At order 1 in the expansion ofv versusk we obtain for
the unstable mode, i.e., whenD,Dm ,

sD,Dm
5

A2dS 11
a2m~12D!

d
kSD

2
, ~35!

wherea is the sign ofm. The sign of the slope of the growt
rate atk50 „the term@a2m(12D)#S/d in ~35!… reflects

FIG. 6. We seed ~see the text! with respect toD. The shaded region corre
sponds to instability.
the competition between azimuthal shear@the 2m(1
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2D)S/d) term in~35!# and stabilization by the core@theaS/d
term in ~35!#. Note also that the modes1m and 2m have
the same growth-rate atk50 but opposite slopes45 indepen-
dent ofS, sinced is proportional toS2.

WhenD50, the screening is total~the outer fluid is not
rotating! and the growth rate becomes

s5
SAm221

2
15

Am221

m11

k

2
, when m>2;

Am221

m21

k

2
, when m<22.

~36!

This results, whenm is large, in

s;
1

2
umS1ku1R~m!1OS k

mD , ~37!

whereR(m);O(1/m) is a quantity that goes to zero whe
m→`, independently of the value ofk. If one is willing to
neglect this correction with respect to terms of orderk in
order to retain the firstk contribution, the prediction of the
‘‘tilted shear approximation’’ of Eq.~5! following the physi-
cal interpretation given in Sec. II B 2 is recovered. It is ful
justified when 1/m!k!1.

In conclusion, the behavior at smallk depends on the
wave numberm; for m50, the instability is centrifugally
driven and vanishes atk50; for m561, stabilization due to
the core occurs at large enough swirl; forumu larger than 1,
k50 is unstable due to azimuthal shear and forD50, an
increase ofk is destabilizing for positivem and stabilizing
for negativem, as explained by the ‘‘tilted shear’’ approxi
mation.

The unstable modes predicted asymptotically are su
marized in Table I for a completely screened vortexD
50).
TABLE I. Fully screened swirling jet~D50); asymptotic expressions of the unstable branches of the dispersion relation; growth rates inbold.
P license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 7. Growth rates5v i of the axisymmetric mode
m50 for S51 andD50, 0.5, 1; ‘‘--:’’ asymptotic ex-
pression at smallk obtained forD50.5.
a
ib
il
t

A
tio

pa
e

vo
a

ha
e
ll

tia
a

ex-

-

-
for
r

e in

te

gal
l
ta-

the
B. Numerical results for the temporal stability analysis

In the preceding section we have used asymptotic exp
sions to trace the origin of physical mechanisms respons
for stabilization and destabilization of the base flow. We w
now proceed to a more general analysis and determine
temporal instability branches of the dispersion relation.
the dispersion relation is transcendental, a numerical solu
is necessary. At a given value of the swirlS, the screening
parameterD and the azimuthal wave numberm, we deter-
mine all the temporal branchesv(k) (kPR), using a proce-
dure described in LCH. The influence of the screening
rameterD will be analyzed to provide a connection to th
results of LCH~corresponding toD51).

1. Axisymmetric perturbations: The bulging mode
mÄ0

Figure 7 presents the growth rate as a function ofk along
the unstable branch for the axisymmetric modem50 at S
51 and three different screening parametersD:D51, the
case considered by LCH, corresponding to the Rankine
tex,D50.5, corresponding to a jump in azimuthal velocity
r 51 of half the azimuthal velocity, andD50 corresponding
to the fully screened Rankine vortex, where the azimut
velocity jumps to zero atr 51. We observe that an increas
in the azimuthal velocity jump promotes instability for a
wave numbersk.

In Fig. 7, the asymptotic expressionsas valid for smallk
derived in Appendix A is plotted as a dashed line for a par
screeningD50.5, in excellent agreement with the numeric
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result. Also in excellent agreement are the asymptotic
pressions~28! valid for largek, as shown in Table II forS
51 andD50.5. The asymptotic expression derived in~28! is
exact at order21 ask goes to infinity, with the error vanish
ing with k at least as 1/k. Not only the relative error is
vanishing but also the absolute errorusas2snumu.

Figure 8 presents the evolution of the growth rates with
respect to the wave numberk as the swirl is increased from
S50 to S52 in steps of 0.5 for a fully screened vortex (D
50). The swirl has a destabilizing effect for all wave num
bersk, as predicted by the asymptotic expressions derived
small and largek ~Table I!. Since the azimuthal wave numbe
m equals zero, the azimuthal shear does not play any rol
the destabilization. At largek, expression~28! and the results
plotted in Fig. 8 show that the K–H instability growth ra
due to the axial shear~independent of rotation! is augmented
by a centrifugal term. For smallk, the expression derived in
Appendix A results from a balance of axial shear, centrifu
and core forces. The numerical results confirm that, for alk,
the stabilizing role of the core is overwhelmed by the des
bilizing action of the centrifugal force. By contrast, forD
51, LCH observed a stabilizing effect of the swirl, for allk,
since in that case there is no centrifugal instability, and
only effect is a stabilization due to the core.

2. Large m (i.e., m Ð2…: Spiral modes

All azimuthal wave numbersm, except the bending
modesm561 and the bulging modem50 behave in a
TABLE II. D50.5; S51; asymptotic expressions at highk compared to numerical values;sas is the value of
the growth rates obtained from the asymptotic expression~28! andsnum the numerically computed value ofs.

k 3 5 10 20 50 100

sas 1.87 2.87 5.37 10.37 25.37 50.37
snum 1.57 2.66 5.26 10.31 25.34 50.36

sas2snum 0.3 0.21 0.11 0.06 0.03 0.01
P license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 8. Computed growth rates of the m50 axisym-
metric mode for variousS ~50, 0.5, 1, 1.5, 2! and D
50.
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similar manner. Although results have been produced s
tematically form562, m563, m564, andm565, we
will illustrate the general behavior on the casem563. Fig-
ure 9 is similar to Fig. 7, except that the swirl has be
chosen equal to 0.3; in addition, we plot four values ofD.
The effect of increasing the screening~decreasingD from 1
to 0! is destabilizing at smallk for both m513 and m
523, whereas at largek it promotes instability for
m513 and reduces instability form523.

At large k, this result can be interpreted using th
asymptotic results~28!. Two terms are added to the axi
Kelvin–Helmholtz growth ratek/2, the centrifugal term
equal to (12D2)S2/2 and the azimuthal Kelvin–Helmholt
term mS(12D)/2. As predicted by the ‘‘tilted shear’’ ap
proximation, whenm is positive both terms conjugate the
destabilizing effect whereas whenm is negative the azi-
muthal K–H term is stabilizing and the centrifugal term r
mains destabilizing. For (11D)S,2m ~which is verified
Downloaded 13 Oct 2003 to 129.104.38.4. Redistribution subject to AI
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for the present choice of parameters! the azimuthal shea
dominates and reduces the large-k growth rate for negative
m, as observed in Fig. 9~a!.

At small k, for bothm513 andm523, the growth rate
becomes non-zero atk50 as long asD,Dm which is in
perfect agreement with the asymptotic prediction. As poin
out there,Dm reflects the balance of the destabilizing a
muthal shear and the stabilizing Coriolis forces in the co

Figure 10 is similar to Fig. 8. The temporal instabili
branch is plotted for various swirls and for a total screen
(D50). For positive helical modesm513 it is shown that
the swirl promotes instability at allk, whereas for negative
helical modesm523, one must consider two regimes ofS
~see Sec. II A 1!. In a first regimeS<2m/2, the swirl is
destabilizing at smallk and stabilizing at largek. In a second
regimeS>2m/2, the swirl is destabilizing for allk. Figure
10~a! exemplifies the role of the swirl in the first regime. F
small swirl levels (S<umu/2), the growth rate is mainly
FIG. 9. Growth rates of m523 andm513 for D50, 0.5, 0.8, 1, andS50.3.
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FIG. 10. Growth rates of m523 andm513 for variousS50, 0.2, 0.4, 0.6, 0.8, 1, andD50. Please note the different scaling on thek axis.
given by the K–H instability due to the ‘‘tilted shear’’ sinc
the contribution of the azimuthal shear is proportional tomS,
whereas the centrifugal instability is proportional toS2.

At k50 both helical wavesm513 andm523 have
opposite slope and the same growth rate, which is dire
proportional to the swirlS. These characteristics are pr
dicted by the asymptotic calculation, Eq.~36!. As was
pointed out there, the growth rate atk50 is entirely given by
the azimuthal shear with a small correction due to the ac
of the core that vanishes asm increases. The slope at th
origin 2@(a2m)/2Am221#k renders the effect of the
‘‘tilted shear’’ that destabilizes positive azimuthal wave nu
bers and stabilizes negative ones. Let us emphasize tha
total screening (D50), the effect of the centrifugal instabil
ity at small k is entirely balanced by the stabilizing role o
the core, in which case only the shear contributes to
instability.

In order to probe the relevance of the simple ‘‘tilte

shear’’ model at largem, we have plotted in Fig. 11, form
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513 andm523, D50 andS50.5, the computed growth
rates and the prediction given by Eq.~5!, taking into account
only the shear instability:s51/2umS1ku. This figure, plot-
ted for an intermediate value of swirl (S50.5) smaller than
the valueS5umu/2 (S51.5 presently!, where centrifugal in-
stabilities take over, shows that the ‘‘tilted shear layer,’’ co
bining axial and azimuthal shear, is a good approximation
smallk, the centrifugal instability contribution is balanced b
the core contribution and at largek, it is smaller than the
azimuthal shear contribution since the former varies likeS2

and the latter likemS.

3. Bending waves: m ÄÁ1

Last but not least, bending modesm561 are discussed
Since their dynamics is more intricate, we solely focus on
complete screening of the vortex, i.e.,D50. Figure 12 is
similar to Fig. 10 and presents the value of the growth rate

a function ofk for m511 andm521 andD50. At highk,
FIG. 11. Growth rates of m523 andm513 for S
50.5 andD50; ‘‘tilted shear’’ prediction~-•-!.
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FIG. 12. Growth rates of m521 ~a! andm511 ~b! for variousS andD50.
for m521, expression~28! predicts that an increase in swi
is destabilizing forS.2m/2 (S.0.5 presently! and stabiliz-
ing for S,0.5. Indeed, in Fig. 12~a!, at largek, the curve for
S50.1 andS50.8 are above the one forS50.4. At smallk,
the swirl has a stabilizing effect. We must distinguish b
tween three swirl ranges. We see in Fig. 12~a! the existence
of a threshold valueS21 determined numerically as 0.95. Fo
SP@0;S21#, the flow is unstable for allk, and increasingS
in this range induces a stabilization for lowk. In a second
regime, SP@S21 ;&#, the flow becomes neutral for wav
numbersk in @k21

inf ,k21
sup#, wherek21

inf decreases with increas
ing swirl and k21

sup is close to 0.5. In the last regime,S
>&, the complete stabilization occurs fromk1

inf50 to k21
sup

;0.53. The asymptotic calculation pushed at second orde
the limit k→0 ~which is presented in Appendix B! predicts
this critical value ofS5&, beyond which small wave num
bersk are stabilized, and links this effect to the role of t
core.

Figure 12~b! is similar to Fig. 12~a!, but for m511. At
largek, it shows that the swirl destabilizes the flow, again
agreement with the asymptotic result, since form positive
both the azimuthal shear and the centrifugal instability
destabilizing. At smallk, we define from systematic numer
cal computations three swirl regimes as we did before:
behavior is similar to them521 case, a first regimeS
,S11;1.35 where all wave numbersk are unstable, a sec
ond regimeS11,S,&, where a neutral region@k11

inf ,k11
sup#

of thek axis appears, and a third regimeS.&, where small
wave numbers are entirely stabilized. Asymptotic expr
sions for k→0, derived in Appendix B, again predict th
existence of a critical swirlS5& beyond which small wave
numbers are entirely stabilized.

V. CONVECTIVEÕABSOLUTE INSTABILITY
TRANSITION

The spatiotemporal study developed next analyzes
effect of the centrifugal force and azimuthal shear on
propagation of the instabilities, whereas temporal instabi
previously discussed addresses solely their effect on

growth rate. In swirling jets or swirling flows in pipes, per-
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turbations are continuously injected into the flow at the in
and one may wonder what will be their fate. Furthermo
control of the flow, in particular jet flow, is often achieved b
acoustic means, with acoustic waves being transformed
vortical perturbations at the nozzle where the receptivity
the highest. The response to these perturbations depend
how they are advected and amplified by the flo
Classically36 this leads to the distinction between absolu
and convective instability and readers are referred to Hu
and Monkewitz36 for details.

If the flow is convective~C!, its response to a forcing
will be given by spatial theory, which uses solutions of t
dispersion relation forv real andk complex and associate
with them an upstream or downstream energy propagati

If the flow is absolute~A!, self-sustained oscillations
will overcome the response to small forcing amplitudes a
knowing the response to a forcing requires the solution of
full global problem, including inlet and outlet conditions.

This study is a continuation of the study by LCH on th
Rankine vortex with plug flow and also of the studies
Olendraruet al.,25 Delbendeet al.,26 and Yin et al.27 on the
Batchelor vortex, and finally of Lim and Redekopp31 and
Loiseleux et al.30 on the Caflish vortex. Furthermore, Lim
and Redekopp31 have already addressed the A/C nature
the instability of the screened Rankine vortex but have
stricted themselves to axisymmetric perturbations (m50).
From these studies, the general trend is that rotation fav
the onset of absolute instability of both wakes and jets,
that the selection of the azimuthal wave number of the fi
mode to become absolute as the swirl is increased dep
on the detail of the velocity profiles considered. Results
the present analysis will confirm this trend.

The procedure that we use is based on the determina
of saddle points of the dispersion relation by looking
pinching points of the generalized spatial branches as
scribed in LCH. Let us simply recall that the transition b
tween convective and absolute instability is determined,
given S and m, by varying a until the Briggs–Bers
criterium37 is met. This determines two critical advection p

rameters,ac

m(S), as a function ofS and m, and at each of

P license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



ith
n

l

s

-
je

al

u

in

c-

te
w
ifi

.

13.

-

es,

o-
ith
e
ry
ly
ar.
by
de

ns

tely
ake

sta-

er-

th
it

to

2635Phys. Fluids, Vol. 15, No. 9, September 2003 Instability mechanisms in swirling flows
these transitions, a real frequencyw0r , called the absolute
frequency, and a complex wave numberk0r1 ik0i are se-
lected.

By convention, the first transition that occurs fora
,21/2 is called the wake A/C transition since profiles w
such a mean flow resemble wake profiles; the second tra
tion for a.21/2 is called the jet transition.

For jets with swirlS, each modem induces an A/C tran-
sition at the critical valueac

m(S), and the azimuthal wave
numberm associated with the largestac

m is called the transi-
tional m, with its associatedac

m(S) called the transitiona
advection parameterac(S). Whenac(S) is negative, a cer-
tain amount of counterflow is necessary to trigger an ab
lute instability, whereas whenac(S) is positive the instability
is absolute, even with a coflowa if a,ac . The value ofS
such thatac(S)50 is of particular importance as it corre
sponds to the absolute instability transition for a rotating
with no outer flow.

Wakes are described in the same manner, but the v
of a corresponding to zero outer flow isa521, ac>21
corresponding to wakes with coflow, andac<21 corre-
sponding to wakes with counterflow. From now on, we foc
on the completely screened vortex, settingD50.

A. Convective Õabsolute transitions in wakes

For wakes, the domains of absolute and convective
stability are shown in Fig. 13, whereac

m(S) is plotted for
m50, m51,...,8 andm522. In the absence of swirl (S
50), the plug-flow coflowing wake is known to be conve
tively unstable for allumu ~note that without swirl, there is no
difference betweenm and 2m since no particular axial di-
rection is singled out by the base flow!. The helical mode
umu51 first becomes absolutely unstable, but still a coun
flow is needed. AsS is increased, the amount of counterflo
11a needed for absolute instability decreases very sign

FIG. 13. Domains of absolute and convective instability with respect to
advection parametera and the swirlS. Each curve corresponds to the lim
of the absolute instability domain for a particularm ~the absolute region
being on the right of each curve!.
cantly for positive helical modes. By contrast, negative
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modes~the modem522 is plotted as an example in Fig
13! become less absolutely unstable. WhenS.0.43, them
512 mode becomes ‘‘more absolute’’ than them511
bending mode and this point is marked by a circle in Fig.
As soon asS.0.455, coflowing jets (a<21) become abso-
lutely unstable to them512 wave. The transitional azi
muthal wave number remains equal tom512 until S
50.555. It takes increasingly higher positive integer valu
m512, m513, etc., before it eventually reachesm518
for S.1.55 which remains the transitional mode~i.e., the
one being ‘‘the most absolute’’! for all S.1.55. These results
clearly demonstrate the role of swirl in promoting the abs
lute instability of positive helical modes in agreement w
the Loiseleuxet al.30 study of the Caflish vortex, where th
transitional modes were positive for the wake. But contra
to their findings this effect is in our case attributed not on
to centrifugal instabilities but also to the azimuthal she
This is in contrast to the studies of the Rankine vortex
LCH and the studies of the Batchelor vortex by Delben
et al.26 and Olendraruet al.,25 all showing that the negative
helical modes and, in particular, them521 mode are the
critical ones.

B. Convective Õabsolute transition in jets

Figure 14 considers only convective/absolute transitio
with k0r.0, along the line of Lim and Redekopp.31 Figure
14 is similar to Fig. 13, i.e.,ac

m(S) is plotted versusS for
m50,1,2,...,10 and 50, with all largerm behaving accord-
ingly. Thereforem550 is labeledm51` in Fig. 14. Nega-
tive helical modes have been found to be less absolu
unstable than their positive counterparts and are, for the s
of clarity, not plotted here. ForS50, the plug-flow jet with-
out outer flow is convectively unstable for allumu. A certain
amount of counterflow is necessary to trigger absolute in
bility, and the transitional mode ism50 ~see LCH for de-
tails!. As soon as we introduce swirl, the amount of count

e
FIG. 14. Domains of absolute and convective instability with respect
critical advection parametera and swirl S when k is restricted to the half-
planekr.0.
flow needed for transition for allm diminishes, except for
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m50. For S50.7, all modesm>1 have the same critica
advection parameterac520.2. This particular point is
marked by a circle in Fig. 14. ForS.0.7, the most unstable
mode becomesm51`, which is the first to produce a tran
sition at zero outer flow forS51.15. Note that them50
transition curve is terminated whenS52.1 is reached since
the saddle point enters the leftk0r plane.

The casek0r50 corresponds to an eigenfunction th
does not vanish at infinity and cannot be normalized pr
erly. As we further increaseS, we have to use an analyti
continuation of the dispersion relation to track this sad
point. The analytic continuation is obtained from dispers
relation~21! by replacingsk ~s is the sign of the real part o
k! by k. If it is possible to track the saddle point into the le
k0r plane, such a saddle point will produce nonphysi
eigenfunctions~i.e., nonvanishing asr→`) of the impulse-
response problem associated with the dispersion relation~21!
~see Huerre and Monkewitz38!. Following Huerre and
Monkewitz38 or Lim and Redekopp31 we reject these un
physical saddle points. We believe that the above proble
result from the discontinuous and singular base velocity p
files. As was pointed out by LCH, these types of veloc
profiles are not causal, since disturbances with infinit
small wavelengths are infinitely amplified. The prerequisi
for applying the Briggs–Bers37 criterion are therefore no
satisfied~no contour in thev plane lies above the tempora
instability branch!. Only numerical calculations on caus
profiles could clarify this point; work in this direction i
currently in progress.

VI. DISCUSSION AND CONCLUSIONS

The temporal instability properties of the screened Ra
ine vortex with plug flow have been determined in gre
detail. This base flow, in comparison to other singular sw
ing jet profiles, combines in the same model the four phy
cal mechanisms that actually come into play in real flows
core in solid body rotation guiding inertial waves, axial a
azimuthal shear and centrifugal effects. This model is
fully realistic yet, since it lacks accounting for a finite she
layer thickness. Although we hope to address the effect
finite shear layer thickness rigorously in forthcoming con
butions, it will be discussed at the end of the present sec
based on physical arguments. The generality of the pre
results will then be addressed. Despite the above-mentio
limitations, the screened Rankine model is worth being c
sidered since the analytical derivations allow a precise an
sis of the stabilizing and destabilizing effects. The stabiliz
role of the core is, in particular, identified and we propose
underlying physical mechanism that may also account for
results of LCH. Furthermore, at smallk, for helical modes
with umu>2, the centrifugal destabilizing effect is entire
balanced by the core stabilization, and atk50 the instability
is entirely due to the azimuthal shear, as already noticed
Carton and McWilliams.4 At small k, the next order in the
growth rate takes into account the axial shear and induc
decrease whenm is negative and an increase whenm is posi-
tive as predicted by the ‘‘tilted shear’’ estimate~5!. At large

k, the instability is due to the axial shear enhanced by ce
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trifugal effects. It is further increased by the azimuthal sh
whenm is positive or reduced by the azimuthal shear wh
m is negative, in accordance with the ‘‘tilted shear’’ mode

For bending modes (m561), an increase in swirl sta
bilizes them561 modes at smallk due to the interaction
with the core, but a destabilizing action at largek under the
action of azimuthal shear and centrifugal instability is o
served. Finally, the bulging modem50 mode is destabilized
both by the centrifugal instability and the axial shear f
all k.

The question of interpreting the vortex breakdown by
A/C transition can be addressed in two distinct ways. T
first one relates the appearance of structures in the stagn
zone to the absolute nature of the wake behind the stagna
point. In this approach, the consideration of a Batchelor v
tex seems relevant and recent studies of Yinet al.27 showed
good agreement with experimental measurements. Follow
the second route, LCH tried to explain the appearance
vortex breakdown by an A/C transition in the swirling jet
a natural generalization of the concept of a subcritic
supercritical state that was introduced by Squire39 and
Benjamin.40 In our context, we believe that singularities
the modified Rankine vortex prevent any definite conc
sions, sincem5` is the first mode to become absolute
unstable. Numerical simulations of a realistic profile usi
the technique of Delbendeet al.26 are in progress to circum
vent this unphysical property. In contrast, no difficulties ha
been encountered concerning the determination of sa
points on the wake side and it has been shown that azimu
shear and centrifugal instability promote positive helic
modes at the onset of absolute instability, in both wakes
jets. Helical structures are observed in the swirling jets
fore breakdown~see Billantet al.!19 and in the wake of the
vortex breakdown.

The essential question that should be addressed no
the generality of results obtained on model profiles and th
applicability to experimental profiles where sharp gradie
have been replaced by discontinuities. Although in so
classical cases, like the axisymmetric jets and wakes41 the
use of discontinuous profiles was successful in predicting
realistic absolute/convective thresholds, it is also known t
a change in the shape of the profiles may radically alter
absolute/convective nature of the instabilities, as exempli
by the mixing layer~Huerre and Monkewitz38! when com-
paring results for the tangent hyperbolic profiles and the b
ken line profiles~Balsa42!.

Temporal stability studies are believed to be more rob
than the spatiotemporal ones to modifications of the velo
profiles. The influence of a finite but small shear layer thic
ness on the temporal stability properties of mixing laye
jets, and wakes introduces a cut-off wave number sca
like the inverse of the shear-layer thickness on the instab
curves obtained considering discontinuous profiles. In cir
lar geometry, the wave number is two-dimensional and
cut-off should be based on the square of the total wave n
ber k21m2. At small k and m, results of the present stud
should therefore extrapolate to realistic velocity profiles.
particular, the stabilizing role of the core form561 and
n-small k due to the coupling with Kelvin waves described in
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the present model should be generic to flows with Kelvi
Helmholtz instability and a rotating core. It is also active
the LCH model but not in the Caflish model29 because of the
absence of a core in solid body rotation. The destabiliza
of azimuthal modes close tok50 due to the azimuthal shea
is also coherent with results for the 2-D stability of the re
istic vortices of Carton and McWilliams4 or Carnevale and
Kloosterziel,5 who have indeed shown that, as the azimut
shear thickness becomes thinner, the most unstable azim
wave number becomes larger. For the 2-D flow, the m
unstable mode is two dimensional and the cutoff imposed
the finite thickness of the azimuthal shear stabilizes the h
azimuthal wave numbersm. The novelty here is that when
swirling jet is considered, the shear layer is tilted. For mo
with Ak21m2 large but smaller than the cutoff 1/d, the in-
verse of the shear layer thickness, the present model sh
that the total shear dominates and the most unstable mod
this range correspond to positive spirals, since the total w
number is then aligned with the local shear. When
!Ak21m2!1/d, the present study shows that the centri
gal effect varies likeS2 and is small compared to the she
effect that varies likek1mS.

Whenm is larger or of order 1/d the present model stop
to be valid and one should refer to Ludwieg16 and Leibovich
and Stewartson17 to understand the stability properties. The
authors have revealed a general physical mechanism a
in a broad variety of swirling jets and capable of destabi
ing helical modes of high negative azimuthal wave numbe
Ludwieg16 considered perturbations localized at a prescrib
radius and explained the underlying physical reason for
instability that should be interpreted as a centrifugal insta
ity in a sloped reference frame aligned with the direction
vanishing strain. Leibovich and Stewartson17 performed a
rigorous asymptotic expansion at largek andm with m/k of
order one and showed that, at any given radiusr 0 , it is
possible to construct an eigenmode centered inr 0 with a
maximum growth rate, at leading order in 1/Am, reached for
the ~k, m! wave number pairs such that

b52k/m5
D~Uu /r !

DUz
U

r 0

, ~38!

whereD stands ford/dr andb52k/m is the helix angle. At
any radiusr 0 , it is then possible to letk and m both go to
infinity with b52k/m fixed and determined by Eq.~38!.
According to Leibovich and Stewartson,17 the eigenmode
gets more and more localized atr 0 and the growth rates(r 0)
then asymptotes a constant,

s2~r 0!5
2Uu~rDU u2Uu!~Uu

2/r 22~DUu!22~DUz!
2!

~rDU u2Uu!21r 2~DUz!
2 U

r 0

.

~39!

This function reaches a maximumsmax at r 05r c , thereby
corresponding to a helix angleb of the wave vector given by
~38! evaluated atr c .

As can be seen from expression~38!, these generalized
centrifugal modes are not captured by models with disc
tinuous velocity profiles since they require, among oth
things,DU [dU /dr to be nonzero at a particular locatio
z z
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r c . Although the present model captures well the K–H mo
and the physical effect of a finite shear layer can be
counted for by heuristic arguments, it, however, tota
misses the generalized centrifugal modes that destab
large negative spiral modes withb52k/m5cost when m
→`.

It is interesting to put our temporal stability results
perspective with the spatial ones of Lu and Lele.43 These
authors have studied a smooth profile that consists of a
with strong coflow associated to an annular swirling flo
The presence of the coflow renders the flow hyperconvec
and spatial and temporal stability results become very si
lar. They can be deduced easily one from each other thro
the Gaster transformation.44 Lu and Lele43,45have found that
the unstable modes on these profiles separate into two f
lies: the so-called K–H modes due to shear instability a
the centrifugal modes. They have also shown that both t
of instabilities can reach growth rates with the same orde
magnitude. Our results obtained on a discontinuous mo
vortex could serve as a guideline to understand the m
selection among the K–H modes with differentm, if one
keeps in mind the modifications brought by nonzero sh
layer thicknesses. The present model, however, fails to g
any insight on the dynamics of generalized centrifug
modes described by the asymptotic theory of Leibovich a
Stewartson.17

From these physical considerations we conclude t
some caution should be taken with the spatio-tempo
analysis of the discontinuous model. When absolute tra
tion occurs for a finitem and finite k we may reasonably
hope that a similar transition will occur for realistic contin
ous profiles but when transition occurs throughm→` as for
the jet at high swirl, we know that the results will not b
robust since the introduction of finite shear will stabilize th
mode and destabilize through general centrifugal instab
azimuthal modes with large negative wave numberm that are
completely absent in the present model.
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APPENDIX A: ASYMPTOTIC STABILITY ANALYSIS
FOR mÄ0 and k™1

Our goal in this appendix is to derive the asympto
expansion of the bulging modem50 atk!1. Assumingb of
order unity, we getv j

2;4S2k2/b2. Using the Bessel func-
tion expansion,

lim
k→0

k
K08~k!

K0~k!
5

1

ln~k!
1O~1!, ~A1!

the dispersion relation, Eq.~21!, becomes

J08~b!

J0~b!
2

4

~12D2!~b!
5F~b!50. ~A2!

Plotting of the isocontours of Re@F(b)# and Im@F(b)# in the
complex plane, one verifies that the equationF(b)50 has
P license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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only solutions forb real ~Kelvin waves! andb purely imagi-
nary. The equation has only one solution of positive ima
nary part corresponding to an unstable mode form50, b
5 iYD ,

v;~11a!k1 i
2S

YD
k. ~A3!

Equation~A2! is solved numerically forDP@0;1# and
results are displayed in Fig. 15. We note that, since the
tensity of the instability is inversely proportional toYD , it
increases as the jump in azimuthal velocity (12D) in-
creases. AsD approaches one,YD tends to infinity and the
growth rate is ‘‘weaker’’ than linear ink, as shown by LCH.

APPENDIX B: ASYMPTOTIC STABILITY ANALYSIS
FOR mÄÁ1 and k™1

In this appendix, we calculate the asymptotic expans
of the bending modesm561 for k!1. Using the expansion
of Bessel functions,

lim
k→0

k
K618 ~k!

K61~k!
5212k2S K2

1

4D1O~k4!, ~B1!

where K5 log(2/k)2C11/4 and C50.5772 is the Euler
constant, we first develop the dispersion relation~21! to cu-
bic order ink:

v j
3~21k2K !1v j

2S 4S12k1
~114K !S

2
k21

k3

2
1o~k4! D

1v j S 2S212Sk1S 11KS21
5S2

4 D k21
3S

2
k31o~k4!D

1S3k21S2k31o~k4!50. ~B2!

The stability of the mode is determined by the existence
complex roots of this polynomial of order 3. We encoun
stability if there exist only real roots and have instabil
otherwise. A generalized ‘‘discriminant’’p of third-order

FIG. 15. Numerical determination ofYD ~see the text!.
polynomials can be defined, whose sign determines the n
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ture of the roots. Ifp.0, there are two complex-conjugat
solutions, ifp,0, all roots are real. For expression~B2!, p
equals to third order ink,

p5
S4~22S2!

216
k21

mS3~S224!

216
k310~k4!. ~B3!

One can easily verify that at smallk, p(k) is positive for
S,& and negative forS.&, independently of the sign o
m561. When the bending modes are unstable at smak,
i.e., whenS,&, their frequency and growth rate is given b

v61;S a1
1

2
D k1a

S

8
k2

1 iSA12
S2

2

2
k1a

S

8A12
S2

2

k2D . ~B4!
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