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This paper investigates numerically and through an asymptotic approach the three-
dimensional stability of steady vertical vortex arrays in a stratified and rotating fluid.
Three classical vortex arrays are studied: the Karman vortex street, the symmetric
double row and the single row of co-rotating vortices. The asymptotic analysis assumes
well-separated vortices and long-wavelength bending perturbations following Billant
(J. Fluid Mech., vol. 660, 2010, p. 354) and Robinson & Saffman (J. Fluid Mech.,
vol. 125, 1982, p. 411). Very good agreement with the numerical stability analysis is
found even for finite wavelength and relatively close vortices. For a horizontal Froude
number F, <1 and for a non-rotating fluid, it is found that the Karman vortex street
for a street spacing ratio (the distance & between the rows divided by the distance
b between vortices in the same row) ¥ < 0.41 and the symmetric double row for
any spacing ratio are most unstable to a three-dimensional instability of zigzag type
that vertically bends the vortices. The most amplified vertical wavenumber scales
like 1/(bF,) and the growth rate scales with the strain I'/(2nh?), where I" is the
vortex circulation. For the Karman vortex street, the zigzag instability is symmetric
with respect to the midplane between the two rows while it is antisymmetric for
the symmetric double row. For the Karman vortex street with well-separated vortex
rows k >0.41 and the single row, the dominant instability is two-dimensional and
corresponds to a pairing of adjacent vortices of the same row. The main differences
between stratified and homogeneous fluids are the opposite symmetry of the dominant
three-dimensional instabilities and the scaling of their most amplified wavenumber.
When F, > 1, three-dimensional instabilities are damped by a viscous critical layer.
In the presence of background rotation in addition to the stratification, symmetric
and antisymmetric modes no longer decouple and cyclonic vortices are less bent
than anticyclonic vortices. However, the dominant instability remains qualitatively
the same for the three vortex arrays, i.e. quasi-symmetric or quasi-antisymmetric and
three-dimensional or two-dimensional. The growth rate continues to scale with the
strain but the most unstable wavenumber of three-dimensional instabilities decreases
with rotation and scales like Ro/(bF},) for small Rossby number Ro, in agreement
with quasi-geostrophic scaling laws.
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FIGURE 1. Sketch of the three vortex arrays: (a) Karman vortex street, (b) symmetric double
row, both characterized by the spacing ratio x =h/b, (c) single row. The vortices are initially

two-dimensional with their axis in the vertical z-direction. The vortex rows are infinite along
the x-axis.

1. Introduction

In this article, we investigate the three-dimensional stability in a stratified and
rotating fluid of three classical vortex arrays of two-dimensional vertical vortices:
(i) the Karman vortex street, which consists of two staggered counter-rotating infinite
rows of co-rotating vortices, (ii) the symmetric double row, which is similar except
that the two rows are not staggered, and (iii) the single row of co-rotating vortices
(figure 1).

Much attention has been devoted to their linear stability in homogeneous fluid using
point vortices. This approach is valid for well-separated vortices with a reference length
taken as the radius of the vortex core. The case of two-dimensional disturbances was
first treated by von Karman (1911, 1912) and von Karman & Rubach (1912), who
showed that all vortex arrays were always unstable, except a single configuration of
the Karman vortex street for which the street spacing ratio x = h/b (the ratio of the
distance i between the two rows and the separation distance b of the vortices in the
same row, see figure 1) was equal to 0.281. This analysis was presented in the book
by Lamb (1932).
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The case of three-dimensional disturbances was later addressed by Robinson &
Saffman (1982). Their analysis was based on vortex filaments and was therefore
limited to long axial wavelengths and to well-separated vortices as well. Under these
hypotheses, they could make use of the Biot-Savart law to compute the induced
motion of the vortices and the cutoff approximation to determine the self-induced
velocity of the individual vortices. They found that the Karman vortex street and the
symmetric double row are most unstable to three-dimensional or two-dimensional
disturbances depending on the spacing ratio of the streets while the single row is
always most unstable to two-dimensional disturbances.

The stability of two-dimensional vortex arrays with finite cores has also been
investigated in detail in a rotating fluid through numerical stability analyses (see for
example Leblanc & Cambon 1998; Potylitsin & Peltier 1999). However, it has been less
addressed in a stably stratified and rotating fluid even though these configurations
can be observed in geophysical flows for instance in the wake of mountains or
islands (Karman vortex street like in Etling 1990) or as the subsequent evolution
of the destabilization of a jet (symmetric double row) or a shear layer (single
row). Potylitsin & Peltier (1998) have investigated numerically the stability of an
infinite vortex row in a weakly stratified and rotating fluid. They found that a weak
stratification has a stabilizing effect on the elliptic instability. Experiments in a strongly
stratified fluid have shown that the vortex streets created by towing a rake of vertical
cylinders (Holford & Linden 1999) or a rake of vertical flat plates (Praud, Fincham &
Sommeria 2005) are destabilized, leading to the formation of horizontal layers. The
emergence of pancake vortices from a stratified horizontal shear layer perturbed by
finite-amplitude fluctuations has also been recently studied numerically by Basak &
Sarkar (2006).

In contrast, the stability of a pair of columnar vertical vortices in a stratified fluid
has been investigated in detail in the counter-rotating (Billant & Chomaz 2000) and
co-rotating (Otheguy, Chomaz & Billant 2006b) cases. These studies have shown
the existence of a three-dimensional instability called zigzag instability that vertically
bends the vortices with little internal deformation. Billant (2010) recently derived a
general theory to treat the stability of a pair of vortices for long-axial-wavelength
bending perturbations and well-separated vortices in a stratified and rotating fluid.
This analysis yields stability equations formally identical to those given by Crow (1970)
in homogeneous fluid using the Biot—Savart law and the cutoff approximation. Only
the expressions of the self-induction and mutual induction functions differ between
homogeneous fluid and stratified and rotating fluid. In the present paper, we make use
of this approach to study the three-dimensional stability of the Karman vortex street,
the symmetric double row and the single row for long-axial-wavelength perturbations
and well-separated vortices in a stratified and rotating fluid. The asymptotic results
will be contrasted to their counterpart in homogeneous fluids (Robinson & Saffman
1982) and validated against direct numerical stability analyses. Most interestingly, we
shall show that many configurations of vortex arrays in stratified and rotating fluids
are unstable to the zigzag instability.

This paper is organized as follows. The governing equations are given in §2. In § 3,
we briefly present the asymptotic analysis of Billant (2010), before generalizing it to
vortex arrays following Robinson & Saffman (1982). The method used in the direct
numerical stability analyses is described in §4. The results are presented in §§5-7: § 5
is first devoted to the stability of the different vortex arrays in the case of a strongly
stratified and non-rotating stratified fluid. The effects of varying the stratification and
the background rotation are then presented in §§6 and 7, respectively. Concluding
remarks follow in § 8.
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2. Governing equations

The governing equations are the incompressible Navier—Stokes equations within
the Boussinesq approximation in a frame rotating at angular velocity £2, about the
vertical z-axis:

0 1
—u—i—u-Vu—I—Z.QbeZ X u z——Vp—gﬁez—i—vAu, (2.1a)
ot £o £0
V-u=0, (2.1b)
0p dp
— 4 u-Vo+ —w=DAp, (2.1¢)
ot dz

where u = (u, v, w) is the velocity vector in Cartesian coordinates (x, y, z), p is the
pressure, po is a constant reference density, p is the density perturbation with respect
to the base density pg + p(z), g is the acceleration due to gravity, e, is the unit vector in
the upward z-direction, v is the kinematic viscosity, and D is the molecular diffusivity
of the stratifying agent. The Brunt—Viisild frequency N = ./—g/po dp/dz, measuring
the density gradient, is assumed to be constant.

3. Asymptotic analysis

For clarity, we first present briefly the stability equations for the simple case of
two vortices in a stratified and rotating fluid obtained by Billant (2010) by means of
an asymptotic analysis. The generalization to several vortices is straightforward from
this case.

3.1. Interactions between a pair of vortices in a stratified and rotating fluid

We denote by I'; and I3 the circulations of two vertical vortices of radius a separated
by a distance b. The Froude and Rossby numbers of each vortex are defined as
follows:
N I

2na’N’ Roi = 4na2$2,’

The asymptotic theory is based on three assumptions. First, it is assumed that
the strains I7/(2nb?) are small compared to the core vorticities I;/(2rna?). This is
equivalent to stating that the vortices are well-separated: a < b. The second hypothesis
is that the perturbations consist of long-wavelength bending deformations of the
vortices with a vertical wavenumber k. such that k.a Fj; < min(1, |Ro;|), max(1, \/Fy;).
These two assumptions are similar to those assumed in vortex stability analyses using
vortex filaments in a homogeneous fluid (Crow 1970; Robinson & Saffman 1982).
The only difference is the small vertical wavenumber hypothesis in the homogeneous
fluid which is k.a < 1. The third assumption used here is Fj; < (b/a)?, which means
that the strain I}/(2mb?), exerted by one vortex on the others, is small compared
to the Brunt—Viisild frequency N. Since b/a>> 1, this condition is fulfilled over a
large range of stratifications, from strongly to weakly stratified flows. Although small
viscous effects can also be taken into account within this approach, we shall consider
here only the inviscid limit.

The position of each vortex centre in each horizontal plane is assumed to be
perturbed by an amount (Axl(z 1), Ayl(z t)) and (sz(z t), Ay,(z, t)). Writing these

perturbations in the form
Ax; Ax;(t)\
j = < xi{ )> e’ +cc., (3.2)
Ay, Ayi(t)

with i = {1,2}. (3.1)

F =
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where c.c. denotes the complex conjugate, and using the three hypotheses mentioned
above, the following evolution equations for the perturbations of the first vortex are
obtained by means of an asymptotic analysis accurate at first order in k2a*F}; and
r;/(2nb?):

di’“ - —%A)’l + %w(ﬁ)m + (f - %wm("v Fors R01)> Ay
+%wlm(kz, Fit, Ro)Ax,, (3.3a)

dﬁtyl - —%Am + %x(ﬁmxz — (f - %wm(ku Fin, R01)> Ax
+%a)lm(kb Fy1, Rop)Ay;. (3.3)

The complementary pair of equations for the second vortex are found by interchanging
the subscripts 1 and 2. These equations are written in the frame of reference rotating
at angular velocity f+ £2,, where f=(I7+I3)/(2nb?) is the rate at which the
unperturbed vortices rotate around each other. In this frame of reference, the base
flow is steady. The functions ¥ and x are the mutual induction functions and
W = wge + lwy 18 the self-induction function, which can be complex in a stratified and
rotating fluid. They will be detailed below.

Equations (3.3) are identical to those derived by Crow (1970) or Jimenez (1975)
for a pair of vortex filaments in a homogeneous fluid except that the functions ,
x and w are different in a stratified and rotating fluid. The physical meaning of the
three terms on the right-hand side of (3.3) is the following. The first term represents
the strain effect of the basic flow field of one vortex on the perturbation sustained by
the other vortex. The second term is the mutual induction effect, i.e. the effect of the
perturbation of one vortex on the basic flow of the other vortex. This effect depends
on the mutual induction functions:

x(B) = —=BKi(B), v(B) = BKi(B). (34)

where = bk, F,1/|Roi| =bk,Fy»/|Ro;| and Ky is the modified Bessel function of the
second kind of first order. Although their explicit forms are different, these functions
are the equivalent, in a stratified and rotating fluid, to Crow’s first and second mutual
induction functions (Crow 1970). Here x and v are equal to unity for 8 =0, i.e. in the
two-dimensional limit (k, =0) and for any vertical wavenumber in the non-rotating
limit. These mutual induction functions go to zero exponentially for large §.

The last term represents the effect of the rotation of the vortex pair at angular
velocity f and the self-induction effect, i.e. the effect of a vortex on itself. If alone,
this self-induction corresponds to a rotation of the sinusoidally bent vortex at angular
velocity I} /(2na?)wgre around its unperturbed location. When wyy, < 0, this rotation is
damped at rate o = |I'|/(2na?)wiy,. In a stratified and rotating fluid, the self-induction
function (note that it is not exactly defined as in Crow 1970 or Robinson & Saffman
1982) is given by

ol F,‘ 7 Fi 1 k aF,»
w(kz, Fyi, Ro;) = k2a’ Fy, (Zh ) + 1(30}-1 ) _ TR0’ <ln<2ziR0}'l|> — D(Fui) + Ve>],

(3.5)
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where y, =0.5772. .. is the Euler constant and .o/, # and & are parameters depending
on the Froude number F,, and the non-dimensional angular velocity £2 of the
individual vortices (Billant 2010). Their expressions are given in Appendix A. In this
paper, we consider the Lamb—Oseen profile:

Q) = 712(1 —e), (3.6)

where r is the distance to the vortex axis non-dimensionalized by a. In this case, the
self-induction is real and positive for Fj, <1 whatever Ro in contrast to homogeneous
fluids for which it is negative. For Fj, > 1, the self-induction becomes complex with
a negative imaginary part wp, because the bending disturbances are damped by a
viscous critical layer at the radius where the angular velocity of the vortex is equal to
the Brunt—Viisdld frequency.

Billant et al. (2010) have shown that the results predicted by (3.3) and their
complementary equations for the other vortex are in excellent agreement with full
numerical stability analyses.

3.2. Generalization to vortex arrays in a stratified and rotating fluid

Robinson & Saffman (1982) have investigated the stability of vortex arrays in a
homogeneous fluid in the limit of well-separated vortices and long-wavelength bending
perturbations following Crow’s stability analysis of a counter-rotating vortex pair.
Their stability equations have the same form as those of Crow (1970) or (3.3) except
that they sum up all the strain and mutual induction effects of each vortex of the
array. In order to determine the three-dimensional stability of vortex arrays in a
stratified and rotating fluid, we can thus follow the analysis of Robinson & Saffman
(1982), except that the mutual induction functions and self-induction functions have
to be replaced by those valid in a stratified and rotating fluid.

Since the detailed derivation of the stability equations of vortex arrays can be found
in Robinson & Saffman (1982), we recall here only briefly the main steps in the case
of the Karman vortex street. The generalization to the symmetric double row and the
single row is straightforward.

3.2.1. Karman vortex street

The Karman vortex street consists of a staggered double row of two-dimensional
vertical vortices. The upper row lies in the plane y =0, with each vortex having a
positive circulation I" and a radius «a (figure 1). The lower row is in the plane y = —#,
with each vortex having a negative circulation —I" and also a radius a. The vortices
on each row are separated by a distance b and the two rows are staggered by a
distance b/2. The whole unperturbed vortex array moves with a uniform velocity
U =T/(2b) tanh(mh/b) (Lamb 1932) in the frame of reference rotating at rate £2,
about the vertical axis. Since all vortices have the same absolute circulation, they are
characterized by a single Froude number F, =I"/(2rna’>N). In contrast, the Rossby
number of the vortices of the upper row is Ro = I'/(4na’$2,) while the Rossby number
of the vortices of the lower row is opposite, —Ro.

In the frame of reference rotating at rate 2, and translating at constant velocity
U, the position of the perturbed vortices in the horizontal plane (x, y) is

(xl,m’ ylm) = (mb’ 0) + [(Axl,ms Ayl,m)eikzz + C-C']’ (370)
(X2.m» Yom) = (m +1/2) b, —h) + [(Axzm, Ayam) e’ +ccl, (3.7h)

where the subscripts (1, m) and (2, m) denote a vortex respectively in the upper and
lower rows, m being an integer. The amplitude of the three-dimensional bending
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perturbations of the vortices around their unperturbed position is (Axy,, Ay ) e**
and (Axz, Aysm) e, and k. is their vertical wavenumber.

By summing up the straining and the mutual induction effects due to each vortex,
the following evolution equations for the perturbations of a vortex m in the upper
row are found:

dAxl,m r r
& = gz @relke, Frs RO)AY L + 55 o1m(kz, Firy RO)AX
r AYim — VpmAY1p
T o Z b2
pFm pm
r (bgm - h2) Ayl,m - (bgqum — thqm) AyZ,q
E Z L4 b}
q qm
r l;th[2Ax1,m — (Xgm + Vgm) Ax24]
o > 14 : (3.8q)
q qm
dA m r r
d};l = +2TCCZ2 Cl)Re(km Fy, Ro)Ame + Wa)lm(kz, F, RO)Ayl,m
I Axl,m - XpmAxl,p
o Z 2
2m pFEm me
r (E;m _ hz) Axlvm B (l;équm - hzlﬁqm)sz,q
Iy ¢
q gm
r Eth[szl m— (qu + qu)A)Q q]
T on ’ : 3.8b
27 Z lelm ’ ( )

q

where b, =(p —m)b, byw =(q —m +1/2)b and L2, =h*>+b2,. The subscripts on ¥
and y indicate that the function arguments are |b,,|k,F;/|Ro| and |L,,|k.F,/|Ro|
for subscripts pm and gm, respectively. The equations for a vortex of the lower row
are found by applying the following transformations: I' — — I', h— — h and by
interchanging the subscripts 1 and 2. We now consider linear perturbations of the
form

(AX 1y Aym) = (Axy, Ayy) ™, (3.9a)
(AX2ms Ayam) = (Axy, Ayy) e H/20%er (3.9b)

with o being the growth rate and 0 < ¢ < m. As shown by Robinson & Saffman
(1982), ¢/b can be considered as a wavenumber of the disturbance in the row
direction. However, it is more convenient to use the wavelength of the disturbance
ub=2mb/¢ in the row direction with 2 < u < c0. A value =2 implies a periodicity
every two vortices, u =4 every four vortices and so on, while =00 means that all
the vortices on a single row are displaced in the same direction.

Following Robinson & Saffman (1982), it is also interesting to introduce symmetric
and antisymmetric modes:

(Axy, Ays) = (Ax; + Axa, Ay — Ayy), (3.10)
(Axav Aya) = (Axl - Ava Ayl + AY2) (311)

The physical meaning of these modes can be easily understood in the case yu = oo, i.e.
when all vortices of a given row are displaced in the same direction. The symmetric
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mode then corresponds to a displacement of each row in the same x-direction but in
the opposite y-direction, i.e. a vertical modulation of the row spacing 4. Conversely,
the antisymmetric mode corresponds to displacements of each row in the opposite
x-direction but in the same y-direction, i.e. a vertical modulation of the interval b/2
in the x-direction between the two rows.

Inserting (3.9) into (3.8) and the corresponding equations for the lower row, we
obtain the following eigenvalue problem for the symmetric and antisymmetric modes:

2 2
MAx = mb

T oAx, (3.12)
where Ax = (Ax,, Ay,, Ax,, Ay,)" and
b? b? b? b?
—B + ;alm —A + C— PaRe ;Awlm _;AwRe
N 2 - 2 bZ b2
—A—-C + 7@% B+ —261m —2Aa)Re —2Aw1m
M = a a a a
b2 bZ b2 2
7Aw1m —7AwRe B + 751m —A—C— 75}@
a a a a
b2 b2 - N b2 - 2
;Aa)Re ﬁAwIm —A + C + ;aRe B+ ﬁalm
(3.13)
The various parameters appearing in M are
@ = WRe + ia[m = %[a)(kz, Fy, RO) + a)(kz, F, —RO)], (31461)
Aw = Awge + 1Awy, = %[a)(kz, F,, Ro) — w(k,, F;,, —Ro)], (3.14b)
and
n? n? “ Y, cos po
A= ———5— =2 £ 3.15a
3 cosh’km ; p? ( )
@ 1
. q+3)k .
B=2IZ ( 1 22) ; S(Xq + ¥g) sin (g + 1), (3.15b)
o [(a+3) +]
© 2
g+ l) Yy — KXy
c=2>" g+ . L cos (g +1)9. (3.15¢)
i~ La+3) +x7]

with the spacing ratio x = h/b. The function arguments of ¢ and x are pbk,F,/|Ro|
and [(g 4+ 1/2)> +«2]"?*bk.F, /| Ro| for subscripts p and ¢ respectively. Here A, B and
C are found by interchanging the symbols x and v in (3.15).

Contrary to homogeneous fluids (Robinson & Saffman 1982), the symmetric and
antisymmetric modes do not always decouple in (3.12) because the self-induction
functions of the vortices of the upper and lower rows are not equal for finite Ro:
Aw#0. A decoupling is recovered only in the limits Ro — o0 and Ro — 0 for which
w(k,, F,, Ro)=w(k;, F,, —Ro) (see (3.5)).

3.2.2. Symmetric double row

The symmetric double row translates at a velocity U = I"/(2b) coth(mh/b). In the
frame rotating at rate £2, and translating at a constant velocity U, the equations
for the perturbations are the same as (3.8), except that b,,, = (g — m)b. Considering
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perturbations of the form

(AX1 s Ayim) = (Axy, Ayp) et (3.16)
(Ax2,ma AyZ,m) = (sza Ayz)ei'"¢+0’, (317)

leads to exactly the same eigenvalue problem as (3.12), except that the coefficients
A, B and C in the matrix M are slightly different:

n? n’ Y, cos pe
A= —+ —— -2 Rt 3.18
3 sinh® K Z p? ( %)
o~ qK .
B zzlzm(xq +1,)singg, (3.18b)
g=1
c=-X + 22 qw(’i cosqo, (3.18¢)
2 (q2 + «2)?

q=1

where the function arguments of ¢ and x are pbk.F,/|Rol|, (¢* 4 «*)"/*bk.F,/|Ro|
and «bk_ F,/|Ro| for subscripts p, ¢ and «, respectively. Here A, B and C are also
found by interchanging the symbols x and ¢ in (3.18).

3.2.3. Single row

Finally, the case of the single row can be directly obtained by neglecting all terms
related to the second row in (3.12) and M and by taking the limit x — oo for the
coefficients in (3.15):

b? b?
Ea;lzn _Ab; ;a)Re <i)€1> _ anza <AX1>’ (319)
—A + ;a)Re ;a)lm Y1 r Ayl
with
Z ‘”” P ¢ (3.20)

where the function argument of v, is pbk. F,/|Ro|. Here A has the same expression
as A but with ¢ replaced by x. In this case, the growth rate can be obtained directly:

2nb? b? ~ b? b?
T o=+ A+ —wre A— —wre | + =0m. (3.21)
r a? a? a?

4. Direct numerical stability analysis

In order to check the theoretical results, the dominant instability of the three
vortex array configurations has been determined by means of the following numerical
method.

4.1. Computation of the basic states

The basic flows corresponding to the different vortex arrays have been first computed
thanks to two-dimensional nonlinear numerical simulations initialized by vortices
placed in the required arrangement and each having a Lamb-Oseen profile. For



Three-dimensional stability of vortex arrays 491

Label Configuration r b K Re L, L, N, N, 8,

a
KO0.2 Karman vortex street 1 20 15 02 50000 30 38 512 640 0.01
KO0.5 Karman vortex street 1 2x 15 0.5 50000 30 38 512 640 0.01
DO0.5 Symmetric doublerow 1 2z 15 0.5 50000 30 38 512 640 0.01

S Single row 1 2r 15 — 50000 30 60 512 1024 0.01

K0.2b10 Karman vortex street 1 20 10 02 50000 20 38 384 640 0.01

K0.2b7.5 Karman vortex street 1 2x 7.5 02 50000 15 38 256 640 0.01

TaBLE 1. Overview of the physical and numerical parameters of the basic states.

example, the initial distribution of the vertical vorticity for the Karman vortex street
is {(x,y,t=0)= >, (Si,m +%2m), Where ¢, and ¢, the dimensional basic vertical
vorticities of the vortices of the upper and lower row, respectively, are given by

r (x —mb)* + y?
{Lm = @exp |:—az N (41(1)
r x—(m+1)b) + (y +h)
Com = —— 3 €XP l—( ( 2)612) (vt h) . (4.1b)

Only the inviscid limit of the theory will be considered so that the Reynolds number
in the computations has been set to a large value Re=1I"/(2nv)=150000. As time
evolves, each vortex rapidly adapts to the strain exerted by each other so that a
quasi-steady state is quickly reached. Since the Reynolds number is large, a and I”
remain almost constant. The Froude number F, and the Rossby number Ro are
therefore based on the initial circulation I" and vortex radius a.

The numerical simulations are performed with a pseudo-spectral method with
periodic boundary conditions. Time advancement is carried out using the classical
fourth-order Runge—Kutta scheme for the nonlinear term and exact integration for
the viscous term (see Vincent & Meneguzzi 1991 for details). Most of the aliasing is
removed by applying a square truncation keeping 9/10 of the Fourier modes along
each direction. Since the base flow is periodic, the computational domain size in the
row direction L, is taken as 2b, in order to compute two periods of the base flow.
As explained in the next subsection, such a choice enables the computation of the
stability properties for only two values of w: oo and 2. In the other direction, L,
is taken large enough to minimize the effect of the periodic boundary condition.
The number of collocation points N, and N, is chosen in order to have the same
mesh resolution in both directions. The time step is §; =0.01 in all simulations. The
numerical parameters of all the basic states are summarized in table 1.

4.2. Three-dimensional stability problem

The two-dimensional basic states with velocity U and pressure P are subjected to
infinitesimal three-dimensional perturbations such that the total flow is of the form

u U u
plx,y.z.t)= P+ | b (xy 1)t ycc, (4.2)
o 0 P

where quantities with a tilde denote the perturbations and have a period b in the
x-direction, k, is the vertical wavenumber and o =21 /(ub) measures the periodicity of
the perturbation along the row-wise direction. The quantity u has the same meaning
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as in §3.2. The flow decomposition (4.2) is inserted in (2.1) and the equations are
linearized around the base state.

The linearized equations are integrated numerically for each k, and u value
using a linearized pseudo-spectral code similar to that described in §4.1. Here,
we have restricted the analysis to the values u=oo0 (fundamental mode) and u =2
(subharmonic mode), for which the theory predicts the dominant modes to exist.
In practice, the overall most unstable mode for these two values of u can be
obtained from a single simulation with the length of the computational domain set
to L, =2b, i.e. two periods of the base state. The size of the computational domain
in the y-direction L, and the number of collocation points N,, N, are identical
to those used to compute the corresponding basic state U. The Schmidt number
Sc=v/D is set to unity, Sc =1. The perturbation velocity #é(x, y, t =0) is initialized
with a divergence-free white noise. After integrating the linearized equations for a
sufficiently long time, typically T = 2400ma?/I", the eigenmode with the largest growth
rate dominates over the perturbation and we can retrieve its structure and growth
rate. Since the asymptotic analysis is valid when the vortices are well-separated, we
have first investigated in the computations a small ratio of the core radius of the
vortices over their separation distance a/b=0.067. This corresponds to the basic
states labelled K0.2, K0.5, D0.5 and S in table 1. The effective ratio a/d, where d
is the minimum distance between vortices, is however larger and reaches a value as
large as a/d =0.133 for the symmetric double row for x =0.5. Larger values of the
ratio a/b will be considered in Appendix B (basic states K0.2b10 and K0.2b7.5 in
table 1).

5. Strongly stratified and non-rotating fluid

For clarity, we start by presenting the case of a strongly stratified and non-rotating
fluid for each of the three vortex arrays. This particular case is representative and
will serve as a reference to describe the effects of the Froude and Rossby numbers
presented in §§6 and 7.

5.1. Karman vortex street

In the case of a stratified and non-rotating fluid (Ro — o), additional simplifications
can be made in the asymptotic eigenvalue problem (3.12). The arguments of the
mutual induction functions are equal to 0, implying that x and y are always equal
to unity. This also implies that A=A, B=B and C = C. Moreover, we see from (3.5)
that the self-induction functions w(k,, F,, +Ro) tend to a single function w.(k,, F})
when Ro — oo:

&f( Fy)

wo(ke, Fi) = lim (k.. Fy, £Ro) = ——kla’F}. (5.1)

The symmetric and antisymmetric modes then decouple since Awgre = Awjy, =0
in (3.12). Their growth rate is given by

2mh? b PP

r

2mb? b2 s
M o B4 \/ a2 <c + wc,> + 2 otm: (5.2b)
a a
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FIGURE 2. Non-dimensional growth rate 2mb?og./I” as a function of the rescaled vertical
wavenumber b Fj,k, for the Karman vortex street with close rows ¥ =0.2 in a strongly stratified
(F, =0.1) and non-rotating fluid: (@) symmetric mode and (b) antisymmetric mode. The growth
rate for =00 and u =2 is plotted by solid and dashed lines, respectively. The symbols (+)
correspond to the growth rate of the dominant mode obtained from the numerical stability
analyses (symmetric, y = o).

where A, B and C are given by (3.15) with x =1 = 1. Because B is purely imaginary
and .1, <0, (5.2) shows that the vortex array can be unstable only if A?>> (C +
(b?/a*)wo re)*. In the two-dimensional limit k. =0, we have w.,, =0 so that symmetric
and antisymmetric modes have the same growth rate. Similarly, symmetric and
antisymmetric modes have the same growth rate whatever k, when pu =2 because
C=0.

Before presenting our results, it is interesting to recall briefly the results of
Robinson & Saffman (1982) for the Karman vortex street in homogeneous fluids.
They found that for « less than about 0.3 (the precise value depends on the vortex
radius @ compared to b), the dominant instability is three-dimensional with p = o0
and with an antisymmetric configuration (we exclude the short-wavelength instabilities
also found by Robinson & Saffman 1982 but for which the filament approach is not
valid). When « is greater than about 0.3, the most unstable mode is two-dimensional
with u =2 and with either the symmetric and antisymmetric configurations since they
have the same growth rate in this case (see (5.2)). This two-dimensional instability
is a pairing instability where adjacent vortices of the same row tend to merge. Now
looking at the case of a strongly stratified (F, =0.1) and non-rotating fluid, figure 2
shows the real part of the non-dimensional growth rate 2nb’og./I" of the symmetric
and antisymmetric modes as a function of the rescaled vertical wavenumber bFk,
for the street spacing ratio x =0.2. The theoretical results are shown both for the
=00 (solid line) and the u =2 (dashed line) modes whereas the numerical method
provides solely the growth rate of the dominant mode (symbols), i.e. in the present
case the u =00 symmetric instability. For u =00, we see that the symmetric mode is
most unstable for a finite value of k, while the antisymmetric mode is stable for all
vertical wavenumbers. Strikingly, this is the opposite to the case of a homogeneous
fluid where the symmetric mode is stable while the antisymmetric mode is three-
dimensionally unstable. As seen in figure 2(a), the growth rate of the most unstable
mode is in perfect agreement for small values of k, with the growth rate obtained
from the numerical stability analysis (symbols). The theory predicts very well the
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FiGURe 3. Contours of the vertical vorticity ¢ of the most amplified perturbation in a strongly
stratified (F;, =0.1) and non-rotating fluid of the Karman vortex street with close rows x =0.2.
Plot (a) corresponds to the asymptotic theory and (b) corresponds to the numerical results. The
arrows indicate the direction of displacement of each vortex that alternates along the vertical
z-direction. The dominant instability is a three-dimensional symmetric zigzag instability with
u=o0. Only a domain of size 30 x 18 is shown while the original computational domain is
30 x 38. Shaded areas are regions of negative values. The dotted line indicates the boundary
r =2 of the vortices of the basic state.

most unstable vertical wavenumber k.., and the maximum growth rate but small
departures at large wavenumbers are observed because the asymptotic theory is
restricted to long-wavelength disturbances. Figure 3(a) shows the vertical vorticity
field ¢ of the most amplified perturbation predicted theoretically. It is given at leading
order by

- aé‘lm 8g‘lm a;Zm aé‘Zm
=— AX{p—— F+ AV m—— + AXp )y — Ayrm——— |, 53
¢ E { Xim o + Ay, 3y + Ax,, O + Ay, 2y (5.3)

m

where ¢;,, and ¢, are the dimensional basic vertical vorticities of the vortices of
the upper and lower rows, respectively (see (4.1)). It is in full agreement with the
dominant eigenmode determined numerically (figure 3b). We see that the perturbations
are localized in the vortex cores and consist for each vortex of two regions of
opposite vorticity. Such perturbations correspond to translations of the vortices in the
direction indicated by the arrows. The displacements are symmetric with respect to
the midplane between the two rows and all the vortices of a given row are displaced in
the same direction since u =o0. A three-dimensional sketch of the perturbed vortices
is presented in figure 4. Because such a three-dimensional bending instability in
strongly stratified fluids has been called a zigzag instability for vortex pairs (Billant &
Chomaz 2000; Otheguy et al. 2006b), we also use this term for the present three-
dimensional symmetric instability of the Karman vortex street in stratified fluids.
In homogeneous fluids, the instability is antisymmetric so that it is the interval in
the x-direction between the two rows which is vertically modulated, as shown by the
sketch in figure 5(a). For a counter-rotating vortex pair, a similar inversion of the
symmetry is observed: the unstable mode is symmetric in homogeneous fluids (Crow
instability), while in stratified fluids, it is the antisymmetric mode which is unstable
(zigzag instability) (Billant et al. 2010). This inversion is because the self-induction is
positive in stratified and rotating fluids while it is negative in homogeneous fluids.
Indeed, since C= — A>0 for u=00 and Ro=o0, we see directly from (5.2) that
the symmetric mode is unstable and the antisymmetric mode is stable only because
Wy Re = 0.
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FIGURE 4. Three-dimensional sketch of the theoretical dominant instability of the Karman
vortex street with close rows k¥ =0.2 in a strongly stratified (F;, =0.1) and non-rotating fluid.
The unperturbed vortices are shown by light grey. The perturbed vortices, shown in dark grey,
have been obtained by adding to the basic state the most unstable theoretical eigenmode with
a small but finite amplitude. The dominant mode is a u = oo symmetric zigzag instability that
vertically bends the vortices. Only one and a half vertical wavelengths are plotted.
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FIGURE 5. Sketch of the displacements in horizontal cross-sections induced by the two different
dominant modes of the Karman vortex street in homogeneous fluids. (a) Antisymmetric
three-dimensional instability («=o0) existing in homogeneous fluids (Robinson & Saffman
1982) and (b) symmetric pairing mode (u =2) existing in homogeneous and strongly stratified
fluids. In the case of three-dimensional instabilities, the direction of the displacements alternates
along the vertical z-direction.

As seen in figure 2, the growth rate for u =2 (dashed line) is also positive but
the maximum growth rate is obtained for two-dimensional perturbations (k, =0) and
the symmetric and antisymmetric modes have the same growth rate. As shown in
figure 5(b), this instability is a pairing instability which tends to move closer or
away from adjacent vortices of a given row (von Karman 1912; Robinson & Saffman
1982). Because this instability is two-dimensional, the stratification has no effect
on the dominant mode. However, note that the growth rate of three-dimensional
perturbations decreases with bF,k, in strongly stratified fluids instead of bk, in
homogeneous fluids. As F, — 0, the band of unstable vertical wavenumbers k, thus
widens as for the instability of a horizontal shear layer in stratified fluids (Deloncle,
Chomaz & Billant 2007). It is also worth noting that the maximum growth rate is
significantly lower for =2 than for u=o00. When u is varied between 2 and oo,
the most amplified vertical wavenumber and the maximum growth rate increase
monotonically. The overall dominant instability for the spacing ratio x =0.2 is
therefore the symmetric three-dimensional instability for u = co.

Figure 6 summarizes the characteristics of the dominant instabilities when «
is varied. The theoretically predicted maximum growth rate 2nb’ofl/I", the most
amplified wavenumber bF,k! and row-wise periodicity u are plotted as a function
of « for the symmetric and antisymmetric modes. We see that the u = co antisymmetric
three-dimensional instability is the dominant instability for « < 0.41 (note that this
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FIGURE 6. Plots of the maximum growth rate 2nb’oL/I", the corresponding wavenumbers

bF,kM and row-wise periodicity u versus the street spacing ratio « for the Karman vortex
street in a strongly stratified (F, =0.1) and non-rotating fluid: (a) symmetric mode and
(b) antisymmetric mode.

value is independent of the ratio a/b in a stratified and non-rotating fluid). When the
two vortex rows are more distant « > 0.41, the dominant overall instability becomes
the u =2 two-dimensional instability (pairing instability) with both symmetric and
antisymmetric configurations. Interestingly, the spacing ratio of vortex streets behind
two-dimensional bluff bodies lies usually within the range « < 0.41, so that they might
be unstable to the zigzag instability in stratified fluids.

5.2. Symmetric double row

In the case of the symmetric double row in a stratified and non-rotating fluid,
simplifications similar to the Karman vortex street case are made. Symmetric and
antisymmetric modes decouple, leading to the same dispersion relations (5.2) with w
equal to (5.1) and A, B and C given by (3.18) by taking again ¢ and x equal to 1.

In homogeneous fluid, Robinson & Saffman (1982) have found that the most
unstable instability for this vortex array is always the symmetric mode for © =2 and
is three-dimensional regardless of the value of the street spacing ratio «.

As shown in figure 7, the most unstable mode of the symmetric double row for
k =0.5 in a strongly stratified (F, =0.1) and non-rotating fluid is also predicted to
be three-dimensional with u =2 (dashed line in figure 7b) like in homogeneous fluid
but with the opposite symmetry, i.e. antisymmetric. The agreement between numerical
(symbols) and theoretical (solid lines) results is again excellent for small wavenumbers
and good for large wavenumbers. The antisymmetric mode for = oo (solid line in
figure 7b) is also three-dimensionally unstable but its maximum growth rate is much
lower than for u=2. The symmetric mode is unstable for u =2 but not for u=o0
(figure 7a).

The vertical vorticity field of the theoretical most amplified perturbation is displayed
in figure 8(a). It is also given by (5.3) but with (m + 1/2) replaced by m in ¢, ,,. The
agreement with the most unstable eigenmode determined numerically is excellent
(figure 8b). We see that two adjacent vortices of a given row tend to move closer
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FIGURE 7. Similar to figure 2 but for the double symmetric row with « =0.5. (a) Symmetric
mode and (b) antisymmetric mode. We recall that two row-wise periodicities are displayed:

u=o0 (solid lines) and u =2 (dashed lines). The symbols (+) correspond to the numerical
results found for the dominant mode (antisymmetric, u =2).
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FIGURE 8. Similar to figure 3 but for the symmetric double row for ¥ =0.5. (a) Symmetric
mode and (b) antisymmetric mode.

to or farther from each other, like in the pairing instability since p =2. Similarly,
two facing vortices of the two rows are displaced antisymmetrically and tend to be
rotated like in the zigzag instability of a single counter-rotating vortex pair (Billant &
Chomaz 2000).

Figure 9 shows the maximum growth rate of the dominant instability over all
possible values of w as a function of « for the symmetric and antisymmetric
configurations. The u =2 antisymmetric instability is the most unstable for all values
of k. In the limit where the rows are very close, i.e. when x — 0, the growth rate scaled
by I'/(2nb?) diverges since it is proportional to the maximum strain: o2! oc I'/(21th?)
so that of12mb?/I" oc 1/k%. When « increases, i.e. when the distance between the two
rows increases, the most amplified vertical wavenumber k¥ tends to 0. This is because
the unstable interaction between the facing rows of vortices decreases so that the

w =2 three-dimensional zigzag instability tends towards a two-dimensional pairing
instability of adjacent vortices of a given row.
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FIGURE 9. Similar to figure 6 but for the symmetric double row. (a) Symmetric mode
and (b) antisymmetric mode.

5.3. Single row

The limit k¥ — oo considered above for the Karman vortex street or the symmetric
double row is in fact identical to the case of a single row since the two rows are
infinitely far away from each other and do not interact. As explained above, the
dominant instability is then a two-dimensional instability with u =2, i.e. a pairing
instability of adjacent vortices of the row.

6. Stratified and non-rotating fluid: effect of the Froude number

We now investigate the effect of the Froude number, still for a non-rotating fluid.
The growth rate formulae (5.2) for the Karman vortex street and their equivalent for
the symmetric double row and the single row remain valid.

6.1. Kdrman vortex street

Figure 10 shows the theoretical growth rate for the Karman vortex street of the
symmetric and antisymmetric modes for various Froude numbers from strong
stratification (Fj, =0.1) to moderate stratification (F, = 1.2). For each Froude number,
the agreement between the growth rate of the dominant mode (u =00 symmetric)
obtained numerically (symbols) and theoretically (solid lines) is excellent at small
rescaled wavenumbers and satisfactory at large wavenumbers. The numerical stability
analysis predicts a slightly larger band of unstable wavenumber than the theory. We
see that the growth rate curves (solid lines) of the three-dimensional zigzag instability
for F,=0.1 and F, =1 are almost similar except for a small decrease of the most
amplified wavenumber. Equations (5.1) and (5.2) show that the growth rate og. is a
function of Fj, and k, only through the product bFk,./</(F},), when .o/ is purely real,
i.e. when F, <1 (see Appendix A). Consequently, the maximum theoretical growth
rate is independent of F, when F, < 1. For this reason, for all F, <1, the threshold
k =0.41, below which the dominant instability is three-dimensional, is the same as
for F;, =0.1. The stratification has thus little effect on the zigzag instability as long as
F, < 1. However, when the Froude number is further increased to Fj, = 1.2, an abrupt
drop of 60 % of the maximum growth rate is observed. This damping is because wry
is no longer zero but negative when Fj, > 1 because the bending disturbances have a
viscous critical layer (Billant 2010). This is confirmed in figure 11: the corresponding
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FiGURE 10. Similar to figure 2 but for various Froude numbers. (¢) Symmetric mode and
(b) antisymmetric mode. We recall that two row-wise periodicities are displayed: u = oo (solid
lines) and p =2 (dashed lines). The curves represent the asymptotic theory and correspond,
from right to left, to the Froude numbers: F,=0.1, F,=1 and F,=1.2. The symbols
correspond to the numerical results obtained for the dominant mode and for the same
Froude numbers: +, F;, =0.1; A, F,=1; m F,=1.2.
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FIGURE 11. Similar to figure 3 but for F, =1.2. Only numerical results are presented. (a) The
global view of the eigenmode and (b) a close-up view of one vortex core showing the viscous
critical layer.

numerical eigenmode exhibits a viscous critical layer in each vortex core at the radius
where the angular velocity of the vortex is equal to the Brunt—Viisidlad frequency. In
contrast, the maximum growth rate of the two-dimensional pairing instabilities is not
affected by the stratification (figure 10). Only the width of the unstable wavenumber
band varies with Fj,.

When F, further increases beyond 1.2 (figure 12a), the maximum growth rate of
the zigzag instability (solid line) drops to zero at Fj, =1.83 and then re-increases. The
two-dimensional pairing instability therefore becomes dominant for 1.34 < F, < 3.25
since its maximum growth rate (dashed line) is independent of Fj,. It should be stressed
that these thresholds for the Froude number are specific to the spacing ratio x =0.2
presented here and differ for other values of k. The corresponding most amplified
wavenumber of the three-dimensional instability (figure 12b) also drops to zero for
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FIGURE 12. (a) Non-dimensional maximum growth rate 2nb*o, /" of the most unstable mode

for u = o0 (solid line) and w =2 (dashed line) and (b) the corresponding unstable wavenumber

thk?” as a function of the Froude number F, for the Karman vortex street with close rows
(¢ =0.2) in a non-rotating fluid.
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FIGURE 13. Similar to figure 10 but for the symmetric double row with « =0.5.
(a) Symmetric mode and (b) antisymmetric mode.

F,=1.83 and then re-increases. In fact, the instability becomes antisymmetric for
F, > 1.83, like in homogeneous fluids. This reversal of the symmetry is because the
real part of the self-induction function (3.5) becomes negative.

However, it should be recalled that the asymptotic theory is restricted to moderate
Froude numbers, Fj, < (b/a)? (see §3.1). Therefore, the results found by Robinson &

Saffman (1982) in homogeneous fluid (Fj, =o0) cannot be recovered by the present
theory.

6.2. Symmetric double row

As seen in figure 13, the maximum theoretical growth rate for the symmetric double
row also remains identical when the Froude number is increased from F,=0.1 to
F, = 1. However, when the Froude number is further increased to F, =1.2, the u =2
instability is no