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Abstract

The effect of increasing length on the stability of a hanging fluid-conveying pipe is investigated. Experiments show that
there exists a critical length above which the flow velocity necessary to cause flutter becomes independent of the pipe length.
The fluid-structure interaction is thus modelled by following the work of Bourrières and of Païdoussis. Computations using
a standard Galerkin method confirm this evolution. A short pipe model is then considered, where gravity plays a negligible
role. Transition between this short length model and the asymptotic situation is found to occur where a local stability criterion
is satisfied at the upstream end of the pipe. For longer pipes, a model is proposed where the zone of stable waves is totally
disregarded. Comparison of these models with experiments and computations show a good agreement over all ranges of mass
ratios between the flowing fluid and the pipe.
 2002 Éditions scientifiques et médicales Elsevier SAS. All rights reserved.
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1. Introduction

The fluid-conveying pipe is a dynamical system that has received considerable attention, partly because of its application
in the oil and nuclear industries, partly because of its fascinating dynamical properties. It has thus been recognized as a
model for a large variety of fluid-structure interaction problems, as extensively demonstrated by Païdoussis (1998). In a
pioneering work Bourrières (1939) derived the linearized equations of motion of a beam-like structure conveying fluid and
experimentally examined the flutter instability of a cantilevered pipe. This latter problem was subsequently solved by Gregory
and Païdoussis (1966) and has since been referred to as the garden-hose instability. The instability of fluid-conveying pipes has
then been extensively studied under a wide variety of flow conditions or mechanical characteristics. Excellent agreement has
been found between experimental and predicted values of the flow velocity necessary for the onset of flutter in such systems.
The particular case of a hanging cantilevered pipe was considered by Païdoussis (1970) who demonstrated the stabilizing effect
of tension induced by gravity.

Comparatively little attention has been paid to the question of bending wave propagation in such beam-like structures with
flow. Roth (1964) and Stein and Tobriner (1970) derived the stability conditions for harmonic waves. The stabilizing effect of
tension on such waves has been analyzed by de Langre and Ouvrard (1999).

Clearly there is a need to establish a connection between analyses which consider the stability of finite length pipes,
i.e. global approaches, and those which consider the stability of propagating waves along pipes of infinite length, i.e. local
approaches. In the particular case of a pipe on an elastic foundation, Doaré and de Langre (2000, 2002) have shown that the
local neutrality criterion is the global stability criterion for some sets of end-conditions. They have thus extended the criterion
given by Kulikovskii (1966) for the relation between local and global stability of systems in which the length is increased.

The goal of the present paper is to study the instability properties of a hanging fluid conveying-pipe as its length is increased,
and compare them with the local wave properties in the bulk of the pipe. A particularly interesting feature of this case is that
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Fig. 1. Schematic view of the hanging fluid-conveying pipe.

local properties continuously vary along the pipe, the tension induced by gravity increasing from bottom to top. A preliminary
set of results have been given in (de Langre et al., 2001) for the simpler case of low fluid mass where the system reduces to
a problem of follower force.

The organisation of the paper is as follow: in Section 2, we present our experimental results of critical velocity for pipes of
different lengths. In Section 3, the global critical velocity behavior is discussed in terms of local properties of waves along the
pipe. In Section 4, a numerical investigation is used to extend the range of parameters.

2. Experiments

A first set of experiments on hanging pipes follows the same set-up as in Païdoussis (1970) but a wider range of dimensionless
pipe length is explored. T.B. Benjamin made some exploratory experiments with very long hanging pipes in DAMTP,
Cambridge, in the early 60s (Païdoussis, 2000) but drew no particular conclusion as to their asymptotic stability behavior.
Two different pipes are used in the present study; the properties of these pipes are summarized in Table 1. The parameters used
in this paper are the flexural rigidityEI, the internal diameterD, the mass per unit length of the pipem, the mass per unit length
of water in the pipe,M . The pipes are clamped at their upper end and their downstream end is free to move. Water flows from
top to bottom. The fluid discharge is measured with a ball flowmeter.

As the flow rate is increased, the free pendulum oscillations of the pipe are initially strongly damped. Next, at the critical
flow velocity, a flutter instability arises, and is characterized by limit cycle oscillations at a particular frequency (Bourrières,
1939). At the instability threshold, the flow rateQ and the oscillation frequencyF of the limit cycle are measured. For pipes of
small length, the oscillation frequency is measured using a stroboscope, while for longer pipes a chronometer is used.

Two different sets of non-dimensional parameters may be used. Assuming an average flow velocityU = 4Q/πD2, Gregory
and Païdoussis (1966) defined the non-dimensional mass ratioβ =M/(M +m), flow velocity, frequency and gravity as

u=UL

(
M

EI

)1/2
, Ω = 2πFL2

(
M +m

EI

)1/2
, γ = (M +m)L3

EI
g, (1)

whereL is the length of the pipe. These parameters have subsequently been used in most of the literature on fluid-conveying
pipes (Païdoussis, 1970; Lottati and Kornecki, 1986; Doaré and de Langre, 2002). Since our goal is to investigate the behavior of

Table 1
Characteristics of the pipes used in experiments

Pipe EI (N m2) D (m) m (kg m−1) M (kg m−1) β

1 9.9E–4 4E–3 4.56E–2 1.26E–2 0.22
2 2.2E–4 4E–3 1.72E–2 1.26E–2 0.42
3 2E–3 5E–3 7.1E–2 1.96E–2 0.22

Pipes 1 and 2 refer to the experimental set up of Fig. 1, pipe 3 refers to that of Fig. 4.
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cantilevered fluid-conveying pipes in the presence of gravity as the pipe-length is increased, we use a new set of non-dimensional
parameters, where the characteristic length is not that of the pipe, but is related to the ratio between the flexural rigidity and the
gravity force per unit length, namely

η=
(

EI

(M +m)g

)1/3
. (2)

This allows us to define a new set of parameters usingη instead ofL:

v =Uη

(
M

EI

)1/2
, ω= 2πFη2

(
M +m

EI

)1/2
, l =L/η. (3)

We have the following relation between the two sets of dimensionless variables:

v = uγ−1/3, ω=Ωγ−2/3, l = γ 1/3. (4)

Fig. 2 presents the experimental results for the critical velocity as a function of the length of the pipe for two different values
of the mass ratioβ = 0.22 andβ = 0.42. The experimental results of Païdoussis (1970) for similar mass ratios are also plotted.
In Fig. 2(a), the dimensionless parameters defined in (1) are used. Note that our study explores a much wider range of the

Fig. 2. Experimental critical flow velocity for the onset of flutter. (◦), mass ratioβ = 0.22; (✸), β = 0.42; (•) and (�), experiments by
Païdoussis (1970) forβ = 0.21 andβ = 0.43; (a), dimensionless velocityu based on the pipe length, Eq. (1); (b), dimensionless velocityv

based on gravity, Eq. (3).

Fig. 3. Experimental critical frequency at the onset of flutter instability. (◦), mass ratioβ = 0.22; (✸), β = 0.42; (•) and (�), experiments by
Païdoussis (1970) forβ = 0.21 andβ = 0.43; (a), dimensionless frequencyΩ based on the pipe length, Eq. (1); (b), dimensionless frequency
ω based on gravity, Eq. (3).
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gravity parameterγ than in previous work:γ = 0−100 in (Païdoussis, 1970),γ = 0−1000 forβ = 0.22 andγ = 0−2700 for
β = 0.42 in our experiments. Our data is in good agreement with those of previous work. Fig. 2(a) shows that, for a pipe of a
given length, gravitational force increases stability, which is consistent with all observations of previous authors. Conversely, to
explore the effect of the pipe lengthL at a given level of gravitational force, the same data need to be plotted in the(l, v) plane
instead of the(γ,u) plane, the latter variables being both defined usingL, Eq. (1). This is done in Fig. 2(b). We see that the
critical velocityv first decreases asl is increased. After this, an asymptotic value is reached for longer pipes. This phenomenon
is similar to that observed by Ni and Hansen (1978) in the case of flow-induced motions of flexible cables and cylinders with
external flow. In a similar manner, the critical frequency is plotted in Fig. 3 as a function of the length of the pipe, withL as the
reference length in Fig. 3(a), and withη as the reference length in Fig. 3(b). Again, the critical frequencyω is seen to reach an
asymptotic value as the length is increased.

In order to characterize the shape of the oscillations at instability, a specific experimental setup is used, see Fig. 4. Following
Borglund (1998), two pipes are attached symetrically to a long plastic sheet of 15 cm width and lengthL = 1.15 m, in such
a manner that their natural bows are in opposite directions. This ensures straight pipes at rest, due to the mutual cancellation
of the natural curvatures. Moreover, the movement at the onset of instability is in the(X,Y ) plane due to the high rigidity of

Fig. 4. Schematic view of the experimental set-up used to measure the pipe deflection.

Fig. 5. Image sequence of the hanging pipe during one period of oscillation at instability,β = 0.22, l = 8.4, v = 2.26. The time step between
each frame is�T = 0.8 s.
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the plastic sheet in theZ direction. Water flows through only one pipe. The characteristics of the system are summarized in
Table 1 (pipe 3). A video camera is placed in the(Y,Z) plane at a small angle(∼ 20◦) to the vertical axis. The whole system is
painted in black except for one edge of the sheet which is painted in white. With appropriate light, the video image shows only
the thin white edge of the sheet. Each image is then processed numerically to obtain the lateral deflection of each point of the
pipe as a function of time. The time displacement of the pipe is deduced from the apparent motion of the line using the image
of a reference grid placed in the plane of motion.

Fig. 5 shows a typical sequence of snapshots (after post-processing) equally spaced in time, over one period of oscillation
for v = 2.26, l = 8.4. Note that the well-known garden-hose instability still exists for this long pipe (l = 8.4) but appears to be
limited to its lower part. This observation will serve as a basis for the model developped in the next section.

3. Asymptotic behavior

In this section we establish a relation between the observed transition in the evolution of the critical velocity with length,
and the existence of stable waves in the pipe. Two approximations are presented; one for short pipes and one for long pipes.

The linearized equation of motion governing the lateral in-plane deflectionY(X,T ) of a hanging fluid-conveying pipe of
lengthL is, see (Païdoussis, 1998),

EI
∂4Y

∂X4
+ [

MU2 − g(M +m)(L−X)
] ∂2Y

∂X2
+ g(M +m)

∂Y

∂X
+ (2MU)

∂2Y

∂X∂T
+ (m+M)

∂2Y

∂T 2
= 0. (5)

The third termg(M + m)(L − X) is the tension that varies along the pipe. Its value is zero at the free downstream end and
(M + m)gL at the upstream clamped end. Using the reference lengthη defined in (2), we make the following change of
variables:

x =X/η, y = Y/η, t = (
EI/(M +m)

)1/2
T/η2, (6)

so that Eq. (5) becomes, using the dimensionless parameters of (3),

∂4y

∂x4
+ [

v2 − χ
]∂2y

∂x2
− ∂χ

∂x

∂y

∂x
+ 2

√
β v

∂2y

∂x∂t
+ ∂2y

∂t2
= 0, (7)

where the dimensionless tension is

χ = l − x. (8)

The term−∂χ/∂x in Eq. (7) strictly equals unity. It is maintained here to bear in mind that this term arises from the varying
tension, due to gravitational effects. The clamped upper end and free lower end require that

y|x=0 = ∂y

∂x

∣∣∣∣
x=0

= ∂2y

∂x2

∣∣∣∣
x=l

= ∂3y

∂x3

∣∣∣∣
x=l

= 0. (9)

It has been shown that for small lengths or equivalently low gravity, i.e.γ 	 1, the critical velocityu, as defined in (1), is
only a function ofβ (Païdoussis, 1970). Letu0(β) be the critical velocity forγ = 0. In terms of the velocityv, we may therefore
expect a dependence onl for small lengths. Using Eq. (4), we express this as

v(β, l)= u0(β)

l
. (10)

This will be referred to as the short pipe model.
Let us now analyze the behavior of the pipe in terms of wave propagation. At a given location in the pipe, sayx,

let us consider that the pipe is locally homogeneous in thex-direction and that the deflection of the pipe is of the form
y(x, t) = y0 exp[i(kx − ωt)]. Substituting this into (7), we assume now that the tension does not vary locally, i.e.∂χ/∂x = 0.
The dispersion relation reads (Stein and Tobriner, 1970)

D(k,ω,β;v,χ)= k4 − k2(
v2 − χ

) + 2
√
β vkω− ω2 = 0. (11)

Local properties of bending waves propagating along the pipe may now be analyzed in terms of wavenumberk and frequencyω.
For any sinusoidal wave in thex-direction with a real wavenumberk, the corresponding complex frequencies given by Eq. (11)
are

ω(k;β,v,χ)= k
(√

β ±
√
βv2 + k2 − v2 + χ

)
. (12)
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Local stability of the pipe is ensured if these complex frequencies are such that the displacement associated with any real
wavenumberk remains finite in time. It is the case when Im[ω(k)] � 0, that is, using Eq. (12), when

χ(x) > v2(1− β). (13)

The tensionχ , given by Eq. (8), varies from 0 tol along the pipe, from bottom to top. Therefore, unstable waves always exist
at the downstream end, provided thatv �= 0 andβ �= 1. We may now differentiate two situations depending on the parameters:

(a) if l < v2(1− β), every point of the pipe supports unstable waves, the criterion of Eq. (13) being violated for allx;
(b) if l > v2(1 − β), two regions exist in the pipe, a lower regionl > x > l − v2(1 − β) of instability, and an upper region

where the local stability criterion (13) is satisfied,l − v2(1− β) > x > 0.

Transition between these two cases occurs at the critical position

lc = v2(1− β). (14)

When the lengthl is larger thanlc, we conclude from the experimental results presented in Fig. 5 that the dynamics of the
pipe is controlled by the unstable zone at the downstream end. Let us therefore consider a pipe of lengthl = v2(1 − β) with
constant tension

χ = v2(1− β)

2
. (15)

This is in fact the mean value of the tension in the full pipe problem; see Fig. 6. We consider this as an approximation for long
hanging pipes. Its equation of motion reads, using (7) and (15):

∂4y

∂x4
+

[
(1+ β)

v2

2

]
∂2y

∂x2
+ 2

√
β v

∂2y

∂x∂t
+ ∂2y

∂t2
= 0 (16)

with the same boundary conditions as in Eq. (9). Definingβ0 = 2β/(1+ β) andv0 = v
√
(1+ β)/2, Eq. (16) becomes

∂4y

∂x4
+ v2

0
∂2y

∂x2
+ 2

√
β0v0

∂2y

∂x∂t
+ ∂2y

∂t2
= 0, (17)

wherex varies from 0 tolc. Using the dimensionless variables referring to the lengthLc = ηlc, it reads

∂4y

∂x4
+ u2

0
∂2y

∂x2
+ 2

√
β0u0

∂2y

∂x∂t
+ ∂2y

∂t2
= 0, (18)

wherex varies from 0 to 1. This is the equation of motion of a cantilevered pipe without tension or gravity, as originally solved
by Gregory and Païdoussis (1966), leading to the well-known critical velocity functionu0(β0): We may therefore state that the
critical velocity for our long pipe model reads:

v∞(β)=
(
u0(β0)

1− β

)1/3( 2

1+ β

)1/6
. (19)

Fig. 6. Tension in the long pipe model, (a), semi-infinite pipe; (b), equivalent pipe of finite length.



O. Doaré, E. de Langre / European Journal of Mechanics A/Solids 21 (2002) 857–867 863

Fig. 7. Comparison between measured critical velocities and models, (◦) and (✸), present experiments forβ = 0.22 andβ = 0.42, respectively;
(•) and (�), experiments by Païdoussis (1970) forβ = 0.21 andβ = 0.43; (− · − · −·), short pipe model, Eq. (10); (_____), long pipe model,
Eq. (19); (− − −), transition criterion based on local stability, Eq. (14).

The critical frequency for the long pipe model is similarly defined usingΩ0, the critical frequency atu0(β0):

ω∞(β)= Ω0(β0)

(1− β)2v4∞(β)
. (20)

In Fig. 7, the experimental critical velocity is plotted as a function of length for each pipe and is compared with

(a) the short pipe model, Eq. (10);
(b) the transition criterion based on local stability, Eq. (14); and
(c) the long pipe model, Eq. (19).

The experimental data is well described by the proposed models. Once a critical length is reached, all the dynamics of the
system are therefore driven by the downstream end where unstable waves developp. Letting the pipe being longer that this
critical length has thus no effect.

4. Effect of the mass ratio

The models described in the preceding section have been compared to experiments in the range of mass ratiosβ = 0.22
to β = 0.42. All previously published work on fluid-conveying pipes (see (Païdoussis, 1998)) have shown that the mass ratio
has a strong and sometimes complex influence on instabilities. Yet, experiments on long hanging pipes with lower (β < 0.2)
or higher (β > 0.4) mass ratios encounter practical difficulties. We therefore seek to extend the range of mass ratios through
computational experiments. The Galerkin method used for this purpose is a straightforward extension of that used by other
authors in large ranges of mass ratios for various problems of cantilevered pipes (Gregory and Païdoussis, 1966; Lottati and
Kornecki, 1986; Doaré and de Langre, 2002).

Let us decompose the movement of the pipe in the truncated basis of the firstn free modes of the pipe without flow or
gravity:

y(x, t)=
n∑

j=1

φj (x)qj (t). (21)

Substituting this into the equation of motion (7), multiplying byφk(x) and integrating overx from 0 to l, we obtainn coupled
second-order evolution equations forqj (t) (Gregory and Païdoussis, 1966). In our computations, we have considered up to 80
modes to obtain, with acceptable accuracy, the eigenfrequencies of the pipe for the highest mass ratios. Assuming harmonic
motion at frequencyω and transforming to a first order problem of dimension 2n, we obtain an eigenvalue problem that yields
the eigenfrequenciesωp,p = 1,2n, of the system. If one of these complex frequencies has a positive imaginary part, the system
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is unstable. Letv be the critical velocity, at which one eigenfrequency enters the upper half-plane in the complexω-plane. In
Fig. 8, the computed critical velocityv is compared to the experimental data of Section 2 forβ = 0.22 andβ = 0.42. Clearly,
the Galerkin approximation of Eq. (21) captures the dependance of the critical velocity on the length, even for long pipes. It is
used to explore values of mass ratios outside the experimental range and, thereby, to evaluate our approximate solutions of the
preceding sections. The nonmonotonic behavior of the computed curve is known to be a consequence of successive changes in
the number of beam-mode contributions to the unstable mode. This has been already observed in the case of the fluid-conveying
pipe without gravity (Gregory and Païdoussis, 1966). In Fig. 9, the computed critical velocities versus the length of the pipe are
plotted forβ = 0.5 andβ = 0.7. Again, they are compared with the models for short and long pipes, Eqs. (10) and (19), and
with the criterion for the transition between these two limit cases, Eq. (14). The models for long and short pipes seem to be
good approximations of the behavior of the hanging pipe even at high values ofβ. The transition between short and long pipe
models is seen to take place when the criterion of Eq. (14) is satisfied.

Finally, Fig. 10 compares the critical velocity of the long pipe model with the asymptotic critical velocities for long hanging
pipes obtained experimentally and numerically for a large set of mass ratios. A similar comparison is made for frequencies in
Fig. 11. From these two figures, the instability of the semi-infinite hanging pipe seems to be well described by the long pipe
model. As to the critical length for transition between the short and long pipe models, two estimates are compared in Fig. 12.
The first is the value ofl where the critical velocity (computed or obtained experimentaly) crosses the local stability criterion,

Fig. 8. Comparison between experimental and computed critical velocities. (◦) and (✸), present experiments forβ = 0.22 andβ = 0.42; (•)
and (�), experiments by Païdoussis (1970) forβ = 0.21 andβ = 0.43; bold line, Galerkin computations.

(a) (b)

Fig. 9. Comparison between computed critical velocities and models; bold line, Galerkin computations; (− · − · −·), short pipe model, Eq. (10);
(_____), long pipe model, Eq. (19); (− − −), transition criterion based on local stability, Eq. (14); (a),β = 0.5; (b),β = 0.7.
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Fig. 10. Critical velocities for long hanging pipes, (�) computations; (✷), experiments; (_____), long pipe model, Eq. (19).

Fig. 11. Critical frequencies for long hanging pipes, (�) computations; (✷), experiments; (_____), long pipe model, Eq. (20).

Eq. (14). The second is the value ofl where the short pipe solution, Eq. (10), equals the long pipe solution, Eq. (19). These
two approximations of the transition length are in good agreement. It appears that transition occurs for a length which does not
significantly depend on the mass ratio, typicallyl � 4 that is, in dimensional variables,

L� 4

[
EI

(M +m)g

]1/3
. (22)

Note that this is about twice the length that would make the standing pipe buckle under its own weight (Païdoussis, 1998).

5. Conclusion

In this paper we have investigated the effect that increasing the pipe length has on the stability of a hanging fluid-conveying
pipe. We have observed in experiments that there exists a critical length above which the flow velocity needed to bring about
flutter becomes independant of the pipe length. A similar effect has been observed with respect to the frequency of flutter.
Computations using a standard Galerkin method have confirmed these observations and have shown that such an asymptotic
behavior exists for all considered mass ratios.
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Fig. 12. Dimensionless length of transition between the short pipe and long pipe approximations, (×), length where the critical velocity of the
short pipe model equals that of the long pipe model; (�), computations; (✷), experiments.

When considering the stability of bending waves that develop in all locations along the pipe we have found that the
asymptotic regime is reached when a region of wave stability exists in the upper part of the pipe. For long pipes, the additional
upper length is highly tensioned and does not contribute to the development of instability, as observed experimentally. This
analysis has been confirmed by a comparison between the characteristics of this asymptotic regime in terms of flow velocity
and oscillation frequency and those from a simplified model when the upper stable region is neglected. Close agreement is
found with experimental and numerical data. These results allow us to conclude that local wave properties are relevant to the
analysis of the global behavior of hanging pipes.

Following similar analyses of semi-infinite systems with continuously varying local properties, it would seem natural to use
a WKBJ-approach (Huerre and Rossi, 1998). Yet, considering the observed motion of the pipe, Fig. 5, it appears that the typical
wavelength of instability is of the same order as the length of the unstable region,lc. This violates the underlying assumptions
of the WKBJ-approach. A link may also be sought between the frequency of oscillation of the semi-infinite pipe at instability
and some local property such as the absolute frequency (see Huerre and Monkewitz (1990), Monkewitz et al. (1993)). This
approach also fails, because the frequency selection is more related to a finite length effect, as shown by the present study.

Our results may help us to understand the behavior of other long systems submitted to non-conservative forces. The hanging
beam with a follower force (i.e. a force whose direction varies as that of the beam axis) is a special case of the present analysis,
which is obtained by settingβ = 0, see (de Langre et al., 2001). Structures such as beams, plates, flags or shells submitted
to axial flow with the upstream end fixed and the downstream end free are tensioned by the friction induced by flow (which
has not been considered here as it is known to cancel out with pressure drop effects, see (Païdoussis, 1998)). These systems
are therefore increasingly tensioned from the downstream to the upstream end and their behavior might be expected to become
independent of the length as soon as a local stability criterion is satisfied at the upstream end. This is under current investigation.
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