
September 2015

EPL, 111 (2015) 56006 www.epljournal.org
doi: 10.1209/0295-5075/111/56006

Capillary stretching of fibers
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PACS 68.03.Cd – Surface tension and related phenomena
PACS 46.25.-y – Static elasticity
PACS 68.35.Np – Adhesion

Abstract – We study the interaction of a finite volume of liquid with two parallel thin flexible
fibers. A tension along the fibers is imposed and may be varied. We report two morphologies, i.e.
two types of wet adhesion: a weak capillary adhesion, where a liquid drop bridges the fibers, and a
strong elastocapillary adhesion where the liquid is spread between two collapsed fibers. We show
that geometry, capillarity and stretching are the key parameters at play. We describe the collapse
and detachment of the fibers as a function of two nondimensional parameters, arising from the
geometry of the system and a balance between capillary and stretching energies. In addition,
we show that the morphology, thus the capillary adhesion, can be controlled by changing the
tension within the fibers.

editor’s  choice Copyright c© EPLA, 2015

At small scales, surface tension produces large adhesion
forces. A classical example of such capillary adhesion is
the adhesion of two wet spheres. When the spheres are
elastic, their deformation increases the contact area and
thus the adhesion force [1]. Another example of capillary
adhesion enhanced by elasticity consists in a drop bridg-
ing the gap between two soft substrates. In that case, sur-
face tension deforms the substrates, reducing the height
gap, which leads to an increase in Laplace pressure, thus
a magnified adhesion [2]. These elastic deformations me-
diated by surface tension fall into a category of problems
called elastocapillarity [3]. Capillary forces cause elastic
deformations that occur through bending and/or stretch-
ing. For example capillary-bending coupling is responsible
for the wrapping of a thin sheet around a drop [4] or the
aggregation of wet fibers [5–7]. On the other hand, it is a
capillary-stretching balance that controls the wrinkles ap-
pearing when a drop is deposited on a thin floating sheet
or when a sheet is deposited on a drop [8–10]. Mastrangelo
and Hsu have considered both bending and stretching to
describe the surface-tension–mediated collapse of doubly
clamped beams in the context of MEMS [11–13]. However,
the elastocapillary adhesion of thin elongated objects in
situations where stretching dominates has been overlooked
despite its relevance in the wetting of fibrous media.

As a prototype to study such stretching-capillary sys-
tems, we consider the simple case of clamped thin elon-
gated fibers (radius r, length L, such that β = r/L ! 1)
separated by a distance 2d and wetted by a liquid as
shown in fig. 1(a). When the fibers are rigid, the shape
of the liquid between them is solely governed by a mini-
mization of surface energy with a single control parameter
d/r; below a critical distance dm/r, the liquid sponta-
neously spreads into a long column [14,15]. In the general
case of deformable fibers (of Young’s modulus E), there
is also an elastic energy cost. The elastic energy con-
sists in a combination of bending Eb ≈ EId2/L3, where
I = πr4/4 is the second moment of area, and stretching
Es ≈ Td2/L, where T = Eεπr2 is the tension force due to
a pre-strain ε within the fibers. This pre-strain is much
greater than the typical deformation (d/L)2, thus the ten-
sion remains constant when the fibers are deformed. In our
system of large aspect ratio fibers, most of the energetic
cost comes from stretching and bending can be neglected
(Es/Eb = 4ε(L/r)2 # 1).

The setup is sketched in fig. 1(a). We mold elastomeric
fibers (polyvinylsiloxane, Zhermack Elite Double) of var-
ious Young’s moduli E, lengths L and radii r. A system
consisting of four micro-controlled platforms enables to
adjust the strain ε within the fibers and the inter-fiber
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Fig. 1: (Colour on-line) (a) Schematic of the setup. (b) Evo-
lution of a drop on two parallel flexible fibers (r = 0.2mm) as
the distance between the fibers is varied and (c) as the ten-
sion of both fibers is varied. PVS fibers of radius r = 0.3 mm,
L = 5 cm, E = 0.9 MPa, drop volume V = 3 µL.

distance 2d. Each fiber is attached at its ends on two
independent platforms to control the strain along the
x-axis. Both fibers are then mounted individually on an-
other platform to adjust the inter-fiber distance incremen-
tally along the y-axis. The fibers are kept parallel and at
the same height. A drop of mineral oil (surface tension
γ = 30 mN/m, contact angle θeq = 5◦) of volume V is
placed between the fibers. We know that on rigid fibers,
the critical spreading distance dm/r is independent of the
volume provided that V/r3 < 700 [14]. In our experi-
ments, we thus keep the volume constant and V = 3 µL,
i.e. V/r3 < 400.

A first set of experiments consists in varying the dis-
tance d while keeping L and ε constant (fig. 1(b)). As
the distance d decreases, the length of the drop slightly
increases. At a critical inter-fiber distance, the fibers are
pulled together and undergo a strong deformation result-
ing in a rapid spreading of the liquid. In the center,
the fibers are straight and almost in contact over a dis-
tance approximatively corresponding to the wetted length.
The deformation is concentrated in the region between
the clamped edges and the menisci. We call this rapid
change of shape a “zipping” transition. By increasing d

incrementally, we pull the fibers apart along the y-axis
(fig. 1(b)). The straight portion of the fibers decreases.
At a critical distance, the fibers “unzip”.

A second set of experiments consists in keeping the
inter-fiber distance constant and pulling the fibers along
the x-axis, thus varying both L and ε (fig. 1(c)). Zip-
ping and unzipping transitions are obtained by controlling
the tension applied to the fibers: when the tension is de-
creased, the drop spreads and zips the fibers, while when
the tension is increased, the fibers separate.

For both types of experiments we measure the wetted
length &, i.e. an estimate of the extent of the deformation,
as d or ε is varied. For two typical experiments we report
its evolution in fig. 2(a). All lengths are made nondimen-
sional with r. The data indeed show that the liquid adopts
either the shape of a short drop (&/r ∼ 20) or of a long
zipped column (&/r ∼ 150). Both curves display the same
reversible hysteretic behavior: a sudden collapse of the
fibers at a minimum value of d/r or ε and a rapid de-
tachment at a maximum value of the parameters. Below
the minimal value i) the fibers are always zipped, above
the maximal value ii) only drops prevail and thus for in-
termediate values iii) both states coexist. Two different
actions, stretching the fibers axially or pulling them apart
transversally, lead to analogous results.

The liquid/fibers interaction depends on all the physical
parameters of the system: L, d, r, E, ε and γ. In order to
construct a phase diagram, we fix the fiber length. This
allows us to identify two dimensionless parameters, a ge-
ometric parameter d/r and a capillary-stretching number
Ncs = Eεr/γ. This parameter is reminiscent of the char-
acteristic dimensionless number Eh/γ found for stretched
plates of thickness h [16,17]; in our case the typical length
is the fiber radius r and the Young modulus is replaced by
an effective modulus Eε that does not only depend on the
material properties but can also be tuned by adjusting the
tension. The resulting phase diagram is shown in fig. 2(b).
Five regions emerge.

The region where only drops exist is labeled D. For
large values of d/r (hatched region N) the fibers are too
far apart for any capillary bridge to bind them. For small
values of d/r the fibers are always zipped (region Z1). We
find an intermediate region where the drop and the zipped
fibers configurations are possible. This coexistence region,
labeled DZ, increases rapidly with decreasing tension. Fi-
nally, for small values of Ncs a second zipped-fibers region,
labeled Z2, appears for large values of d/r, above the limit
of capillary-bridge breakup.

In the region Z2, the fibers can sustain large defor-
mations, i.e. a large inter-fiber distance d is required
to pull them apart (fig. 2(c)). After unzipping, no cap-
illary bridge remains; the reversibility is lost. In this
case the hysteretic cycle is broken (fig. 2(d)): the re-
gion is only accessible through the DZ region while in a
zipped state. The fiber flexibility extends capillary adhe-
sion to inter-fiber distances impossible to reach with rigid
fibers.
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Fig. 2: (Colour on-line) (a) Evolution of the length of a drop !/r when the inter-fiber distance d/r (!) or the tension ε (•) is
varied. The arrows indicate the direction of the hysteretic loop and the dashed lines are guides for the eyes. PVS fibers of radius
r = 0.2mm, L = 5 cm, E = 0.9 MPa, drop volume V = 3 µL. (b) Morphology diagram in the parameter space (d/r, Eεr/γ):
drops (open symbols) or columns (filled symbols) for r = 0.2 and 0.3 mm, L = 5 cm, E = 0.5 and 0.9 MPa. There are five
regions: columns only (Z1 and Z2), drops only (D), coexistence of states (DZ) and no liquid bridge (grey hatched region).
(c) Liquid morphology in the Z2 region as d/r increases (Eεr/γ = 172.5, d/r > 6). Scale bar: 5mm. (d) Evolution of the
wetted length !/r as a function of the distance d/r for Eεr/γ = 172.5 (r = 0.2 mm, E = 0.9 MPa, ε = 2.5% and L = 5 cm).

Finally, experiments show that all boundaries are inde-
pendent of the drop volume, except for the boundary of
the N region, which is given by d ≈ 0.9V 1/3 since in this
case the drop is nearly spherical.

We can thus distinguish two types of adhesion: a weak
capillary adhesion (i.e. drops D) and a strong elastocap-
illary adhesion (i.e. zipped columns Z). We first focus
on the unzipping of the fibers, i.e. the upper boundary of
the elastocapillary adhesion region DZ and Z2 (DZ → D
and Z2 → N). We use a simplified model to describe the
zipped fibers (inset of fig. 3): the deformation of the fibers
is confined to the dry region of length Lcs while the wet
portion is considered undeformed. In this flat region the
fibers are coalesced and the liquid exerts a capillary force
Fγ ∼ γ&. The total energy reads

Etotal = Ee + Eγ ∼ Eεπr2 d2

Lcs
− γr(L − 2Lcs). (1)

The equilibrium configuration is given by a minimiza-
tion of the total energy (dEtotal/dLcs = 0), which yields
for the dry length

Lcs ∼ d
√

Ncs. (2)

As observed experimentally, this relation demonstrates
that Lcs increases linearly with the inter-fiber distance
and with the increasing tension (fig. 2(a) and (d)). We
consider that detachment occurs when Lcs reaches L/2.
This condition can be written as

d

L
∼ 1√

Ncs
. (3)

Ncs represents the intrinsic material properties (size r,
effective elasticity Eε, surface tension γ); it quantifies the

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0 500 1000 1500 2000 2500

Lcs

d

Fig. 3: (Colour on-line) Detachment of the column, for L =
4 cm, r = 0.2 mm, E = 0.4 MPa (!) and E = 0.9MPa (•);
E = 0.9 MPa, L = 5 cm, r = 0.2 mm (") and r = 0.3 mm (#);
obtained by changing the distance d and by varying the
tension).

amount of deformation that can be sustained by capillary
forces. The aspect ratio d/L corresponds to the imposed
geometry, thus describes the deformation. We perform ex-
periments either by separating the fibers along the y-axis
or by pulling on the fibers along the x-axis, for several
fiber moduli E, lengths L and radii r, thus varying both
Ncs and d̄ = d/L. The points of detachment are reported
in fig. 3. The data collapse onto a single curve given by
eq. (3) with a prefactor 0.3. This constant prefactor con-
firms that detachment occurs when Lcs is equal to a fixed
fraction of L. However this fraction (0.3) is slightly smaller
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than 1/2 probably due to a dynamical process (see supple-
mentary material movie1 unzippingV2.mov1). Below the
curve, the capillary forces are sufficient to keep the fibers
together attached at their center. At large Ncs, capillary
forces are weak and fibers are rigid-like, so that only small
deformations can be sustained. At large aspect ratios d̄,
strong capillary forces (or highly flexible fibers) are neces-
sary to keep the fibers attached.

We now study the zipping transition, i.e. the boundary
of the Z1 region in fig. 2(b). This boundary corresponds to
d/r ( dm/r =

√
2 and is only slightly dependent on Ncs.

This transition is due to the spreading of the drop into a
column at a critical d/r as in the rigid case [14]. However,
in this case, the flexibility induces the collapse of the fibers
resulting in the zipped state. To understand this zipping,
we look at the dynamics presented in fig. 4(a). Experi-
mentally, we vary either d or Ncs incrementally until we
reach the boundary Z1. At t = 0, d or Ncs is now fixed and
we record the spontaneous dynamics of the drop (see sup-
plementary material movie2 zippingV2.mov2). The drop
starts to spread slowly while the distance between the
fibers at the center d0 remains nearly constant. A sudden
collapse of the fibers occurs and the liquid spontaneously
spreads in less than 10 s. Finally, the liquid continues
spreading until the equilibrium shape is reached. We can
distinguish two time scales: a slow capillary spreading and
a rapid elastic collapse. We note that at high Ncs, i.e. for
rigid-like fibers, the drop first spreads into a column while
the fibers remain unzipped; the zipping transition is then
similar, with a slow spreading of the column followed by a
rapid elastic collapse. The zipping process is a dynamical
one. Capillarity causes spreading of the liquid. During
this spreading, the capillary forces ∼ γ& increase with the
liquid length and the distance d0 decreases. We deter-
mine the onset of collapse by taking the inflection point
of the curve &(t) (fig. 4(a)). At this critical zipping time,
we measure the wetted length & = &zip and the interfiber
distance at the center d0 = dz . For a given radius dz is
approximatively constant and given by dz/r ≈ 0.6. Look-
ing at the shape of the column cross-section as described
by Princen [14,15] (fig. 4(b)), we notice that there is a
transition between a concave (R > 0) and convex (R < 0)
interface and a variation in the position of the contact line
(from α > π/2 to α < π/2) at d0/r = 0.57. This shape
transition is the onset of the rapid spreading of the liquid,
thus the fast collapse of the fibers.

The zipping therefore occurs when the force applied by
the liquid is large enough to bring the fibers together at
a distance dz/r ≈ 0.6. Assuming the capillary force is
equivalent to a point force applied at the center of the
fibers with a magnitude γ&, a force balance on the fiber
gives

2T sin φ = γ&, (4)

1Movie presenting the dynamics of two PVS fibers (E = 0.9MPa)
unzipping, r = 0.2mm, ε ≈ 0.1% and d/r = 30.

2Movie presenting the dynamics of two PVS fibers (E = 0.9MPa)
zipping, r = 0.2mm, ε ≈ 0.1% and d/r = 11.
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Fig. 4: (a) Evolution of the liquid length !(t) and the inter-fiber
distance at the center d0(t) at the zipping transition; L = 5 cm,
r = 0.3 mm, ε = 8%, E = 0.9 MPa. (b) Theoretical shape of
the cross-section of the column for d0/r = 0.86 (α = 2π/3,
R/r = 4.7), d0/r = π/2 − 1 " 0.57 (α = π/2, R/r = ∞), and
d0/r = 0.33 (α = π/3, R/r = −1.7). (c) Zipping transition
(open symbols: r = 0.2mm, filled symbols: r = 0.3 mm).

where T = T0 = Eεπr2 is the tension within the fiber
and φ is the angle of deformation (sketch in fig. 4(c)). At
zipping, φ ≈ 2(d − dz)/L, & = &zip and we find

&zip
d − dz

= 4πβNcs. (5)

We measure &zip for several fiber radii, lengths, various
strains, and by decreasing d/r (fig. 1(b)) or decreasing the
tension T (fig. 1(c)). We plot &zip/(d − dz) as a function
of 4πβNcs. The data collapse on a line of slope 1, in good
agreement with (5).

Like the unzipping transition, the dynamic zipping pro-
cess is rationalized with a combination of geometry (&/d)
and material properties (Ncs).

To summarize, the interaction of a liquid with thin
flexible fibers leads to a strong elastocapillary adhe-
sion. Geometry, capillarity and stretching are the key
parameters at play via the aspect ratio d/L (or d/&) and
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the capillary-stretching number Ncs = Eεr/γ. Collapse
or detachment can thus be controlled by varying the effec-
tive modulus Eε which is possible by applying an external
strain. This external action may then promote adhesion
or limit failure, and could be extended to tune drying
rate [18] and to optimize liquid capture on fiber arrays.
Moreover, this experiment corresponds to a realistic model
system for constrained fibers as found in woven or en-
tangled fibrous media and could give new insights on the
wetting and shrinking of complex filters, membranes and
textiles [19].
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