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Straight lines, zigzag, parabolas (possibly truncated), circles and spirals are the main

curves which can be observed in football (in the European sense, soccer elsewhere).

They are, respectively, associated to heavy kick, knuckleball, lob and banana kicks. We

discuss their physical origin and determine their respective domain of existence.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The earliest traces of ball games date back 3400 years (Hill et al., 1998). These games are part of man evolution
(Blanchard, 2005) and one finds them over the different continents (Fig. 1): Tsu Chu in China, Kemari in Japan (Guttmann
and Thompson, 2001), Episkiros in Greece (Craig, 1961; Miller, 2006) and Pok a tok in South America (Hosler et al., 1988).

In its present form, the rules of football originate from October 26, 1863 (Murray, 1998): on that day, the London
schools and sports club sent representatives to the Freemason’s Tavern, where the Football Association was formed. Rugby
supporters left this association six years later when the modern rules forbidding the use of hands in the game were
definitely adopted.

Studies on the physics of soccer mainly involve mechanics and statistics. The latter started in 1968 with the seminal
work of Charles Reep1 and Brooke Benjamin on the Skill and Chance in Association Football (Reep and Benjamin, 1968). This
first study was then extended by the authors to other sports (Reep et al., 1971). Later, statistical physics tools were used to
approach other questions such as the distribution of goals (Malacarne and Mendes, 2000; Greenhough et al., 2002), the
statistics of ball touches (Mendes et al., 2007) or the final ranking in different championships (Ribeiro et al., 2010).

On the mechanical side, the studies can be split into two main categories: respectively dedicated to the ball trajectory
(Mehta, 1985; Carre et al., 2002; Dupeux et al., 2010) and to the impact on the ball (Bull Andersen et al., 1999; Asai et al.,
2002; Haddadin et al., 2009; Ishii et al., 2009).

In this paper, we discuss the different ball trajectories which can be observed in football and their associated physics.

2. Phase diagram

Three main forces are at play to determine the ball trajectory: the gravitational force FG, the forces associated to the surround-
ing fluid, that is, the drag FD and the lift FL. We propose to discuss football curves in the phase diagram (Dr¼FD/FG, SP¼FL/FD)
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Fig. 1. Ancient ball games: (a) Chinese Tsu Chu, (b) Japanese Kemari, (c) Greek Episkiros and (d) Maya Pok a Tok. (Sources: (a) http://www.

footballnetwork.org, (b) National Football Museum, Preston, UK, (c) National Archaeological Museum, Athens, (d) http://www.greatdreams.com).
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Fig. 2. Phase diagram for the different curves and associated football kicks. (Credits: Action Images, Press Association and Getty Images.)
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presented in Fig. 2. We call drag number, Dr¼FD/FG, the ratio between drag and weight and spin number, Sp¼FL/FD, the lift to
drag ratio. Using r for the air density, M and R for the ball mass and radius, U0 and o0 for its velocity and spin, these forces can
be expressed as FG¼Mg, FD ¼ 1=2rCDpR2U2

0 and FL ¼ 2CnrpR3o0U0. For Re � 105, CD � 0:4 (see Section 4) and Cn � 0:1
(Nathan, 2008). Hence we deduce the expressions for the drag and spin numbers:

Dr ¼
3CD

8

r
rb

U2
0

gR
and Sp ¼

Ro0

U0
: ð1Þ

The density rb which appears in Dr is the ball density. We dropped the factor 4Cn=CD � 1 in front of the spin number to
keep the same expression as the one usually used (Nathan, 2008; Hong et al., 2010). In soccer, the mass and the radius of
the ball are fixed, M¼450 g and R¼0.11 m and one deduces rb � 81 kg=m3. The drag number has been introduced as
a ratio of forces, but it can also be seen as a ratio of velocities, U0=U%, where U% �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8rbgR=3rCD

p
� 20 m=s. U%

is the characteristic speed above which aerodynamics dominates gravity. In the limit of small drag numbers, one expects
the classical gravitational parabola (Section 3). For large drag numbers, several trajectories can be observed, depending on
the spin number. Zigzag, straight lines and truncated parabola will appear for small Sp (Sections 4 and 5) while the spiral
will dominate at large spin numbers (Section 6).

http://www.footballnetwork.org
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Table 1
Heavy kick table.

Player U0 (m/s) Game

David Hirst 51 Sheffield/Arsenal (09/16/96)

David Beckham 44 Man Utd/Chelsea (02/22/97)

David Trezeguet 43 Monaco/Man Utd (03/19/98)

Richie Humphreys 42.8 Sheffield/Aston Villa (08/17/96)

Matt Le Tissier 39 Southampton/Newcastle (01/18/97)

Alan Shearer 38.3 Newcastle/Leicester (02/02/97)

Roberto Carlos 38.1 Brazil/France (06/03/97)

Fig. 3. Ball trajectories extracted from Hong et al. (2010): (a) straight line trajectory; (b) zigzag trajectory.
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3. Parabola

In the low velocity regime U05U% � 20 m=s, the ball does not feel the surrounding air and its trajectory is governed by
gravity: M dU=dt¼Mg . This equation leads to the classical parabola: y¼ tanax�gx2=2U2

0cos2a. In this expression, a stands
for the direction (defined from the horizontal). Such parabolic trajectories can be seen during a throw-in or a lob. The ball
rises up to a maximal height U0

2
/2g and then falls back at a distance L¼ ðU2

0=gÞsin2a from its origin.
We report in Table 1 the velocities of the strongest heavy kicks. They all stand above 38 m/s which implies that the

parabolae cannot be the only curve observed.

4. Straight lines and zigzags

At large velocities (U0bU%), we enter the aerodynamic domain. Without spin (spinning balls are considered in Section 6),
the ball mainly experiences the drag force FD. Typical ball trajectories obtained in this regime are presented in Fig. 3. These
trajectories are extracted from the work of Hong et al. (2010): the fluid around the ball in flight is visualized using a smoke
agent (titanium tetrachloride), which reveals a complex vortex dynamics. In soccer where 1 m=soU0o50 m=s, the
Reynolds number Re ¼ rU0R=Z lies in the range 104oReo5� 105. The vortex shedding from spheres at large Reynolds
number ð200oReo3� 106

Þ has been studied by Achenbach (1974) and we report in Fig. 4 his main conclusions: the sphere
wake is not axisymmetric (Fig. 4(a)) and the frequency f of vortex shedding slightly increases with the Reynolds number
(Fig. 4(b)). The non-axisymmetric wake implies that a sphere placed in a uniform flow is subjected to a side force at Reynolds
numbers between 200 and 106. The direction of the side force is random (Taneda, 1978) and for a non-spinning sphere, one
expects the mean trajectory to be close to a straight line as in Fig. 3(a).

Concerning the drag coefficient CD, Fig. 4(c) shows the classical result: as the Reynolds number is increased,
CD experiences a violent transition from a constant value 0.44 down to 0.2. The critical Reynolds number of the transition
depends on the roughness of the sphere: it is 3� 105 for a smooth sphere and 2� 105 for a soccer ball (Asai et al., 2007).
In all the present study, we do not discuss the effect of the transition on the ball trajectory and assume that its major
portion is achieved in the constant CD � 0:4 regime.

Due to the drag force, the ball velocity decreases along the trajectory. To quantify the decrease of the velocity, we
consider the equation of motion: M dU=dt¼�1=2rCDpR2UU . Integrating along the trajectory of the ball (parametrized by
its curvilinear coordinate) with the initial condition U(s¼0)¼U0, we obtain:

UðsÞ ¼U0e�s=L, ð2Þ

with

L¼ 8r
3CD

R with r ¼ 1þCM
r
rb

� �
rb

r
: ð3Þ

CM � 1=2 (Batchelor, 1967) stands for the added mass coefficient. The velocity thus decreases exponentially, with a
characteristic penetration length L, which is of the order of 50 m in football. The straight line will be observed if the length
of the trajectory is small compared to L.

Large sidewise deviations (several ball diameters) from this straight trajectory are, however, observed, as shown in
Fig. 3(b). In baseball, such zigzagging paths are known as knuckleball effect (Watts and Sawyer, 1974). Even if this effect is



Fig. 4. Vortex structure behind a sphere extracted from Achenbach (1974): (a) schematic representation of the vortex configuration in the wake of

spheres at 2Re¼103; (b) Strouhal number vs. Reynolds number for spheres; (c) drag coefficient of the smooth sphere as a function of Reynolds number.

The figure is extracted from Achenbach (1972). The solid black line and the soccer ball pictures with associated wakes are extracted from Asai et al.

(2007).
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Fig. 5. Trajectories of a ball: with gravity and aerodynamic (bold solid line) and with gravity only (dashed line). The initial velocity is U0¼45 m/s, the

initial angle is 451 and the characteristics of the ball are the ones of a soccer ball ðr ¼ 74,R¼ 11 cmÞ. For the third trajectory (thin solid line), only the

initial angle is changed to 371: with friction, 451 is no more the optimal angle to cover the longest length.
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not yet completely quantified, the published studies associate this knuckleball effect to a low spin of the ball. According to
Watts and Sawyer (1974), the seams play a crucial role in the coupling between spinning ball and the associated spinning
wake. For knuckleball in soccer such as the one presented in Fig. 3(b), Hong et al. (2010) reports a spin parameter of the
order of Ro0=U0 � 0:02.

5. Truncated parabola

At large velocities, U0bU%, we have just shown that the trajectory is a portion of a straight line or a zigzag, when
observed on a length scale smaller than L. We discuss here the case where both gravity and aerodynamic effects influence
the trajectory.

In this regime, the equation of motion is M dU=dt¼Mg�1=2rCDpR2UU , we compute it in the case of soccer (L¼ 54 m).
Fig. 5 shows the trajectory of the ball, compared to the theoretical parabola. We first observe that aerodynamics strongly
limits the trajectory of the ball and saturates at a value close to L. This explains why after a clearance the ball hardly passes
the midfield, and always seems to come vertically on the players.

Another noticeable effect of the aerodynamic friction is the optimal angle to reach the longest distance. As shown in Fig. 5, it
is smaller than 451 (around 371 in this example), the optimal angle with the parabola. Indeed, the horizontal velocity decreasing,
there is a balance between going high (not to fall too quickly) without losing too much energy in the vertical motion.

6. Spiral

In the previous section, we saw how gravity can bend the trajectory once U becomes smaller than U%. Without gravity
(UbU%), we now show that the trajectory of a spinning ball is a spiral that might be observed in some special free kicks.
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Fig. 6. Multi-pose image showing the trajectory of a spinning ball. The time step between successive ball locations is Dt¼ 10 ms. (Taken from Dupeux

et al. (2010).)

Fig. 7. Effect of the spin on the trajectory of a sphere (density rb) after impact in water: U0¼20 m/s, R¼2.4 mm, rb ¼ 920 kg=m3 ,o0 ¼ 1740 rad=s,

Dt¼ 3:75 ms. (Taken from Dupeux et al. (2010).)
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Fig. 8. (a) Trajectory of a ball (radius R¼3.5 mm, density rb ¼ 920 kg=m3Þ impacting water with a velocity U0¼27 m/s, a spin o0 ¼ 1000 rad=s and an

inclination angle y0 ¼ 703 . The time step between two data points is Dt¼ 384 ms. (b) Evolution of the corresponding velocity as a function of the

curvilinear coordinate s in a semi-log plot. (c) Time variation of the corresponding rotation speed o of the ball. (Taken from Dupeux et al. (2010).)
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This spiral is presented in Fig. 6. In order to achieve this low gravity limit, we use isodensity spinning spheres in water.
The detailed study of the spiral is reported in Dupeux et al. (2010) and we just recall its main properties.
6.1. Experimental facts

Qualitatively, the effect of a positive spin (anti-clockwise) is illustrated in the chronophotography in Fig. 7. The ball gets
deviated from a straight line and the trajectory is bent (the ball can even come out of the bath, in Fig. 7). More
quantitatively, we show in Fig. 8(a) the trajectory of a polypropylene ball (rb=r¼ 0:92) of radius R¼3.5 mm thrown in
water at a velocity U0¼27 m/s, with a spin rate o0 ¼ 1000 rad=s, and an impact angle y0 ¼ 703 (defined from the vertical).
In this trajectory, the constant time step between two data points is Dt¼ 384 ms. Clearly, the velocity of the ball decreases
as it moves through water (Fig. 8(a)). The evolution of the ball velocity is reported in Fig. 8(b), as a function of the
curvilinear coordinate s (s¼0 at impact). The semi-log presentation stresses that the velocity decreases exponentially with
s (Eq. (2)). The characteristic length for the decrease is 5.5 cm. Despite a strong variation of the velocity, the spin rate o
remains almost constant as the ball moves through water, as demonstrated in Fig. 8(c). This difference between the U- and
the o-variation is discussed in the following section, and shown to be the key fact to account for the spiral trajectory.
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6.2. Model

The motion of the sphere is described in the Serret–Frenet coordinate system ðt ,nÞ introduced in Fig. 6. We first focus on
the direction t . As shown in the Section 5, the velocity of the ball decreases exponentially in water (Eq. (2)), with a
characteristic penetration length L� 7rR� 10R. This behavior agrees with the results displayed in Fig. 8(b).

Along n, the ball is subjected to a lift force FL ¼ rGURCn resulting from the circulation G¼ 2pR2o. In our experiment
Re� 104 and the value of Cn is close to 0.13 (Nathan, 2008). The equation of motion leads to the curvature of the
trajectory:

dy
ds

� �
¼

3

2

Cn

r
o
U
: ð4Þ

6.3. The ideal spiral

The next step in the derivation of the ball trajectory is to assume that the circulation G remains (almost) constant
during the motion, as suggested by Fig. 8(c). The actual variation of the spin rate is studied by Dupeux et al. (2010).
For o�o0, the curvature of the trajectory scales like dy=ds�o0=U �o0=U0es=L. The deviation of the ball from its initial
orientation y0 thus increases exponentially with the curvilinear coordinate s, which defines the spinning ball ideal spiral.
The characteristic length Lspiral for which the spiral coils up can be approximated to Llnð1þ1=SpÞ. Without spin (Sp¼0), the
spiral is not observed (Lspiral-1). In the range of spin numbers we find in football (Spt0:2), the spiral is observed at a
distance from the impact close to L. We compare in Fig. 9(a) the observed trajectory (’) to Eq. (4) (solid line). The
theoretical prediction is in close agreement with the experimental path up to the point where the ball escapes from the
bath, whose surface is defined by y¼0.

6.4. Shots in soccer

The structure of drag and lift forces obtained in water is similar to the ones obtained in air (Dupeux et al., 2010).
The above model can thus be used to study the trajectory of any sphere moving with a spin in a fluid, either liquid or gas.
In soccer, the characteristic length of the spiral L is smaller than the size of the field. Provided that the shot is strong enough to
neglect gravity (U0bU%) and long enough (�L), a highly curved trajectory can be observed. We can define three kinds of
shots, depending on the distance to the goal: the penalty (9 m), the close free kick ð � 20 mÞ and the distant free kick ð � 35 mÞ.
Since L is independent of the velocity U0 and of the rotation o0 of the ball, the trajectories are quite different, as shown in
Fig. 10. For the penalty, the ball follows the very beginning of the spiral, i.e. a straight line, whereas in the close free kick the
Fig. 9. Characteristics of the ideal spiral spinning ball: the trajectory of the ball is plotted in the plane ðx=L,y=LÞ for U0¼32 m/s, R¼3.6 mm, y0 ¼ 673 ,

o0 ¼ 743 rad=s and rb=r¼ 1:4. The experimental data are presented with the ’ symbol while the theoretical shape (Eq. (4)) is drawn with a solid thin

line (y¼0 is the surface of the water bath). (Taken from Dupeux et al. (2010).)
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Fig. 10. Three kind of shot in soccer: (a) penalty, (b) close free kick, (c) distant free kick. (Credits: (a) Michael Bryan, (b) Panoramic, (c) Press Association.)
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Fig. 11. The goal of Roberto Carlos against France in 1997. The blue plain line is the real trajectory of the ball, calculated from Eq. (4) with U0¼38 m/s

and o0 ¼ 88 rad=s. The orange dashed line shows the circle trajectory and the doted red line a straight one. (For interpretation of the references to color

in this figure legend, the reader is referred to the web version of this article.)
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trajectory is close to a circle: this is the curve we generally see most of the time with a spinning ball. For the distant free kick,
the distance to the goal is comparable to L, so that we expect not a circle but a spiral trajectory.

This is the way we interpret a famous goal by the Brazilian player Roberto Carlos against France in 1997 (http://www.
youtube.com/watch?v=crSkWaJqx-Y). This free kick was shot from a distance of 35 m. Roberto Carlos strongly hits the ball
(U0¼38 m/s) with an angle of about 121 relative to the direction of the goal; due to the rotation (o0 � 88 rad=s, a value
difficult to extract from the movies, yet plausible), it sidestepped the wall, bent toward the goal, hit the goal post and
entered (Fig. 11). The goalkeeper Fabien Barthez did not move: without rotation, the ball would have left the field 4 m
away from the goal! If the trajectory had been simple circle and not a spiral, the ball would have been still 1 m away, as
shown below.

We can estimate the distance d between the circle and the spiral trajectory on the goal line (as defined in Fig. 11). Using
Eqs. (2) and (4), we find d�D3=6R0Lcos2a where D is the distance to the goal, a is the initial angle and R0 is the initial
curvature of the trajectory (given by Eq. (4) for o¼o0 and U¼U0). If we compare d to the size R of the ball, we get
d=R� ðD=D�Þ3 where D� � ðLR0RÞ1=3 is the distance over which the trajectory differs by a distance R from the circle. Beyond
D�ðD� � 10 m for Roberto Carlos’s free kick), d increases rapidly: for D¼35 m, d it becomes nearly 1 m, a distance large
enough to surprise a goalkeeper.

7. Physical classification of sports

We have discussed so far the different trajectories that can be observed in soccer. We now try to extend this study to
other sports. For each sport, Table 2 presents the ball size, the density ratio, the maximum ball velocity, the characteristic
spin parameter and the size of the field, Lfield. In the special case of baseball, Lfield represents the distance between the
pitcher and the batter. Using these data, we display the penetration length L¼ 7rR and the length scale U0

2
/g on which

gravity acts. By comparing L and U0
2
/g, one identifies sports dominated by aerodynamics (table tennis, golf, tennis) and

sports dominated by gravity (basketball, handball). In between, we find sports where both gravity and aerodynamics play a
comparable role (soccer, volleyball, baseball). Indeed, in the first category of sports, the spin is systematically used, while it
is not relevant in the second category; it only appears occasionally in the third one, in order to produce surprising
trajectories.

http://www.youtube.com/watch?v=crSkWaJqx-Y
http://www.youtube.com/watch?v=crSkWaJqx-Y


Table 2

Specifications for different sports. The first three sports are dominated by aerodynamic effects (L5U2
0=g). For the last two sports, gravity dominates

aerodynamics (LbU2
0=g). In between, we identify sports for which both gravity and aerodynamics can be used to control the ball trajectory. In this table,

Lfield is the size of the field except for baseball where it stands for the distance between the pitcher and the batter.

sport 2R (cm) rb=r U0 (m/s)
S¼

Ro0

U0

Lfield (m) L (m) U0

2
/g(m) d (m)

Table tennis 4.0 67 50 0.36 2.7 9.3 255 1

Golf 4.2 967 90 0.09 200 141 826 7

Tennis 6.5 330 70 0.19 24 73 499 5

Soccer 21 74 30 0.21 100 54 92 7

Baseball 7.0 654 40 0.17 18 160 163 7

Volleyball 21 49 20 0.21 18 35 41 5

Basketball 24 72 10 28 60 10

Handball 19 108 20 40 71 40
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Focusing on sports where aerodynamics plays a role, we observe that the penetration length, which is also the
characteristic length of the spiral, is always larger than the size of the field, except for soccer where it is 23% smaller. Since
the spin parameter is smaller than one, the spiral center (Section 6.3) will lie outside the field. This suggests that the ball
trajectory (4) can be expanded for s=L51. In this limit, the spiral reduces to a circle and we can evaluate the length d by
which the ball deviated from its initial direction by its own size R: d�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2LR=DS

p
. This distance is shown in the last column

of Table 2. It is found to be systematically smaller than Lfield, the field size, which makes relevant to the use of spin effects
to control the trajectory of the ball.
8. Conclusions

The trajectory of a soccer ball is dictated by three different forces, gravity, drag and lift. We propose a phase diagram to
classify the different trajectories according to the relative magnitude of these three forces. When gravity dominates, the
classical parabola is expected. When aerodynamics dominates, one expects a straight trajectory without spin. This is
almost true apart from the floating ball regime which leads to zigzag motions. Even if this regime is clearly related to the
emission of vortical structures, its precise description still need to be done. For very long shots, gravity cannot be neglected
and the ball follows a truncated parabola. Finally, in the case of spinning balls, aerodynamics imposes a spiral trajectory.
The comparison between the characteristic size of the spiral and of the parabola makes it possible to classify the different
ball sports in three categories, the ones dominated by gravity, the ones dominated by aerodynamics and the ones where
both effects can be used.
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