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Instability mechanisms in swirling flows
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We investigate the stability of the screened Rankine vortex with added plug flow where the
azimuthal velocity decreases abruptly outside the core of the vortex. The jump in circulation is
known to induce centrifugal and azimuthal Kelvin—Helmholtz instabilities. Their effect on the
stability of the different azimuthal wave number is discussed using physical considerations
associated with asymptotic expansions and numerical computations of the dispersion relation. It is
shown that the axial shear and centrifugal instability are active fon,ahd that modes withm|=2

are also destabilized by azimuthal shear. In contrast, the bending mmeelesl are stabilized by a
coupling with Kelvin waves in the core. Effects of rotation on the absolute/convective transition are
also discussed. The absolute instability of positive helical modes is seen to be promoted by
centrifugal instability and azimuthal shear. @03 American Institute of Physics.
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I. INTRODUCTION stability has been used to explain the asymmetry betwe:

Coherent structures and their stability are known to becyclomc and anticylonic motion observed in laboratory

very important in geophysic’alor industrial flows> They lexp(TnI;nents, \:]ovr;aﬁ ?tmofﬁrﬁf’ otrhonl Ealmj'/ V;/tkl]el? them
control momentum or passive scalaften pollutants trans- ocal Rossby number quantifying the local vorticity co

fer from one scale to another and from one physical IocatiorlPa"ad fo the mean rotation is larger than unity. Experime:

to another. For large-scale geophysical flows these structuré@”y' the centrlfqgal instability has beelﬂ observed by Afa
are mainly two-dimensional vortices, famous examples bein%asyev and_ _Pel_ﬂé? and by Coletteet al, w_ho report_ that
the earth polar vortex and the Jovian red spot. Many studie € destab|l_|zat|on occurs through an amsymmefmc moc
have been devoted to the stability of two-dimensioi2aD) (m=0) as_ in the Taylor—Couet.te or Déerlnexperlment.
screened vortices since the instability that develops at thlowever, in the presence of axial flow, the bulging mod

periphery of such a structure will act as a precursor to mixingn = 0 iS not the only mode destabilized byiléthe decrease |
between the vortex core and the surrounding fluid that willcirculation, as shown theoretically by Ludwi€gnd Leibo-

be crucial, e.g., in the depletion of the Earth's ozdiethat ~ Vich and Stewartsol, who have extended the Rayleigh cri-
2-D case, centrifugal effects are not active and the dynamicterion for centrifugal axisymmetric instabilities to nonaxi-
is only governed by the azimuthal shear. In particular, CartoffYMmetric perturbations. In the cage#0, both azimuthal
and McWilliamé€ and Carnevale and Kloosterfiehave Kelvin—Helmholtz instabilities and centrifugal instabilities
shown that, due to the azimuthal shear, instabilities of wavéhould be actually taken into account, even in the presence
numbersm=2,3,4 develop in the region of azimuthal shear,axial flow. The destabilization of a tornado into a multiple
eventually leading to stable dipoles, tripoles, or quadrupoles/ortex mode with three or four tornadoes described b
Similar results have recently been obtained by the numericapnow® is due to such a spiral instability mode when the
simulation of Bergeroret al® Experimentally, the dynamics tornado is viewed as a screened swirling jet. In industric
of 2-D screened vortices have been studied either in a closepplications, swirling flows are commonly used in burners &
geometrf/_g or in an open parabolic tarik,and the circular flame stabilization devices or in the laboratory as models fc
shear layer was observed to roll up into a finite, eventuallythe study of vortex breakdowhl.In that case, the swirling jet
large number of barotropic vortices, that subsequently paiproduced at the nozzle directly enters a large quiet tan
due to a secondary instability. In all the experiments theAway from the jet axis the circulation decreases rapidly t
number of vortices that appeared was roughly proportional tgero. In other experiments such as the one by Escudi
the ratio of the circular shear layer diameter to its thicknesset al,?° the swirling flow is confined in a diverging tube, and
In the planetary atmosphere or in the ocean, the 2-Dhe boundary layer is also subject to centrifugfabrtler) and

approximation (or equivalently the barotropic approxima- shear instabilities.

tion) breaks down when vortices are of small scale or when  The temporal as well as spatiotemporal stability of swirl
equatorial flows are considered. In this case the mean rotang jets and wakes has received considerable attention
tion ceases to dominate and three-dimensigBaD) insta-  recent years. The temporal studies of the well-known Batcl
bilities may occur. Since the azimuthal shear is also assocelor vorteX'=?3have recently been completed by spatiotem
ated with a decrease in azimuthal circulation, centrifugalporal studie¥' %’ to analyze in detail the behavior of
instabilities are likely to render the flow three-dimensional“smooth” swirling jets that are stable with respect to axi-
similar to Taylor—Couette experiments. This centrifugal in-symmetric centrifugal and Kelvin—Helmholtz instabilities.
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Simple swirling jet models, for which the dispersion relation | z |
can be derived analytically, have been also introduced, to
better understand the competition between azimuthal and |
streamwise vorticity. In their study of the Rankine vortex : AQR
(consisting of a core in solid body rotation surrounded by a

potential flow with constant circulatiorwith top-hat axial
velocity profile, Loiseleuxet al?® (further referred to as W
LCH) have pointed out the stabilizing role of the swirl

through a coupling between the Kelvin waves and the axial
shear Kelvin—Helmholtz mode. These authors have also
shown that the absolute nature of instabilities was enhanced
by swirl, both for swirling jets and wakes. The Caflish vortex

. . ) . . :Uoo+AU
with top-hat axial velocity profile also received a lot of
attention?®~3|ts stability properties were seen to depend on
whether the vortex was centrifugally stable or unstable. Its
core is modeled by a filament and cannot sustain Kelvin U
waves. Finally, Lim and Redekoppintroduced a screened FEFeT TrTT
Rankine vortex with a top-hat axial velocity profile, which is ' 0 R

intermediate between the two previous models, since the cir-
culation decreases at the vortex periphery like in the centrifu-
gally unstable Caflish model and, on the other hand, the in-
ner core is in solid body rotation typical of a Rankine vortex. FIG. 1. Screened Rankine vortex with plug flow.
In the spirit of Monkewitz and Sohtf, Lim and Redekopit
have investigated variable density ratio effects, which are,
known to have a strong influence on the A/C nature of th lles (?‘ StUdY beyond the scope of the present papse
instabilities. But they have merely determined the absoluteyemat'vely discuss the robustness of the present model re
convective transition for the axisymmetric moahe=0. For a sults based on phy5|ca_1l arguments. ) :
homogeneous swirling jet in a medium at rest, the axisym- Our paper is organized as follows. In the first section, the

metric m=0 mode is seen to remain convective when thebase flow is defined and some physical considerations ar

swirl is increased for swirl parameters studied by the authorsoresemed’ Ie_tting the derivation of the dispersion rellation for
It is worth reexamining this rich swirling jet model in the Sec. lIl. Section IV is devoted to asymptotic expansions anc

case of three-dimensional perturbations witmonegual to numerical computations. In addition to the results of the first

zero, because inertial effects in the rigidly rotating core, Cen_sectlon, the dominant physical mechanisms are thereby ider

trifugal force, axial and azimuthal shear are then all in inter-t'f'ed' In Sec._ v we _dlscuss the gbsolute/convec‘(u:.éC)
ature of the instability under the influence of the mean ad-

play, as they most generally are in experimental profiles. it : ) : .
the present study we first establish the temporal instabilit)yecuo_n and _magmtude of rotation. Finally, some conclusions
curves, analyzing thereby the role of the different mecha-and discussions are drawn in the last section.
nisms by means of asymptotic expansions and physical con-

siderations. The A/C transition curves are then determined- BASIC FLOW

for all azimuthal wave numbens both for jets and wakes. A Screened Rankine vortex with plug flow
For large enough swirl parameters, the predominance of

positive helical modes for wakes is clearly established, as 1€ basic swirling flow under consideration is a
well as for jets. Only for a small swirl parameter does theScréened Rankine vortex with plug flow, as introduced by

axisymmetric moden=0 become first absolutely unstable. Lim and Redekopp: We assume the fluid to be inviscid. The
For higher swirl numbers, large azimuthal wave numberdasic flow sketched in Fig. 1 is defined as the following:
first become absolutely unstable, though for high swirl jets  |f r<R: U,=0; U,=Qr; U,=U;=U.+Ay;

this result should be considered with care because the same 5 2e )

difficulties in the application of the pinching point criterion Q°A°R Q

— 2 2y .
as those mentioned by Lim and Redekdippr LCH are en- P=Pump——+p7 (MR
countered. Finally, though the present model faithfully de- 0 AR? (1)
scribes swirling jet experiments for which the circulation if r>R: U,=0; U,= C U,=U,.;
drops to zero outside the core, it lacks an essential ingredient r
to make it fully realistic: the shear is infinitely concentrated 02 A2R
in the model whereas in experiments the shear layer thick- P:Px—pT,

ness is finite. For the planar mixing layébrazin and

Reid"™), the finite thickness is known to modify radically the and represents a solution of the Euler equations. The mai
temporal stability properties at high wave number. Keepingcharacteristics of the basic flow are easily identified: an axia
in mind that the effect of a finite shear thickness may only below with the shead\; at radiusR, a core of radiu® in solid
addressed rigorously by a full stability analysis of real pro-body rotation with angular velocity) surrounded by a po-
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tential flow extending tor—o with a circulation T’ tion in kinetic momentum. Furthermore, centrifugal
=QR?27A (where Ae[0,1]). When A=0 the vortex is instabilities are three dimensional in the sense that they d
referred to as totally screened and an azimuthal velocityot exist for a 2-D flow, whereas the azimuthal Kelvin—
shear occurs at the radiisfrom (AR to 0. WhenA is non-  Helmholtz instability does. They both also correspond to two
zero, the vortex is only partially screened and whenl the  different criteria, both attributed to Rayleigh. On the one
azimuthal velocity is continuous and the usual Rankine vorhand, the well-known Rayleigh criterion for centrifugal axi-
tex is recovered as in LCH. We will focus ab=0, which  symmetric (n=0) instability stipulates that an instability oc-
applies to free swirling jets, however, varyidgwill allow curs if the square of the angular momentuft? decreases
us to identify more easily the contribution of different insta- with r. This sufficient condition reads as

bility mechanisms. In order to describe this family of vorti-

ces, we nondimensionalize usifjand A as length and Ulr)xW(r)<0, @
velocity scales, respectively. This leads to the following non-at somer, whereW(r) = (1/r)(drU 4/dr) is the axial vortic-

dimensional parameters that characterize the flow. ity. On the other hand, a necessary condition for purely 2-D
shear instability k=0), also due to Rayleigh, is the exten-

(i) a=U./Ay, the ratio of the outer axial stream 10 gjon 1o circular geometry of the inflection point theorem and
axial shear. The external and core flows are COﬂOW'”grequires a change in the sign otV(r)/dr.15 Therefore, if
whenas<—1 ora=0 and counterflowing wher1  he circulation of a vortex decreases, as in the present modk
<a=0. Jets correspond ®@=—0.5 and wakes 1@  for A<1, both instability mechanisms are active whereas if
=—0.5. Of course, a change mis equivalent to & he circulation increasesAC>1), only the azimuthal shear

change of Galilean reference frame. Therefore, it doeghstapjility is active, which is the case for a core with a faster
not affect the temporal instability theory and is rel- 3nnular flow outside.

evant only for the spatial instability results and for the
determination of absolute/convective instabilities. B The physics of the instabilities
(i)  S=QR/Ay, the swirl (as defined in LCH that ex-

presses the importance of the rotation of the core ver- Before deriving the dispersion relation in the next sec-
sus the axial shear. tion, we study separately each physical mechanism in orde

(i) A, the ratio of outer to inner circulation. The product © 9ain some physical insight in the dynamics involved. We

(1—A)S is a measure of the azimuthal shear with first (_:on3|der the neutral Kelvin modes systamed by the solic

rotation of the core and show that they induce a cut-off fre-

quency for the penetration of perturbations inside the core

This model combines the instability mechanisms of alhe role of shear and centrifugal instability are then analyzec

jet®® and a screened vortex column as discussed in the Intrdly €stimating the associated destabilizing forces as :
duction and its dynamics involves four different physical function of the axial wave numbek and azimuthal wave

mechanisms. numberm.

respect to the axial shear.

(i) Axial sheargives rise to axiaKelvin—Helmholtz in-
stabilitieswell known in nonrotating jets

(i)  Thesolid rotation of the coresupports confineéher-
tial waves as we will discuss in the next section. We will briefly recall some well-knowi results about
Physically, inertial waves are due to the restoring acKelvin waves and their interpretation in terms of inertial
tion of the Coriolis force in the reference frame rotat- waves for which the vortex core plays the role of a wave
ing with the vortex core. For the Rankine vortex with- guide.
out axial flow, the core acts as a wave guide and the In a rotating media of infinite extension, the Coriolis
resulting discrete set of inertial waves corresponds tdorce may be viewed as a restoring force that opposes th
Kelvin waves as described by Saffm#n. displacement of particles normal to the rotation axis. It leads

(i) Centrifugal instabilitiesare active whemA<1: the to inertial waves, associated to the dispersion relatign
circulation decreasedetween the core and the sur- =2€) cos(@), whered is the angle between the rotation axis
rounding fluid and Rayleigh’s criterion implies that and the wave vector and wheis is the inertial wave fre-
axisymmetric perturbations are centrifugally unstable. gquency in the rotating frame. In the rotating frame, their

(iv)  Azimuthal sheadestabilizes the flow whea<1 or  frequency is therefore limited by a cut-off at2() and, con-
A>1 since the associated jump in azimuthal velocitysequently, their frequency in the laboratory frame belongs tc
induces anazimuthal KelvirHelmholtz instability ~]1mQ—2Q,mQ+20[.
fully described in the 2-D context, i.e., in the absence ~ The introduction of the confinement of the waves in a
of axial flow, by Carton and McWillianfs and  cylindrical core in solid body rotation discretizes this con-
Carnevale and Kloosterzi2l. tinuous set of inertial waves. Building on the work of

Kelvin®® and studying the unbounded Rankine vortesth-

It is worthwhile distinguishing between centrifugal and out axial flow andA=1), Saffmari* demonstrates for each
azimuthal shear instabilities. We will explain in the next sec-azimuthal wave numbem the existence of an infinity of
tion that, while the latter originates in a difference of azi- Kelvin modeswith a frequency given in the low-wave num-
muthal speed, centrifugal instabilities result from a stratifica-ber limit (KR<1) by

1. Solid rotation of the core and role of the Coriolis
force
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FIG. 2. Kelvin waves of the Rankine vortex with=1 andA =0 [following Saffman(Ref. 34]; (8 m=0, (b) m=+1.

20 1
w=mQ+—KkR, 3) 0=§|k+mSl—A)|, (5)
m,n
wherej, , is thenth zero of the Bessel functiod, . which will be later referred to as the “tilting shear” approxi-

All these modes have a frequency equalni®) at k  mation. For a giverk=0, Eq.(5) shows that the more posi-
=0 and a finite group velocity of-2Q/j, ,. The frequen- tive m, the stronger the instability. Each negativen mode
cies of the modes as a function lofire shown for the bulg- is less unstable than its positivem counterpart since the

ing modem=0 and one bending mode=1 in Fig. 2. They total wave vectorIZtot is “less” aligned with the total shear
separate into cograde and retrogrddmodes according to Agtot_

the sign of the group velocity &=0. _ o Estimate(5) takes into account neither the centrifugal
Note the existence of a particular mode with vanishinginstability nor the effect of the core in solid body rotation. To
group velocity atk=0 in Fig. 2b). This special mode that ynderstand how these effects may interact with the Kelvin
exists form#0 and has, ak=0, a frequency equal t0 Hgmholtz instability, we first recall the physical mechanism
Q(m—sign(m)) as well as a vanishing group-velocity; it iS that drives the shear instability.
called a slow mOfié‘-‘ _ As before, let us first assume that the perturbed flow i
We shall retain that for eacam, there exists a countable potential on both sides of the shear layer. We take place
infinity of neutral modes of frequency belonging to the passtne reference frame moving at the mean speed of the tv
ing band () —20;mQ +20Q[ that corresponds to the pass- |ayers and consider an artificially frozen stationary interfac

ing band of unconfined inertial waves. deformation of wavelength and amplitudeA. This defor-
mation modifies the streamline pattern away from the intel
2. Kelvin —Helmholtz instability face on a length scale equalXpas shown in Fig. 3see the

discussion beloyv Convergence of the streamlines implies

In our swirling jet model, the shear layer is form . . .
ours g jet model, the shear layer is formed by cceleration of the fluid and, therefore, according to Bernou

the interface between the core in solid body rotation and the, .
external potential flow. We assume, in a first approximation,IS theo_rem, a pressure drop. Cpnversely, dlyergence of
that the perturbed flow is potential on both sides of the Shea&treamllne.s causes a deceleration of 'the fluid and hencg
layer. More precisely, the deformation at the interface com NCrease n pressure. The perturpatlgn pressure gradie
bines an axial perturbatiofof wave numbeik) and an azi- across the interface that would exist if the interface wer

muthal deformation of wave number. If mandkRare large froz_en is balanced by the _ac_ce_zlergtlon of the qu_|d normal t
the interface and causes infinitesimal perturbations to gro\

enough, the curvature effect on the shear is expected to ‘s destabilizing effect of the dvnamical pressure is at th
negligible. The shear at the border of the jet can therefore b IS destabilizing dynamical pressure 1s
ase of the Kelvin—Helmholtz instability.

interpr lane 2-D velocity | in th . . . .
terpreted as a plane elocity jumfy, in the (e,) As outlined previously, in order to compare the Kelvin—

direction andS(1=A)Ay in the azimuthal direction &). c)I—r|elmholtz shear mechanism to other physical effects prese

This plane shear, associated with the total shear vect T o . .
AU —A & A6 is th bed b In the swirling jet, the destabilizing force is estimated. We
Uia=Au[&+S1=A4)&)], is then perturbed by a 2-D wave goq76 the interface and use the steady version of Bernoull

vector ki =k&+(m/R)€,. The growth rate(cf. Drazin and  theorem along a streamline to estimate the pressure variati
Reid®) reads as between the unperturbed point A where the velocitgiand
point B, located at a distane€4 from A, where the velocity
is U+ oU,

1. N 1 mS
0':§|ktot’AUtot|:§ Ay k"‘ﬁ(l_A) . (4)

In nondimensional variables, this leads to the expression 5p=pU§U. (6)
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<l

FIG. 3. Kelvin—Helmholtz shear layer instability mechanism.

The scaling of the velocity perturbatiafl) with respect to  sectior] and the present physical analysis determines how
the amplitude of the wave4, crucially depends on the dis- the Kelvin—Helmholtz instability is modified.

tance along which the flow lines are bent. The irrotational = The second subtle point concerns the knowledge of the
nature of the flow outside of the interface causes a sinusoidarosswise penetration of the perturbation in order to estimat
deformation in sirk2 to generate a flow perturbation that the velocity defect that generates the destabilizing pressur
vanishes away from the interface like"Y. In other words, difference. For Kelvin—Helmholtz instability, the decrease is
the velocity perturbations decay away from the interface on &xponential since the flow is potential outside the shear layel
length scale of ordex and the conservation of the flow-rate But if vorticity is present on one side of the interface, the

in the flow-tube AABB’ (cf. Fig. 3 gives flow is no longer potential, and the penetration length and

_ therefore the destabilizing pressure are modified. This is the

5U~A—U @) case for swirling jets since vorticity is present inside the
N core. Indeed, whew;, the frequency of the perturbation in

the frame moving with the core, is in the rangje2Q;2Q),
inertial wavegKelvin waves may be excited inside the vor-
png tex. In that case the penetration length on the core side of th
N (8) shear becomes infinitén fact, limited by the radiu®), the
velocity perturbations parallel to the interface vanish on that
The destabilizing force per square unit length is hence proside and so does the pressure that was previously driving th
portional to the wave numbés; instability (see Fig. 4. This demonstrates how the coupling
with inertial waves may be stabilizing and elucidates
former® results on the Rankine vortex with no azimuthal
shear. LCH® have effectively showed that there is a reso-
) ) ] ] _ nance between the Kelvin waves contained in the core an
What are the points hidden behind this argument, whichy,o 44ia| Kelvin—Helmholtzm=1 instability wave, leading

fail whe: the 2-D plane potential shear layer assumption igq 5 stapilization. The physical argument proposed here lim:
relaxed? First, we have taken advantage offtheé—y Sym- s the possibility of such a stabilizing coupling to cases
metry of the base flow and assumed implicitly that the insta;yhere the frequencyw; in the core is in the range

bility preserves this symmetry, implying, in particular, thatt]—ZQ;ZQ[. This will be confirmed in the present analysis.
its phase velocity is zero in that frame. In another frame o

reference, where the phase velocity is nonzero, the un-

steady Bernoulli theorem should have been used to estimat® Centrifugal instability

the driving force of the instability. This results in

The variation of pressure therefore equals

op~

112
F~UA~UZkA 9
KHP)\ p . 9

To estimate centrifugal effects, one considers, as before
pA perturbations withkR and m sufficiently large. In the core,
Sp~ X(|U1_U¢|2+|U2_v¢|2)' (10)  the centrifugal force equald?(r)/r=Q?r. Close to the in-
terface but still inside the core, it is compensated by the
with U, (resp.,U,) as the speed in the upper lay@esp., centrifugal pressure gradient that maintains equilibrium
lower layey. From the symmetry argument invoked abovearP(R‘)=pU§(R‘)/R where the notatiolR™ (resp.,R™)
we know thatv 4=(U;+U,)/2 for the Kelvin—Helmholtz means that, for any functiof(r), f(R™) [resp.,f(R")] is
instability. If another instability mechanism modifies the the value off asr tends toR from below(resp., from above
phase speed, formuld0) describes the change in the desta-Outside the core the azimuthal velocity is, in general, not
bilizing force. Of course, if the symmetry is brokéas it is  zero and also there a pressure gradient counteracts the ce
for circular jets, the phase velocity is given by the complete trifugal force. Its variation inr, however, differs from the
solution of the dispersion relatidisee Eq.(21) in the next  expression inside the core. The pressure gradient close to tt
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U
-U
FIG. 4. The rotating core reduces the strength of the K—H instability.
interface  but outside the core equals),P(R") [ll. THE DISPERSION RELATION
=pU?(R™)/R. Centrifugal instability occurs wheft P(R™
is Fl,argo(er trzam P(RY) g y ehP(RY) Although the computation is rather standatdt is de-
; .

tailed here to emphasize the physics embedded in the ma
ematical expression. The Euler equations are linearize
ground the base flow and normal mode perturbations in tt

In the present case, as soon&s 1, due to of the azi-
muthal velocity jump, the centrifugal force is lower outside
the core than inside and is balanced by a smaller pressu ’ ) ) "
gradient(see Fig. 5 When the interface undergoes a defor- axial and azimuthal directions are assumed. Since the bas
mation, a fluid particle from the core displaced outside keepfOW iS discontinuous at=R, perturbations in velocity and
experiencing a high centrifugal force when we assume that R'essure separate into two expressions valid in the core of tl
conserves its angular momentuftne fluid being inviscidl vortex and outside the core of the vortex, and are linked b
while it is subjected to a smaller pressure gradient. The balUMP conditions across the interface R. _ _
ance is reversed when a particle from outside is displaced & COre structureln the core region, the basic flow is a
toward the core since now it experiences a large pressur'%o"d'bOdy rotation and the perturbed solution takes the forr
gradient and a small centrifugal force. The equilibrium be- K2 [ —2mQ
tween centrifugal forces and radial pressure is therefore un- ur(r)=iA1w—_Bz TJm(ﬂr)Jr,BJ,’n(ﬁr) ,
stable and any initial deformation will be amplified by this pe; )

_mechamsm. An estimate for the force per unit square length  p(r)=A,J.(8r),
is

12

) 5 whereu andp are the perturbed velocity and pressulg,is
Fo=pQi(1-A9AR, (11 the modified Bessel function of orden, A, is a constant,
and does not depend on contrary to the K—H instability andw; is the frequency in the frame rotating and translating

force that is inversely proportional to. Comparing Eq(9)  with the core fluid,
and Eq.(11), we expect a dominance of the shear over the

centrifugal effect wherk, is large. wj=w-mQ—Uk, 13
B is given by
4072
BP=K| ——1]. (14)
@j

When 82 is positive, this perturbation corresponds to a
trapped internal wave associated with the Coriolis force, a
discussed in Sec. 11B 1. The cut-off effect on the frequenc
wj is recovered, considering that, far real, if w;<<2Q), 8
is real, the Bessel functiady, is oscillatory in structure, and
the eigenfunction is of order unity everywhere inside the
core whereas ito;>2(), 8 is purely imaginary and the per-
turbation is evanescent from the interface to the axis.

b. Outer structureThe solution in the outer region cor-
responds to a potential flow perturbation and may be e»
pressed by using thi€,, Bessel function only, since pertur-
bation should vanish at—«,

u,(r)==BykK;/ (skr),

. (15
FIG. 5. Centrifugal destabilizing force. P(r)=ipBowey(r)Kn(skr),
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wheres is the sign of the real part d&fto ensure the decrease . . s centrifugal
toward zero at large, we,(r) is the frequency in the frame axial shear  azimutbal shear K(sk)
rotating and translating with the fluid at the locatiooutside w,+ k +mS(1—-A)) +sk S*(A°—1)
J K, (sk)
the core
core effect
AQR? 3
—w— - J.(B) 2w K] (sk)
eI = w—M—75——U.K, (16) x| —2mS+wp B B w;

Sn(B) sk K, (sk)

andB, is a constant. As mentioned in Sec. Il B, the decrease
at larger is exponential with a typical decrease-rate equal to
JVkZ+m?/R? for kR and m sufficiently large.

¢. Jump conditionsThe inner and outer solutions have to

=D[k,w,m,S,A]=0, (21

with the new nondimensional variables

satisfy two jump conditions. The kinematic condition im- o;j=0—mS-(1+a)k, (22
poses
B=K\| ——=—, (23
u(R) (R @)
y  weRT) =i (17 wherea, § andA have been defined previously. In order to

simplify the physical interpretation of the dispersion relation,

. . . . the origin of each term has been labeled in Et{), traced
where 7 is the amplitude of the perturbation of the interface back from the kinemati¢17) or dynamic(18) jump condi-

position relative to the cylindrical surface=R at equilib- .
. ) o . tions.
rium. The general dynamical condition enforces the continu-
ity of pressure,
IV. TEMPORAL INSTABILITY

centrifugal axial t azimuthal shear The next two sections deal with the temporal stability

[3,P(RT)—3,P(R)]n+p(RT)—p(R7)=0. (18  problem. We assumk to be real and solve the dispersion
relation for a complex frequency. The dependence on ex-
ternal flow parametea manifests itself as a simple Doppler
The mean pressure gradient tef@P(R*)—4,P(R7)] is frequency shift, and we therefore set0 for the temporal
associated with the centrifugal instability, whereas the perstability analysis. On the other hand, kfis complex (as
turbation pressure jump(R*)—p(R™) leads to the K-H assumed for the spatial instability theprihe advection pa-
instabilities. With the notationn, = w.(R") for the fre-  rametera is of fundamental importance.
quency in the frame rotating with the outside fluidrat R,
we obtain A. Asymptotic results of the temporal instability

analysis

. o, k? , To understand the interplay of the axial and azimuthal
;BaskKy +i pw; B2 Aq| = W‘Jm”LB‘]m =0, shear, the centrifugal instability and the effect of the core, we
: (19 expand the dispersion relation both in the lirki1 andk
<1. As the reader will see, the>1 limit will confirm the
. SBKK, physical considerations presented in Sec. Il B.

202p_ N2 H — =
! w4 PIAR=QR) Hipw, B = Ardm=0. The procedure is as follows: since the magnitudeBof

:k\/(482—wj2)/wj2 with respect tok is unknown, we as-
sumeg a priori to be large, order unity or small, then derive
the asymptotic expression for the dispersion relation, com
pute the solutiorw as a function ok and finally verify the
validity of the previous assumptions on the sizgBofAs was
already mentioned, although we are mostly interested in re
sults for A=0, we still treat the general case to identify
precisely the different dominant terms.

This yields the dispersion relation:

K’ (skR)
2 m 2002_ 02
W+ SKR 5 (A%07-0 ))

20m In(BR)| w?R?B? K/ (skR

X\ wj B Jm(BR) ~ skr Km(skr)’ 1. High wave number regime k =1
(20 Assuming B8<<k, the only solution is a neutral mode
g given to leading order by

identical to the relation found by Lim and Redekoppt is .

convenient to express the dispersion relation in terms of non-  “~ (m+2e)S+(1+a)k, (24)

dimensional parameters by introduciRgand A as length  wheree is the sign ofm. This asymptotic formula appears to

and velocity scales. Without a change of notation, we find be an exact solution of the dispersion relation. It correspond
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to =0 and represents a Kelvin wave of frequeney 2. Low wave number regime k <1
=2aS, with phase planes normal to the axis of rotation.

Assuming—k, we get an unstable wave with a. m=0, bulging mode.The asymptotic analysis for the

axisymmetric moden=0 for k<1 is not reproduced here

1+i but detailed in Appendix A. FoA # 1, the compatibility con-
w~|——|k+ak (25 dition requiresB=0(1), which gives
which corresponds to a Kelvin—Helmholtz mode associated ) —k(1+a)+i Z_Sk, (29)
with the axial shear. Note the existence of a pair of complex- Ya

conjugate frequencies, with one unstable branch and ongnerey, is the solution of Eq(A3) which has to be deter-
evanescent one. This is due to the inviscid character of oUhined numerically. This mode is stationary,(=0) in a

model. In what follows, only the unstable branch will be frame moving with the core and centrifugally unstable with
considered. The leading-order expression of this unstablganishing growth rate ak—0. This behavior is common

mode does not involv&, confirming that, for any finiten,  among centrifugally unstable configurations such as Taylo
the axial shear dominates over other mechanisms at lkarge coyette flow.

To obtain the contribution of the azimuthal shear and cen-  p m%0: bending mode{m=+1) and spiral modes
trifugal instability, we expando to the next order in X, (|m|>1). We present the results fan#0 and assumes

using the expansions for the Bessel functions <1 since other assumptions @do not give rise to unstable
, branches. Using the expansions for the Bessel functions,
l Kl _ 1+ — 40| L 26
M o~ Tk Ole) 26 im 2B B 0
) B—0 Im(B) 2|m|+1 '
lim In(A) _ [ ! +0 1) (27)
=—|— — 21 K/ k)
g Im(B) 28 \B im k™ 14 00d), (31)
koo Km(K)

we get the following expression fax+# 1:
the dispersion relation may be written to leading ordek &s

mean advection

1 1 /c_c’)\rﬁe azimuthal shear
w:E[—mSA-Fk]-Fak-FEi w;—l—(aS—l-mS(l—A) w;
azimuthal shear axial shear centrifugal azimuthal shear centrifugal
—~= —_— 2¢2 2 2 2
28 m=S*(1—A)*"—|m|S*(A*—1
X\ mS(1-A)+ & +S2(1-A%) .. (28) L msH1-4) 2| S7A° 1) (32

In expression(28), the real part ofw shows that the wave

will be stationary in the frame moving at the mean SpeedStab|I|ty is then determined by the sign of its discriminant

u,=1/2 inr=1 and rotating at the mean angular velocity core shear core+ shear centrifugal
SA/2. Using this asymptotic analysis, we recover the heuri35:SZ(T_m2( 1—A)2+2|m|(1—-A)—2|m|(1—-A?)/.
tic results of Sec. Il B for the growth-rate of the “tilted shear (33)

instability” added with the centrifugal instability. The bal-

ance of the azimuthal and axial shear and centrifugal insta" Ed. (32 and Eq.(33), we have traced back the physica
bilities is now given by the imaginary part of E(8). The  origin of various terms from Eq(21). From Eq.(33) we
axial shear gives a contribution to the growth rate equal tglearly see that the core has a stabilizing effect, whereas
k/2 since the jump in axial velocity is equal to unity in non- azimuthal shear and the centrifugal instability have a des
dimensional variables, the azimuthal sheant® weighted  Dilizing effect. The largem, the stronger the dominance of
by the jump in azimuthal velocity (2A)S. The centrifugal the shear instability, as expected from physical conside
instability contribution is independent of bothand m, as ~ ations given in Sec. |1 B.

already discussed in Sec. IIB and equ&&(1—A?)/2. In Fig. 6, we plots(m,A) as a function of for different
Whenm is positive, the azimuthal shear and the centrifugaivalues ofm. For eachm|>1, there is a critical value of,
effect cooperate to destabilize the flow, whereas wimsis ~ Am. such that the mode is unstable wher A, and neutral
negative a competition ensues, but except forclose to o order 0 ink whenA=A,. The threshold, equals

unity or largeS, the azimuthal shear dominates and reduces m2— m— m
the growth rate. More precisely, fom<0, when S Ap= 2 om , (39

<—-m/2(1+A), an increase in swirl will have a stabilizing
effect whereas wheB8>—m/2(1+A), it will have a desta- and grows withm. The value ofA ,, results from the interplay

bilizing effect. These effects were already discussed byetween the stabilizing effects of the core and the destabil
physical arguments in Sec. IIB and were attributed to théng effect of the azimuthal shear and the centrifugal forc
tilting of the shear with respect to the local wave number. WeFor m=1, A;=0, the effects of azimuthal shear, centrifugs
shall point out that, at higlk, the instability is driven at force, and core balance at leading order and it becomes n
leading order by the axial shear and at the next order by thessary to go to higher order, as explained in Appendix B. It
azimuthal shear and the centrifugal instability. found that stabilization occurs for large enough swirl.
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i | ' ' ' ‘ —A)S6) term in(35)] and stabilization by the cof¢he oS/ 6
term in (35)]. Note also that the modesm and —m have
the same growth-rate &t=0 but opposite slop&indepen-
dent of S, sinced is proportional toS?.

WhenA =0, the screening is totdthe outer fluid is not
rotating and the growth rate becomes

m=1

—2
JmZ—1 k
——— —,  whenm=2;
Symé—1 m+1 2 @6
_s o=——1—+ 36
o 2 ym?—1 k
. —— —, whenms=-2.
‘ o m—1 2
_40 0.2 0.4 0.6 A 08 1
a 7/ TIN
Ay As A4 This results, whem is large, in
FIG. 6. We se&’ (see the textwith respect taA. The shaded region corre-
sponds to instability. 1 K
o~§|mS+k|+R(m)+O E)’ (37)

For m>1, whenA<A,,, i.e., when the jump in azi-
muthal velocity between the core and the surrounding fluid is
large enough, the modes are unstabléa with a finite
growth rate that equalg— /2. Note that this growth rate is
independent of the sign ah. WhenA =0, the destabilizing
centrifugal term is entirely balanced by a core term and
=/S)(m?—1)/2 is solely due to an azimuthal shear instabil-
ity weakened by a core effect. For large thek=0 growth
rate may be approximated hy=|m|S/2, which is compat-
ible with the physical prediction of Sec. 1IB2 taking into
account only the azimuthal shear.

At order 1 in the expansion ab versusk we obtain for
the unstable mode, i.e., when<A,,

whereR(m)~O(1/m) is a quantity that goes to zero when
m—co, independently of the value & If one is willing to
neglect this correction with respect to terms of or#ein
order to retain the firsk contribution, the prediction of the
“tilted shear approximation” of Eq(5) following the physi-
cal interpretation given in Sec. |1 B 2 is recovered. It is fully
justified when Iih<k<1.

In conclusion, the behavior at sm&ldepends on the
wave numbemn; for m=0, the instability is centrifugally
driven and vanishes &t=0; for m= =1, stabilization due to
the core occurs at large enough swirl; foi larger than 1,

a—m(1—A) k=0 is unstable due to azimuthal shear and 400, an
V-4 1+ Tk increase ofk is destabilizing for positiven and stabilizing
Or<A,= 5 , (350  for negativem, as explained by the “tilted shear” approxi-
mation.
wherea is the sign ofm. The sign of the slope of the growth The unstable modes predicted asymptotically are sum-
rate atk=0 (the term[a—m(1—A)]S/§ in (35) reflects marized in Table | for a completely screened vortekx (
the competition between azimuthal shefthe —m(1 =0).

TABLE I. Fully screened swirling jetA =0); asymptotic expressions of the unstable branches of the dispersion relation; growth katfes in

m=0 m==*1 |m|>1
k B Bulging mode Bending modes Spiral modes
k>1 B~ik k—mS  (k+mS+$?)
T2
k<1 B<1 1 s m—a 1
[ a+§ k+a§k‘ w,,,"‘TS‘f‘ a+§k
V1-8§%2 S a—m
+i k+a k2 m—l(S——z—m_lk)
( 2 8vV1- §%2 +i 5
28
B=0) | wy~(1+a)k+ig—k
0
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FIG. 7. Growth rateo= w; of the axisymmetric mode
m=0 for S=1 andA=0, 0.5, 1; “--:" asymptotic ex-
pression at smak obtained forA =0.5.

B. Numerical results for the temporal stability analysis

In the preceding section we have used asymptotic expalp—r

sions to trace the origin of physical mechanisms responsibl
for stabilization and destabilization of the base flow. We will

now proceed to a more general analysis and determine tH8
temporal instability branches of the dispersion relation. As

the dispersion relation is transcendental, a numerical solutio
is necessary. At a given value of the swilthe screening
parameterA and the azimuthal wave number, we deter-
mine all the temporal branches k) (ke R), using a proce-
dure described in LCH. The influence of the screening pa
rameterA will be analyzed to provide a connection to the
results of LCH(corresponding taA=1).

1. Axisymmetric perturbations: The bulging mode
m=0

Figure 7 presents the growth rate as a functiok along
the unstable branch for the axisymmetric mode0 at S
=1 and three different screening parametars\=1, the

result. Also in excellent agreement are the asymptotic ex
essiong28) valid for largek, as shown in Table Il foS

1 andA =0.5. The asymptotic expression derived28) is
xact at order-1 ask goes to infinity, with the error vanish-
g with k at least as . Not only the relative error is
anishing but also the absolute ertot,s— oy -

n Figure 8 presents the evolution of the growth rateith
respect to the wave numbkras the swirl is increased from
S=0 to S=2 in steps of 0.5 for a fully screened vorteX (
=0). The swirl has a destabilizing effect for all wave num-
bersk, as predicted by the asymptotic expressions derived fc
small and largé (Table |). Since the azimuthal wave number
m equals zero, the azimuthal shear does not play any role |
the destabilization. At largk, expressior{28) and the results
plotted in Fig. 8 show that the K—H instability growth rate
due to the axial shedindependent of rotations augmented
by a centrifugal term. For smal, the expression derived in
Appendix A results from a balance of axial shear, centrifuga
and core forces. The numerical results confirm that, fokall

€
e

\Y

tex, A= 0.5, corresponding to a jump in azimuthal velocity at
r=1 of half the azimuthal velocity, antl=0 corresponding

bilizing action of the centrifugal force. By contrast, far
=1, LCH observed a stabilizing effect of the swirl, for &I

velocity jumps to zero at=1. We observe that an increase
in the azimuthal velocity jump promotes instability for all
wave number.

In Fig. 7, the asymptotic expressionvalid for smallk

derived in Appendix A is plotted as a dashed line for a partial

screeningA = 0.5, in excellent agreement with the numerical

TABLE Il. A=0.5; S=1; asymptotic expressions at h

only effect is a stabilization due to the core.

2. Large m (i.e., m =2): Spiral modes

All azimuthal wave numbersn, except the bending
modesm==*1 and the bulging moden=0 behave in a

iglcompared to numerical values;is the value of

the growth rater obtained from the asymptotic expressi@8) and o, the numerically computed value of

k 3 5 10 20 50 100
Oas 1.87 2.87 5.37 10.37 25.37 50.37
T oum 1.57 2.66 5.26 10.31 25.34 50.36
O as— Orum 0.3 0.21 0.11 0.06 0.03 0.01
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FIG. 8. Computed growth rate of the m=0 axisym-
metric mode for various (=0, 0.5, 1, 1.5, 2and A
=0.

similar manner. Although results have been produced sydor the present choice of parametethe azimuthal shear
tematically form==*=2, m=+3, m=*4, andm=*=5, we dominates and reduces the lalggrowth rate for negative
will illustrate the general behavior on the case= +3. Fig- m, as observed in Fig.(8).
ure 9 is similar to Fig. 7, except that the swirl has been At smallk, for bothm= +3 andm= — 3, the growth rate
chosen equal to 0.3; in addition, we plot four valuesdof becomes non-zero &=0 as long asA<A, which is in
The effect of increasing the screenifdecreasingd from 1 perfect agreement with the asymptotic prediction. As pointe
to 0) is destabilizing at smalk for both m=+3 andm out there,A, reflects the balance of the destabilizing azi
=-—3, whereas at largek it promotes instability for muthal shear and the stabilizing Coriolis forces in the core
m=+3 and reduces instability fan=—3. Figure 10 is similar to Fig. 8. The temporal instability
At large k, this result can be interpreted using the branch is plotted for various swirls and for a total screenir
asymptotic resultg28). Two terms are added to the axial (A=0). For positive helical modem= + 3 it is shown that
Kelvin—Helmholtz growth ratek/2, the centrifugal term the swirl promotes instability at ak, whereas for negative
equal to (1-A?)S?/2 and the azimuthal Kelvin—Helmholtz helical modesn= — 3, one must consider two regimes 8f
term m§1—A)/2. As predicted by the “tilted shear” ap- (see Sec. Il A 1 In a first regimeS<—m/2, the swirl is
proximation, whenm is positive both terms conjugate their destabilizing at smak and stabilizing at largé&. In a second
destabilizing effect whereas wham is negative the azi- regimeS=—m/2, the swirl is destabilizing for ak. Figure
muthal K—H term is stabilizing and the centrifugal term re- 10(a) exemplifies the role of the swirl in the first regime. Fo
mains destabilizing. For (£A)S<—m (which is verified small swirl levels §<|m|/2), the growth rate is mainly

FIG. 9. Growth rater of m=—-3 andm=+3 for A=0, 0.5, 0.8, 1, an&=0.3.
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FIG. 10. Growth rater of m=—3 andm= + 3 for variousS=0, 0.2, 0.4, 0.6, 0.8, 1, andi=0. Please note the different scaling on thaxis.

given by the K—H instability due to the “tilted shear” since =+3 andm=—3, A=0 andS=0.5, the computed growth
the contribution of the azimuthal shear is proportionaii®  rates and the prediction given by E§), taking into account
whereas the centrifugal instability is proportionalSt only the shear instabilityor=1/2lmS+k|. This figure, plot-

At k=0 both helical wavesn=+3 andm=—3 have ted for an intermediate value of swir6& 0.5) smaller than
opposite slope and the same growth rate, which is directlyhe valueS=|m|/2 (S=1.5 presently, where centrifugal in-
proportional to the swirlS. These characteristics are pre- stabilities take over, shows that the “tilted shear layer,” com-
dicted by the asymptotic calculation, E¢36). As was bining axial and azimuthal shear, is a good approximation. At
pointed out there, the growth ratelat O is entirely given by  smallk, the centrifugal instability contribution is balanced by
the azimuthal shear with a small correction due to the actiothe core contribution and at larde it is smaller than the
of the core that vanishes as increases. The slope at the azimuthal shear contribution since the former varies ke
origin —[(a—m)/2ym?—1]k renders the effect of the and the latter likenS
“tilted shear” that destabilizes positive azimuthal wave num-
bers and stabilizes negative ones. Let us emphasize that for .
total screening 4 =0), the effect of the centrifugal instabil- 5. Bending waves: m =1
ity at smallk is entirely balanced by the stabilizing role of Last but not least, bending modes= = 1 are discussed.
the core, in which case only the shear contributes to thé&ince their dynamics is more intricate, we solely focus on the
instability. complete screening of the vortex, i.=0. Figure 12 is

In order to probe the relevance of the simple “tilted similar to Fig. 10 and presents the value of the growth rate as
shear” model at largen, we have plotted in Fig. 11, fan  a function ofk for m=+1 andm= —1 andA=0. At highKk,

FIG. 11. Growth rater of m=—-3 andm=+3 for S
=0.5 andA =0; “tilted shear” prediction(---).
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FIG. 12. Growth rater of m=—1 (a) andm=+1 (b) for variousSandA=0.

for m= — 1, expressiorni28) predicts that an increase in swirl turbations are continuously injected into the flow at the inle
is destabilizing folS>—m/2 (S>0.5 presentlyand stabiliz- and one may wonder what will be their fate. Furthermore
ing for S<0.5. Indeed, in Fig. 1), at largek, the curve for  control of the flow, in particular jet flow, is often achieved by
S=0.1 andS=0.8 are above the one f&@=0.4. At smallk,  acoustic means, with acoustic waves being transformed ir
the swirl has a stabilizing effect. We must distinguish be-vortical perturbations at the nozzle where the receptivity |
tween three swirl ranges. We see in Fig(dZhe existence the highest. The response to these perturbations depends
of a threshold valu&_, determined numerically as 0.95. For how they are advected and amplified by the flow
Se[0;S_4], the flow is unstable for ak, and increasing  Classically® this leads to the distinction between absolut
in this range induces a stabilization for ldw In a second  and convective instability and readers are referred to Huet
regime, Se[S_;,;v2], the flow becomes neutral for wave and Monkewit3® for details.

numberskin [k, ,k*P], wherek™, decreases with increas- If the flow is convective(C), its response to a forcing
ing swirl and k*7 is close to 0.5. In the !E}St regim& il be given by spatial theory, which uses solutions of th
=Vv2, the complete stabilization occurs froki"=0 to k*}  gispersion relation for real andk complex and associates
~0.53. The asymptotic calculation pushed at second order iyith them an upstream or downstream energy propagatiot
thg Iirr)i_t k—O0 (which is presented in Appendix)EpredictS If the flow is absolute(A), self-sustained oscillations
this critical value ofS=v2, beyond which small wave num- i oyercome the response to small forcing amplitudes ar
bersk are stabilized, and links this effect to the role of the knowing the response to a forcing requires the solution of
core. full global problem, including inlet and outlet conditions.

| Fli(gL_Jtre hle) ifhsin;r:Iar o |F'§ 1t2?)).'|.bm ft(;]r n;lz +1 At_ . This study is a continuation of the study by LCH on the
argex, it shows that the swirl destabilizes the Tlow, again I g hyine vortex with plug flow and also of the studies o

agreement with the asymptotic result, since flopositive 4o o al,?® Delbendeet al,?® and Yin et al?’ on the

both the azimuthal shear and the centrifugal instability ares.ichelor vortex. and finally of Lim and Redekdpmnd
destabilizing. At smalk, we define from systematic numeri- |\ i o\0 o 21%0 o the Caflish vortex. Furthermore, Lim

cal computations three swirl regimes as we did before: the
behavior is similar to then=—1 case, a first regim® and Redekop} have already addressed the A/C nature ¢

<S. ,~1.35 where all wave numbeksare unstable, a sec- the instability of the screened Rankine vortex but have r

ond regimeS, ;< S<v2, where a neutral regiofk™, k" stricted themsel\(es to axisymmetric p(.erturbations-z(O).
g 1 giorkery K] From these studies, the general trend is that rotation favc

of thek axis appears, and a third regiBe-v2, where small h t absolute | bility of both wak d b
wave numbers are entirely stabilized. Asymptotic expresin€ onset of absolute instability of both wakes and jets, |
that the selection of the azimuthal wave number of the fir

sions fork—0, derived in Appendix B, again predict the e
existence of a critical swits=v2 beyond which small wave Mode to become absolute as the swirl is increased depe
numbers are entirely stabilized. on the detail of the velocity profiles considered. Results ¢
the present analysis will confirm this trend.
The procedure that we use is based on the determinati
V. CONVECTIVE/ABSOLUTE INSTABILITY of saddle points of the dispersion relation by looking &
TRANSITION pinching points of the generalized spatial branches as c
The spatiotemporal study developed next analyzes thecribed in LCH. Let us simply recall that the transition be
effect of the centrifugal force and azimuthal shear on théween convective and absolute instability is determined, f
propagation of the instabilities, whereas temporal instabilitygiven S and m, by varying a until the Briggs—Bers
previously discussed addresses solely their effect on theriteriunt’ is met. This determines two critical advection pa
growth rate. In swirling jets or swirling flows in pipes, per- rametersal(S), as a function ofS andm, and at each of
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FIG. 13. Domains of absolute and convective instability with respect to th
advection parametex and the swirlS Each curve corresponds to the limit
of the absolute instability domain for a particular (the absolute region
being on the right of each curie

®FIG. 14. Domains of absolute and convective instability with respect to
critical advection parametexr and swirl S whenk is restricted to the half-
planek,>0.

modes(the modem= —2 is plotted as an example in Fig.

these transitions, a real frequenay, , called the absolute 13) become less absolutely unstable. WIgn0.43, them
frequency, and a complex wave numbey +iky are se- =+2 mode becomes “more absolute” than tine=+1
lected. bending mode and this point is marked by a circle in Fig. 13

By convention, the first transition that occurs far  As soon ass>0.455, coflowing jetsd<—1) become abso-
<—1/2 is called the wake A/C transition since profiles with lutely unstable to then=+2 wave. The transitional azi-
such a mean flow resemble wake profiles; the second transinuthal wave number remains equal to=+2 until S
tion for a>—1/2 is called the jet transition. =0.555. It takes increasingly higher positive integer values

For jets with swirlS each modem induces an A/C tran- m=+2, m=+3, etc., before it eventually reaches= +8
sition at the critical valuea]'(S), and the azimuthal wave for S>1.55 which remains the transitional modee., the
numberm associated with the largeaf’ is called the transi- one being “the most absolutg¢for all S>1.55. These results
tional m, with its associateda('(S) called the transitional clearly demonstrate the role of swirl in promoting the abso-
advection parameta.(S). Whena(S) is negative, a cer- lute instability of positive helical modes in agreement with
tain amount of counterflow is necessary to trigger an abscthe Loiseleuxet al° study of the Caflish vortex, where the
lute instability, whereas whes.(S) is positive the instability  transitional modes were positive for the wake. But contrary
is absolute, even with a cofloa if a<a.. The value ofS  to their findings this effect is in our case attributed not only
such thata,(S)=0 is of particular importance as it corre- to centrifugal instabilities but also to the azimuthal shear
sponds to the absolute instability transition for a rotating jetThis is in contrast to the studies of the Rankine vortex by
with no outer flow. LCH and the studies of the Batchelor vortex by Delbende

Wakes are described in the same manner, but the valugt al?® and Olendraret al,?® all showing that the negative
of a corresponding to zero outer flow &=—1, a.=—1 helical modes and, in particular, te= —1 mode are the
corresponding to wakes with coflow, araj<—1 corre- critical ones.
sponding to wakes with counterflow. From now on, we focus
on the completely screened vortex, settibg 0. B. Convective /absolute transition in jets

Figure 14 considers only convective/absolute transition:
with ko, >0, along the line of Lim and RedekoppFigure

For wakes, the domains of absolute and convective ini4 is similar to Fig. 13, i.e.a(S) is plotted versusS for
stability are shown in Fig. 13, whera](S) is plotted for m=0,1,2,...,10 and 50, with all largen behaving accord-
m=0, m=1,...,.8 andm=—2. In the absence of swirl§  ingly. Thereforem=50 is labeledn= +« in Fig. 14. Nega-
=0), the plug-flow coflowing wake is known to be convec- tive helical modes have been found to be less absolutel
tively unstable for allm| (note that without swirl, there is no unstable than their positive counterparts and are, for the sal
difference betweem and —m since no particular axial di- of clarity, not plotted here. Fo8=0, the plug-flow jet with-
rection is singled out by the base flpwlhe helical mode out outer flow is convectively unstable for ath. A certain
|m|=1 first becomes absolutely unstable, but still a counteramount of counterflow is necessary to trigger absolute inste
flow is needed. ASis increased, the amount of counterflow bility, and the transitional mode im=0 (see LCH for de-
1+a needed for absolute instability decreases very signifitails). As soon as we introduce swirl, the amount of counter-
cantly for positive helical modes. By contrast, negativeflow needed for transition for aln diminishes, except for

A. Convective /absolute transitions in wakes
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m=0. For S=0.7, all modesm=1 have the same critical trifugal effects. It is further increased by the azimuthal sheat
advection parametea.=—0.2. This particular point is whenm is positive or reduced by the azimuthal shear when
marked by a circle in Fig. 14. F®>0.7, the most unstable mis negative, in accordance with the “tilted shear” model.
mode becomem= +, which is the first to produce a tran- For bending modesnf=*1), an increase in swirl sta-
sition at zero outer flow foiS=1.15. Note that then=0 bilizes them= =1 modes at smalk due to the interaction
transition curve is terminated whe$= 2.1 is reached since with the core, but a destabilizing action at laigeinder the
the saddle point enters the ldff, plane. action of azimuthal shear and centrifugal instability is ob-
The caseky, =0 corresponds to an eigenfunction that served. Finally, the bulging moda=0 mode is destabilized
does not vanish at infinity and cannot be normalized propbhoth by the centrifugal instability and the axial shear for
erly. As we further increas& we have to use an analytic all k.
continuation of the dispersion relation to track this saddle  The question of interpreting the vortex breakdown by an
point. The analytic continuation is obtained from dispersionA/C transition can be addressed in two distinct ways. The
relation (21) by replacingsk (s is the sign of the real part of first one relates the appearance of structures in the stagnatic
k) by k. If it is possible to track the saddle point into the left zone to the absolute nature of the wake behind the stagnatic
Kor plane, such a saddle point will produce nonphysicalpoint. In this approach, the consideration of a Batchelor vor-
eigenfunctiongi.e., nonvanishing as— =) of the impulse-  tex seems relevant and recent studies of &l 2’ showed
response problem associated with the dispersion relé®n  good agreement with experimental measurements. Followin:
(see Huerre and Monkewitd. Following Huerre and the second route, LCH tried to explain the appearance o
MonkewitzZ?® or Lim and Redekopf} we reject these un- vortex breakdown by an A/C transition in the swirling jet as
physical saddle points. We believe that the above problemsa natural generalization of the concept of a subcritical/
result from the discontinuous and singular base velocity prosupercritical state that was introduced by Sqtiirand
files. As was pointed out by LCH, these types of velocity Benjamin?® In our context, we believe that singularities in
profiles are not causal, since disturbances with infinitelthe modified Rankine vortex prevent any definite conclu-
small wavelengths are infinitely amplified. The prerequisitessions, sincem=< is the first mode to become absolutely
for applying the Briggs—Beré criterion are therefore not unstable. Numerical simulations of a realistic profile using
satisfied(no contour in thew plane lies above the temporal the technique of Delbendst al?® are in progress to circum-
instability branch. Only numerical calculations on causal vent this unphysical property. In contrast, no difficulties have
profiles could clarify this point; work in this direction is been encountered concerning the determination of saddl
currently in progress. points on the wake side and it has been shown that azimuth:
shear and centrifugal instability promote positive helical
modes at the onset of absolute instability, in both wakes ant
jets. Helical structures are observed in the swirling jets be-
The temporal instability properties of the screened Rankfore breakdown(see Billantet al)'® and in the wake of the
ine vortex with plug flow have been determined in greatvortex breakdown.
detail. This base flow, in comparison to other singular swirl-  The essential question that should be addressed now |
ing jet profiles, combines in the same model the four physithe generality of results obtained on model profiles and theil
cal mechanisms that actually come into play in real flows: aapplicability to experimental profiles where sharp gradients
core in solid body rotation guiding inertial waves, axial andhave been replaced by discontinuities. Although in some
azimuthal shear and centrifugal effects. This model is notlassical cases, like the axisymmetric jets and wikeee
fully realistic yet, since it lacks accounting for a finite shearuse of discontinuous profiles was successful in predicting the
layer thickness. Although we hope to address the effect of aealistic absolute/convective thresholds, it is also known tha
finite shear layer thickness rigorously in forthcoming contri-a change in the shape of the profiles may radically alter the
butions, it will be discussed at the end of the present sectioabsolute/convective nature of the instabilities, as exemplifiec
based on physical arguments. The generality of the presebly the mixing layer(Huerre and Monkewit?) when com-
results will then be addressed. Despite the above-mentiongehring results for the tangent hyperbolic profiles and the bro.
limitations, the screened Rankine model is worth being conken line profiles(BaIsé‘Z).
sidered since the analytical derivations allow a precise analy- Temporal stability studies are believed to be more robusi
sis of the stabilizing and destabilizing effects. The stabilizingthan the spatiotemporal ones to modifications of the velocity
role of the core is, in particular, identified and we propose amprofiles. The influence of a finite but small shear layer thick-
underlying physical mechanism that may also account for theess on the temporal stability properties of mixing layers,
results of LCH. Furthermore, at smad] for helical modes jets, and wakes introduces a cut-off wave number scaling
with |m|=2, the centrifugal destabilizing effect is entirely like the inverse of the shear-layer thickness on the instability
balanced by the core stabilization, anckatO the instability  curves obtained considering discontinuous profiles. In circu:
is entirely due to the azimuthal shear, as already noticed blar geometry, the wave number is two-dimensional and the
Carton and McWilliam$. At small k, the next order in the cut-off should be based on the square of the total wave num
growth rate takes into account the axial shear and induces zer k?+ m?. At small k and m, results of the present study
decrease whem is negative and an increase whans posi-  should therefore extrapolate to realistic velocity profiles. In
tive as predicted by the “tilted shear” estimat®). At large  particular, the stabilizing role of the core fon==*=1 and
k, the instability is due to the axial shear enhanced by censmall k due to the coupling with Kelvin waves described in

VI. DISCUSSION AND CONCLUSIONS
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the present model should be generic to flows with Kelvin—r. Although the present model captures well the K-H mode
Helmholtz instability and a rotating core. It is also active inand the physical effect of a finite shear layer can be ac-
the LCH model but not in the Caflish mod&because of the counted for by heuristic arguments, it, however, totally
absence of a core in solid body rotation. The destabilizatiomisses the generalized centrifugal modes that destabilize
of azimuthal modes close to=0 due to the azimuthal shear large negative spiral modes wi= —k/m=cost whenm
is also coherent with results for the 2-D stability of the real-—oo.
istic vortices of Carton and McWillianfsor Carnevale and It is interesting to put our temporal stability results in
Kloosterziel> who have indeed shown that, as the azimuthaperspective with the spatial ones of Lu and L& hese
shear thickness becomes thinner, the most unstable azimuthalthors have studied a smooth profile that consists of a jet
wave number becomes larger. For the 2-D flow, the moswith strong coflow associated to an annular swirling flow.
unstable mode is two dimensional and the cutoff imposed byhe presence of the coflow renders the flow hyperconvective
the finite thickness of the azimuthal shear stabilizes the higland spatial and temporal stability results become very simi-
azimuthal wave numbers. The novelty here is that when a lar. They can be deduced easily one from each other througt
swirling jet is considered, the shear layer is tilted. For modeshe Gaster transformatidfi.Lu and Lelé*“®have found that
with Vk?+m? large but smaller than the cutoffd/the in-  the unstable modes on these profiles separate into two fami
verse of the shear layer thickness, the present model shoiss: the so-called K—H modes due to shear instability and
that the total shear dominates and the most unstable modestime centrifugal modes. They have also shown that both type
this range correspond to positive spirals, since the total wavef instabilities can reach growth rates with the same order of
number is then aligned with the local shear. When 1magnitude. Our results obtained on a discontinuous mode!
<Jk?*+m?<1/8, the present study shows that the centrifu-vortex could serve as a guideline to understand the mode
gal effect varies likeS? and is small compared to the shear selection among the K—H modes with differemt if one
effect that varies lik&k+mS keeps in mind the modifications brought by nonzero shear
Whenmiis larger or of order Wthe present model stops layer thicknesses. The present model, however, fails to give
to be valid and one should refer to Ludwi@nd Leibovich ~ any insight on the dynamics of generalized centrifugal
and Stewartsadhi to understand the stability properties. Thesemodes described by the asymptotic theory of Leibovich and
authors have revealed a general physical mechanism actiiewartsort,
in a broad variety of swirling jets and capable of destabiliz-  From these physical considerations we conclude that
ing helical modes of high negative azimuthal wave numberssome caution should be taken with the spatio-temporal
Ludwiegd'® considered perturbations localized at a prescribedinalysis of the discontinuous model. When absolute transi-
radius and explained the underlying physical reason for théion occurs for a finitem and finite k we may reasonably
instability that should be interpreted as a centrifugal instabil-hope that a similar transition will occur for realistic continu-
ity in a sloped reference frame aligned with the direction ofous profiles but when transition occurs through-« as for
vanishing strain. Leibovich and Stewartdbmperformed a the jet at high swirl, we know that the results will not be
rigorous asymptotic expansion at lalg@ndm with m/k of ~ robust since the introduction of finite shear will stabilize this
order one and showed that, at any given radigs it is  mode and destabilize through general centrifugal instability
possible to construct an eigenmode centered irwith a  azimuthal modes with large negative wave numiéhat are
maximum growth rate, at leading order inyih, reached for completely absent in the present model.
the (k, m wave number pairs such that
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whereD stands fod/dr and 8= —k/m is the helix angle. At
any radiusrg, it is then possible to lek andm both go t0  AppENDIX A: ASYMPTOTIC STABILITY ANALYSIS
infinity with 8= —k/m fixed and determined by Eq38). FoR m=0 and k<1
According to Leibovich and Stewartsdh,the eigenmode

gets more and more localizedratand the growth rate-(r ) Our goal in this appendix is to derive the asymptotic
then asymptotes a constant, expansion of the bulging mode=0 atk<1. Assumingg of
- , , order unity, we getw’~4S%?/%. Using the Bessel func-
0'2(r ):ZUH(rDUH_U())(Uolr —(DUy»“=(DU,) )‘ tion expansion,
0 (rDU ,—U,)?+r%(DU,)? | )
fo . Ko(k) 1
(39 lim k =15 T0(1), (A1)

o Ko(k) In(k)
This function reaches a maximum,,,, at ro=r., thereby
corresponding to a helix angfgof the wave vector given by the dispersion relation, E¢21), becomes
(38) evaluated at . JNB)

As can be seen from expressi@8), these generalized =
centrifugal modes are not captured by models with discon- Jo(B)  (1=A%(B)
tinuous velocity profiles since they require, among otherPlotting of the isocontours of RE(B)] and InfF(B)] in the
things,DU,=dU,/dr to be nonzero at a particular location complex plane, one verifies that the equat®fB)=0 has

=F(B)=0. (A2)
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100 - - - , ture of the roots. Ifp>0, there are two complex-conjugate
solutions, ifp<<0, all roots are real. For expressiéB2), p
equals to third order itk,

80 .
3 s'2-9?) 2 mS(S?—4) 340K B3
P="%16 KT e KTOKD B3)
sor | One can easily verify that at sm&l p(k) is positive for
> S<v2 and negative fo6>v2, independently of the sign of
40t i m=*+1. When the bending modes are unstable at siall
i.e., whenS<v2, their frequency and growth rate is given by
1 S
20t . wo1~| at+ = |k+a=k?
2 8
0 : : : : S
0 0.2 0.4 0.6 08 1 1-—
A 2 S
+i K+ a k. (B4)
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