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The absolute/convective instability properties of the Batchelor vortex are determined
by direct numerical simulation of the linear impulse response. A novel decomposition
procedure is applied to the computed wavepacket in order to retrieve the complex
wavenumber and frequency prevailing along each spatio-temporal ray. In particu-
lar, the absolute wavenumber and frequency observed in the laboratory frame are
determined as a function of swirl parameter and external flow. The introduction of
a moderate amount of swirl is found to strongly promote absolute instability. In
the case of wakes, the transitional helical mode that first undergoes a switch-over to
absolute instability is found to be m = −1 without requiring any external counterflow.
In the case of jets, the transitional helical mode is very sensitive to swirl and varies
in the range −5 6 m 6 −1. Only a slight amount of external counterflow (1.5% of
centreline velocity) is then necessary to trigger absolute instability. The results of this
numerical procedure are in good qualitative and quantitative agreement with those
obtained by direct application of the Briggs–Bers criterion to the inviscid dispersion
relation (Olendraru et al. 1996). Implications for the dynamics of swirling jets and
wakes are discussed.

1. Introduction
Swirl is known drastically to affect the dynamics of a wide variety of free shear flows

such as jets, wakes and mixing layers. The goal of the present study is to demonstrate
that axisymmetric jets and wakes experience a transition from convective to absolute
instability for moderate swirling levels. Instead of implementing the Briggs–Bers
criterion directly on the dispersion relation (see the companion paper, Olendraru
et al. 1996), we present a novel procedure which relies on a thorough treatment of the
linear impulse (or Green) function as determined from direct numerical simulations.
The analysis of the large-time asymptotic response leads to the determination of the
complex wavenumber and frequency ‘observed’ for each helical mode along distinct
spatio-temporal rays. The retrieval of this information is shown to be sufficient to
ascertain the convective/absolute nature of the basic flow under consideration. This
formulation is illustrated here on the Batchelor vortex which satisfactorily represents
the velocity field of trailing line vortices (Batchelor 1964) with superimposed axial
flow.
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In the absence of any external axial stream, the Batchelor vortex depends on a
single non-dimensional parameter, namely the swirl parameter q which is the ratio of
the swirl velocity and axial velocity within the core (see equation (2.2) with a = 0). To
the present day, most linear instability analyses have been restricted to the temporal
framework (real wavenumber, complex frequency). The inviscid instability properties
were first examined by Lessen, Singh & Paillet (1974) and more recently by Mayer
& Powell (1992). In both instances, the Howard & Gupta (1962) equation was solved
numerically in order to determine the dispersion relation between wavenumber and
frequency. The main features of inviscid modes may be summarized as follows. When
q = 0, the basic state reduces to a fully developed axisymmetric jet and displays
only two unstable helical modes with azimuthal wavenumber m = ±1 and identical
instability characteristics. Any finite swirl q > 0 leads to the breaking of the reflectional
symmetry θ −→ −θ, where θ denotes the azimuthal angle. Numerical results indeed
indicate that the co-rotating m = 1 mode becomes gradually attenuated. By contrast,
as swirl q is increased, the counter-rotating m = −1 mode is enhanced and higher-
order counter-rotating helical modes m < −1 are destabilized. Only modes with
m < 0 therefore remain unstable at moderate values of q. Furthermore, the maximum
growth rate over all axial wavenumbers approaches a limiting value as m → −∞
(Leibovich & Stewartson 1983). In this asymptotic régime, the overall maximum
growth rate is reached near q = 0.87. Larger swirl values gradually dampen all helical
modes until complete stabilization of the flow for q ≈ 1.5. Similar trends have been
observed in the spatial instability (real frequency, complex wavenumber) calculations
of Olendraru et al. (1996). Corresponding viscous temporal calculations have been
performed by Lessen & Paillet (1974), Khorrami (1991) and Mayer & Powell (1992).
These investigators have revealed the existence of distinct families of purely viscous
modes displaying growth rates that are orders of magnitude below their inviscid
counterparts.

These theoretical results have been compared to experimental observations, par-
ticularly within the context of vortex breakdown. For extensive discussions on this
phenomenon and its manifold theoretical interpretations, the reader is referred to
the review articles of Leibovich (1978, 1984), Stuart (1987), Escudier (1988) and
Delery (1990), among others. The onset of breakdown in vortices with axial flow
is signalled by the appearance of a stagnation point within the core, corresponding
to a sudden streamwise deceleration. Time-averaged velocity distributions measured
downstream of the stagnation point, in the wake region of the vortex breakdown
state, yield q values below 1.5, which implies that they are temporally unstable (Garg
& Leibovich 1979). Furthermore, the observed frequency of the m = −1 instabil-
ity mode displays good qualitative agreement with the inviscid temporal stability
calculations of Lessen et al. (1974). Experiments also demonstrate that the veloc-
ity distributions measured upstream of the stagnation point, in the jet-like region,
correspond to q values exceeding 1.5, thereby indicating that the incoming flow re-
mains linearly stable (Garg & Leibovich 1979; Escudier, Bornstein & Maxworthy
1982).

Early modelling attempts by Benjamin (1962) have tended to view the occurrence
of vortex breakdown as the analogue of hydraulic jumps in supercritical shallow-
water layers. In this context, vortices with axial flow can be classified according to
the propagating behaviour of the non-dispersive axisymmetric neutral Kelvin waves
which they can support in the low-wavenumber limit. Such flows are said to be
supercritical if they sustain only downstream-travelling waves and subcritical if they
sustain both upstream and downstream-travelling waves. Vortex breakdown is then
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considered as the transition region between an incoming supercritical flow and an
outgoing subcritical flow as in a hydraulic jump. This interpretation is supported
by the experimental study of Escudier et al. (1982): the upstream flow is indeed
supercritical and the downstream flow subcritical with respect to low-wavenumber
axisymmetric Kelvin disturbances.

These notions have subsequently been extended by Tsai & Widnall (1980) to
non-axisymmetric temporal waves of arbitrary real axial wavenumber k. Whereas
Benjamin (1962) used the phase velocity at zero wavenumber to discriminate between
upstream- and downstream-travelling waves, Tsai & Widnall adopted an ad-hoc group
velocity criterion based on ∂ω/∂k for neutrally stable waves.† Their analysis, applied
to the experimental observations of Garg (1977), indicates that incoming swirling
flows exhibiting vortex breakdown are supercritical with respect to helical modes
m = 0, ±1. Furthermore, in the case of axisymmetric breakdown, the flow displays a
transition from supercritical to subcritical with respect to helical modes m = 0 and
m = +1. Finally, in the case of spiral vortex breakdown, the supercritical–subcritical
transition only occurs for the helical mode m = +1, the axisymmetric mode m = 0
remaining supercritical throughout.

These ideas can be reinterpreted and generalized by invoking the now widely used
concepts of absolute/convective instabilities (see Huerre & Monkewitz 1990 for a
review). In this framework, the nature of the instability is determined by examining
the linear impulse response of a given basic flow for large time. If the response
wavepacket is convected away from the source location, the flow is said to be
convectively unstable, i.e. supercritical. If it contaminates the entire medium both
upstream and downstream of the source location, the flow is said to be absolutely
unstable, i.e. subcritical. The objective of the present study is precisely to determine the
absolute/convective nature of the instability in the axial direction for the Batchelor
vortex family of swirling flows. In this sense, the investigation constitutes a fully
spatio-temporal generalization of the above mentioned analyses.

The linear impulse response of various shear flows has already been examined in
the past. The case of the laminar boundary layer on a flat plate was carefully treated
both theoretically and experimentally by Gaster (1975) and Gaster & Grant (1975)
with excellent agreement between computation and observations in the linear régime.
More recently, Park (1990) reconstructed the impulse response wavepacket associated
with the asymptotic suction boundary layer on a curved plate subjected to a Görtler
instability. In these investigations boundary layers were effectively demonstrated
to be convectively unstable with respect to both Tollmien–Schlichting and Görtler
instabilities. The corresponding problem for the Kelvin–Helmholtz instability of a
piecewise-linear mixing layer has been examined by Balsa (1989).

The paper is organized as follows. The two-parameter family of Batchelor vortices
used as basic flows is defined in §2 together with the specification of the governing
linearized Navier–Stokes equations and associated initial conditions. The numerical
method is outlined in §3. In §4, we describe the local modal decomposition method
used to retrieve the large-time asymptotics along each spatio-temporal ray. The
absolute/convective nature of the instability is then deduced and mapped in the
space of swirl and external flow parameters for each helical mode (§5). The main
results and their implications in the vortex breakdown context are presented in a final
section §6.

† Phase and group velocities coincide in the low-wavenumber régime where waves become
non-dispersive and neutral.
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2. Problem formulation
A cylindrical coordinate system is adopted, whereby x, r and θ respectively denote

axial (streamwise) distance, radial distance and azimuthal angle. The basic flow under
consideration is chosen to be the steady Batchelor (1964) vortex which, in terms of
dimensional variables indicated by a star superscript, admits the axial, radial and
azimuthal velocity components

U?(r?) = U∞ + (Uc −U∞) e−(r?/R)2

, V ?(r?) = 0, W?(r?) = ΩcR
1− e−(r?/R)2

r?/R
. (2.1)

In the above expressions, Uc is the centreline axial velocity, U∞ is the free-stream
axial velocity, Ωc is the rotation rate on the axis and R is a measure of the core size.
Since the basic velocity field is independent of x, viscous diffusion is assumed to be
effectively compensated by a body force, as in all previous instability analyses of the
Batchelor vortex. It is convenient to introduce non-dimensional variables (without
a star superscript) by selecting as length scale the core size R and as velocity scale
the velocity difference ∆U ≡ Uc −U∞. In terms of these variables, the basic velocity
components (2.1) become

U(r) = a+ e−r
2

, V (r) = 0, W (r) = q
1− e−r

2

r
, (2.2)

where

a ≡ U∞

∆U
and q ≡ ΩcR

∆U
(2.3)

respectively designate the external flow and swirl parameters. The swirl parameter
q is a non-dimensional measure of the core rotation rate whereas the external flow
parameter a is a measure of the free-stream axial velocity far from the axis. When
q = 0, one recovers a fully developed jet or wake velocity profile in the absence of
rotation.

Typical axial and azimuthal velocity distributions are displayed on figure 1. The
effect of varying the external flow parameter a is illustrated on figure 1(a,b,c). Coflow-
ing jets correspond to a > 0 (figure 1a), counterflowing jets or wakes to −1 < a < 0
(figure 1b), coflowing wakes to a < −1 (figure 1c).†

Throughout the study, we consider the evolution of infinitesimal disturbances
superimposed on the basic flow profiles (2.2) and governed by the non-dimensional
linearized incompressible Navier–Stokes equations for the perturbation velocity u(x, t),
pressure p(x, t) and vorticity ω = ∇× u:

∇ · u = 0 , (2.4)

∂u

∂t
= u×Ω+U × ω − ∇ [p+ u ·U ] +

1

Re
∇2u . (2.5)

In the above expressions U (r) denotes the basic velocity field specified in (2.2) and
Ω(r) = ∇×U the basic vorticity. The Reynolds number Re is defined as

Re =
∆U R

ν
, (2.6)

where ν designates the kinematic viscosity. The viscous diffusion term Re−1∇2U
acting on the basic flow has been removed by an effective body force as mentioned
previously.

† For wake flows the streamwise direction points towards negative x.
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Figure 1. Axial velocity profiles: (a) a > 0 coflowing jet, (b) −1 < a < 0 counterflowing wake/jet,
(c) a < −1 coflowing wake. (d) Azimuthal velocity profile.

In order to mimic a delta-function forcing in space and time, the following initial
conditions are imposed on the perturbations: ux

uy
uz

 =
v0

ρ0

 −(y − y0)− (z − z0)
x− x0

x− x0

 exp

[
−
(
x− x0

ρ0

)2
]
, (2.7)

where, for convenience, we have adopted the usual Cartesian coordinate system
(x, y, z) and associated velocity components (ux, uy, uz). Such a velocity distribution
satisfactorily represents a localized perturbation of characteristic velocity v0 concen-
trated around x0 within a sphere of radius ρ0. This functional form has been chosen
so as to enforce the continuity equation (2.4). The objective of the study is then to
analyse the spatio-temporal evolution of the impulse response wavepacket induced
by this localized source field. In all that follows, the radial location of the source is
chosen to be at r0 = 0.75, close to the maximum of the azimuthal vorticity where
the jet shear layer is expected to be the most receptive. The other initial condition
parameters were chosen to be ρ0 = 0.3 and v0 = 0.1. The selected value of ρ0 is
somewhat of a compromise solution. It should be small enough so that the initial
conditions mimic a localized impulse, but it should extend over a few grid points in
order to avoid the Gibbs phenomenon arising from spectral truncation.
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3. Numerical method
Equations (2.4)–(2.5) are effectively solved in Cartesian coordinates within a rect-

angular box periodically replicated in the three x (streamwise)-, y- and z-directions.
A pseudo-spectral scheme has been implemented to integrate numerically this sys-
tem subject to initial conditions (2.7). The code was originally written by Vincent
& Meneguzzi (1991) and adapted to jet instability studies by Brancher, Chomaz &
Huerre (1994) and Brancher (1996). The main steps of the numerical method are
outlined below.

Let us introduce the usual Fourier transform

û(k, t) =

∫
u(x, t)e−ik·x dx (3.1)

whereby the governing equations are transformed into

û(k, t) · k = 0 , (3.2)

∂û

∂t
(k, t) = P(k)[ ̂u×Ω+U × ω](k, t)− 1

Re
k2û(k, t) . (3.3)

The tensor P(k) with Cartesian components Pij ≡ δij−kikj/k2 designates the projection
operator on the space of divergence-free fields.

Time integration between t = nδt and t = (n+ 1)δt is performed in spectral space
via the second-order finite-difference Adams–Bashforth numerical scheme

ûn+1(k) = ûn(k)e−k
2δt/Re +

(
3
2
Pn(k)e−k

2δt/Re − 1
2
Pn−1(k)e−2k2δt/Re

)
δt (3.4)

so that the viscous diffusion term in (3.3) is integrated exactly. In equation (3.4),

ûn(k) stands for û(k, n δt) and Pn(k) for P(k)[ ̂un ×Ω+U × ωn](k). At each time
step t = n δt the Fourier transform defined in (3.1) is evaluated. The transform̂un ×Ω+U × ωn of cross-terms is then calculated and projected via the operator
P(k), thereby providing the data necessary to perform the temporal integration to the
next time step t = (n+ 1)δt.

In all simulations, the periodic rectangular box is made up of Nx × Ny × Nz

collocation points where Nx = 768 and Ny = Nz = 96, equally spaced on a Cartesian
mesh with δx = δy = δz = 0.15. The streamwise (Lx) and cross-stream (Ly = Lz)
extent of the box therefore correspond to 115 and 14 jet radii respectively. Such
an elongated box is necessary in order to avoid any spurious effects associated
with the streamwise-periodic boundary conditions. Streamwise periodicity has indeed
been checked to have no significant influence on the wavepacket evolution over the
total selected integration time. In spite of the fact that the basic azimuthal velocity
W (r) decays only algebraically fast as r → ∞, the cross-stream periodicity does not
introduce any undesirable effects: all computed quantities appearing in (3.3) are linear
in the perturbation quantities and therefore decay exponentially when r → ∞, as for
all linearized eigenfunctions. A typical exponential decay is of the form e−kr and it is
sufficiently fast provided that the axial wavenumbers of interest are reasonably large:
in most situations, these will satisfy the condition k > 0.6 which, for the selected
box size, ensures that e−kr < 10−2 at the cross-stream boundaries. Finally, the time
increment is chosen to be δt = 0.01, in such a way that the Courant condition
δt < δx/Umax is fulfilled, where Umax is the maximum basic velocity. Throughout the
study, the Reynolds number has been fixed at Re = 667, so that the associated grid
and time steps lead to reasonable computational size and integration time (6h 40 of
CPU time on a Cray 90 for a 3200 iteration run). As expected, lowering Re causes a
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Figure 2. DNS code validation for a = 0, q = 0.4, Re = 667: temporal evolution of the
root-mean-square perturbation velocity (ū2 + v̄2 + w̄2)1/2 and velocity components (ū,v̄,w̄). Initial
conditions are chosen to coincide with the m = −2 inviscid eigenmode at k = kmax = 0.9.

global damping of the solution. However, this effect has not been investigated here,
as it does not qualitatively affect the present results.

In order to validate the numerical code, a standard test simulation has been
performed as in Brancher et al. (1994). Direct numerical simulations initialized by a
linearized eigenmode distribution have been compared with the predictions of inviscid
linear instability theory. A sample result is shown on figure 2, for a swirling jet at
a = 0, q = 0.4 and Re = 667. The initial conditions have been chosen to coincide
with the linearized eigenfunction of the (most amplified) m = −2 mode of axial
wavenumber k = kmax = 0.9. The streamwise period of the computational box is
therefore selected to be Lx = 2π/kmax. The figure displays the computed temporal
evolution of the r.m.s. axial (ū), radial (v̄) and azimuthal (w̄) perturbation velocity
components as well as the r.m.s. perturbation velocity (ū2 + v̄2 + w̄2)1/2. Except at the
very beginning of the simulation where a slight viscous smoothing takes place, these
field variables increase exponentially with the growth rate ωi = 0.23, a result which
agrees satisfactorily with the inviscid theoretical value 0.26 if one bears in mind the
damping effect of viscosity.

4. Wavepacket response and modal decomposition
Typical calculated impulse responses are displayed in figures 3 and 4 for a non-

rotating jet (q = 0) and a rotating jet (q 6= 0) respectively. Isocontours of streamwise
perturbation velocity have been represented to characterize the spatial distribution
of the wavepacket. At this level of description, it is impossible to determine unam-
biguously the leading and trailing edges of the wavepacket: their location naturally
depends on the perturbation level selected for the isosurfaces. It is therefore premature
to draw any conclusion regarding the absolute or convective nature of the instability.
However, such snapshot pictures provide valuable information on the spatial structure
and modal content of the impulse response. In the non-rotating case (figure 3), the jet
response is dominated by the superposition of counter-rotating helical modes m = ±1
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Figure 3. Wavepacket spatial distribution at t = 32 for a non-rotating jet at a = 0, q = 0, Re = 667.
Isosurfaces of axial perturbation velocity component u: (a) u = ±umax/20 and (b) u = ±umax/1000,
where umax is the maximum value of u in the entire domain. Isocontours of axial perturbation
velocity component u at various cross-sections corresponding to distinct x/t stations: (c) at the
wavepacket trailing edge x/t = 0.4 for u = ±10−4,−5,−6; (d) at the wavepacket maximum x/t = 0.6
for u = ±10−3,−4,−5,−6; (e) at the wavepacket leading edge x/t = 0.8 for u = ±10−4,−5,−6. In these
plots, dark regions or lines correspond to positive values of u, grey regions or lines to negative
values of u.

of equal intensity. The azimuthal standing wave patterns in the various cross-sections
x/t = const corroborate this observation. This feature is consistent with the fact that
the only unstable modes are precisely m = ±1. In the swirling case (figure 4), the
impulse response is composed of helical waves which rotate in a direction opposite
to that of the basic flow. According to the cross-sectional views (figure 4c,d,e), the
azimuthal structure is complex and made up of a superposition of various helical
modes of unknown wavenumber m.

The goal of the following two subsections is to apply appropriate decomposition
procedures to the computed impulse response in order to retrieve the temporal
instability characteristics for all real wavenumbers (§4.1) and more importantly the
long-time asymptotics of the wavepacket (§4.2). In essence, all the observable features
of the dispersion relation will be reconstructed from the knowledge of the impulse
response. The steps common to these two procedures are outlined below for the axial
perturbation velocity component u(x, y, z, t) generated by DNS.

It is first necessary to compute the velocity u(x, r, θ, t) at the nodes of a grid in
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Figure 4. (a, b) As figure 3 but for a rotating jet at q = 0.4, and (c) at the wavepacket trailing-edge
near x/t = 0 for u = ±10−5,−6; (d) at the wavepacket maximum x/t = 0.6 for u = ±10−1,−2,−3; (e)
at the wavepacket leading-edge x/t = 0.12 for u = ±10−5,−6.

the cylindrical coordinate system (x, r, θ). Let ûκlp(t) denote the discrete Cartesian
Fourier transform with wavenumber indices κ, l and p in the x-, y- and z-directions
respectively as generated by DNS. The velocity u(x, r, θ, t) at each collocation point
is then obtained via the ‘slow’ reverse Fourier transform

u(x, r, θ, t) =
1

NxNyNz

∑
κlp

ûκlp(t) exp 2iπ

(
κ
x

Lx
+ l

r cos θ

Ly
+ p

r sin θ

Lz

)
(4.1)

over all Cartesian Fourier modes κ = −Nx/2, · · · , Nx/2− 1, l = −Ny/2, · · · , Ny/2− 1,
p = −Nz/2, · · · , Nz/2− 1.

To define the amplitude and phase of the wavepacket unambiguously, the analytical
axial velocity ũ(x, r, θ, t) is introduced through the convolution

ũ(x, r, θ, t) =

[
δ(x) +

i

πx

]
∗ u(x, r, θ, t) (4.2)

where symbol ∗ designates the convolution operator with respect to x. Conversely
u(x, r, θ, t) = Re ũ(x, r, θ, t). In Fourier space, this amounts to setting all negative
k-modes of u(x, r, θ, t) to zero in order to recover the usual complex exponential
representation.

Finally, each azimuthal component m is isolated by means of the azimuthal Fourier
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transform

ũm(x, r, t) =

∫ 2π

0

ũ(x, r, θ, t)e−imθ dθ . (4.3)

The above steps are implemented on a cylindrical grid with 768 points in the
streamwise direction, 20 points in the radial direction and 32 points in the azimuthal
direction. The azimuthal wavenumber is therefore restricted to the range |m| < 16.

4.1. Temporal instability properties

As in Brancher (1996), the broad nature of the wavenumber spectrum defining the
initially localized perturbation can effectively be used to extract the temporal history
of each individual axial Fourier component k and to deduce its asymptotic temporal
growth rate.

The axial Fourier transform of ũm(x, r, t) reads

ˆ̃um(k, r, t) =

∫ +∞

−∞
ũm(x, r, t) e−ikx dx . (4.4)

A measure âm(k, t) of the real amplitude of each Fourier component pair (k, m) is then

âm(k, t) =

(∫ +∞

0

| ˆ̃um(k, r, t)|2 r dr

)1/2

. (4.5)

A measure ϕm(k, t) of the associated phase distribution at the radial source location
r0 may conveniently be chosen as

ϕm(k, t) = arg ˆ̃um(k, r0, t) , 0 6 ϕm(k, t) < 2π . (4.6)

The temporal growth rate ωm,i(k) can then be obtained through the formula

ωm,i(k) ∼
∂

∂t
ln âm(k, t) , t→∞ , (4.7)

while the real part ωm,r(k) of the frequency is calculated according to the definition

ωm,r(k) ∼ −
∂

∂t
ϕm(k, t) , t→∞ . (4.8)

In the numerical implementation of this procedure, the logarithmic derivative (4.7)
is effectively taken to be

ωm,i(k) ≈
ln
[
âm(k, t2)/âm(k, t1)

]
t2 − t1

, (4.9)

where t1 = 16 and t2 = 32, while the derivative (4.8) is evaluated as

ωm,r(k) ≈ −
ϕm(k, t3)− ϕm(k, t2)

t3 − t2
, (4.10)

where t3 = 32.5. Note that the phase function ϕm(k, t) defined in (4.6) is discontinuous
whenever it reaches the value 0 or 2π. In order to circumvent this difficulty, the time
interval t3 − t2 appearing in (4.10) is deliberately selected to be much shorter than
t2 − t1 in (4.9).

Overall results obtained via this procedure are displayed on figure 5 for the
Batchelor vortex without external flow a = 0, q = 0.8, Re = 667. For this parameter
setting, only the first twelve counter-rotating helical modes (−12 6 m 6 −1) are
seen to be unstable. The most amplified disturbance is generated at m = −4 and
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Figure 5. Dominant temporal instability modes for a = 0, q = 0.8 and Re = 667 retrieved by
DNS for each helical mode −12 6 m 6 −1: (a) temporal growth rate ωm,i(k); (b) real part of the
frequency ωm,r(k).

kmax
−4 = 2.15. The axisymmetric mode (m = 0), as well as all co-rotating helical modes

(m > 0) are found to be stable. These results are in qualitative agreement with the
linear instability analysis of Lessen et al. (1974) summarized in the introduction.
According to the latter investigation, higher-order helical modes remain inviscidly
unstable for large |m|, m < 0, whereas viscosity is seen to stabilize all modes beyond
m = −12 when Re = 667.

A quantitative comparison between the viscous temporal (VT) instability properties
retrieved in such a way and the inviscid temporal (IT) results of Lessen et al. (1974) is
presented in table 1 for the first six counter-rotating helical modes. The most amplified
axial wavenumbers kmax

m are in excellent agreement. As expected from a fully viscous
calculation, associated temporal growth rates ωmax

m,i are systematically lower than their
inviscid counterparts.
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kmax
m ωmax

m,i

m IT VT WA IT VT WA

−1 0.61 0.54 0.56 0.17 0.14 0.13
−2 1.22 1.18 1.15 0.31 0.27 0.25
−3 1.66 1.68 1.64 0.36 0.31 0.28
−4 2.14 2.17 2.13 0.37 0.31 0.28
−5 2.65 2.68 2.64 0.39 0.30 0.27
−6 3.20 3.22 3.17 0.40 0.28 0.25

Table 1. Most amplified wavenumber kmax
m and associated growth rate ωmax

m,i for the Batchelor vortex
without external flow at a = 0, q = 0.8, −6 6 m 6 −1. IT: inviscid temporal instability calculations
of Lessen et al. (1974); VT: viscous temporal instability properties retrieved by DNS as described
in §4.1 for Re = 667; WA: wavepacket asymptotics retrieved by DNS as described in §4.2 for
Re = 667.

In order to verify that (4.9) leads to reliable estimates of the asymptotic temporal
growth rate, it appears essential to check that the radial shape of the corresponding
eigenfunction is approximately invariant with time, as shown on figure 6 for different
axial wavenumbers at m = −4: for the most amplified wavenumber kmax

−4 = 2.15, the

radial distributions | ˆ̃um(k, r, t)| and arg ˆ̃um(k, r, t) of amplitude and phase at t1 and t2 are
indeed invariant (figure 6a). As the wavenumber is lowered to k = 1.15 and k = 0.75
to reach neutral stability (figure 6b,c), the shape invariance gradually deteriorates and
remains enforced only near the axis r = 0 over a limited radial extent. For these
selected values of t1 and t2, quantitatively accurate results are therefore obtained only
sufficiently far away from neutral whence transient effects have become negligible. In
order to confirm the accuracy of the results near neutral, one would have to extend
the computations over longer integration times and therefore longer axial distances.

4.2. Large-time wavepacket asymptotics

The objective of the following procedure is to determine the complex streamwise wave-
number km(vg) and complex frequency ωm(vg) observed along each spatio-temporal
ray x/t = vg for different azimuthal modes m in the asymptotic régime t→∞. This is
usually achieved analytically by resorting to steepest-descent arguments (Bers 1983),
according to which each azimuthal mode is expected to evolve as

ũm(x, r, t) ∼ Fm(vg, r, t)e
i[km(vg)x−ωm(vg)t] , t→∞ . (4.11)

In the above expression Fm(vg, r, t) is an algebraically decaying function of time that
involves the eigenfunction pertaining to km.

In what follows, it will prove useful to introduce the growth rate σm(vg) ‘observed’
along a particular spatio-temporal ray x/t = vg for the azimuthal mode m. According
to (4.11),

σm(vg) = ωm,i(vg)− km,i(vg)vg. (4.12)

Let

Am(x, t) =

(∫ +∞

0

|ũm(x, r, t)|2r dr

)1/2

(4.13)

denote the real amplitude pertaining to azimuthal mode m, and

Φm(x, t) = arg ũm(x, r0, t) , 0 6 Φm(k, t) < 2π , (4.14)
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Figure 6. Radial distribution of temporal eigenfunction ˆ̃um(r, k, t) for azimuthal mode m = −4
retrieved by DNS from the perturbation axial velocity fields at t1 = 16 and t2 = 32 with a = 0,
q = 0.8, Re = 667. The amplitude (left) is represented on a semi-log plot and the phase (right) on a
linear plot at three values of the axial wavenumber k indicated by the symbols ◦ on figure 5(a): (a)
k = kmax

−4 = 2.15, (b) k = 1.15 and (c) near neutral k = 0.75.

the associated phase function measured at the radial source location r0. It is now
possible to retrieve from (4.13)–(4.14) all the characteristics km(vg), ωm(vg) and σm(vg)
along x/t = vg, as defined in (4.11)–(4.12).

The temporal growth rate σm(vg) is given by

σm(vg) ∼ d

dt
lnAm(vgt, t) , t→∞ . (4.15)
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As demonstrated in the Appendix, the imaginary part km,i of the wavenumber ‘ob-
served’ along x/t = vg is simply given by

− km,i(vg) =
dσm
dvg

(vg) , (4.16)

where it is implied that vg is real. Knowing σm(vg) and km,i(vg), the corresponding
imaginary part ωm,i of the frequency is calculated from (4.12) according to the
formula

ωm,i(vg) = σm(vg) + km,i(vg)vg . (4.17)

By definition, the real parts of km(vg) and ωm(vg) are related to the phase function
Φm(x, t) defined in (4.14) via the expressions

km,r(vg) ∼ ∂

∂x
Φm(x = vgt, t) , t→∞ , (4.18)

and

ωm,r(vg) ∼ −∂
∂t
Φm(x = vgt, t) , t→∞ . (4.19)

Thus the quantities σm, −km,i, ωm,i, km,r and ωm,r may all be determined as a function
of vg by making use of expressions (4.15)–(4.19).

In the numerical evaluation of these functions, the logarithmic derivative appearing
in (4.15) is taken to be

σm(vg) ≈ ln[Am(vgt2, t2)/Am(vgt1, t1)]

t2 − t1
, (4.20)

with t1 = 16 and t2 = 32. The function σm(vg) is thereby evaluated in the range
−0.625 6 vg 6 2.972 in successive steps of size δvg = δx/t2 ≈ 4.7 × 10−3. Equation
(4.16) is discretized into

− km,i(vg) ≈ σm(vg + δvg)− σm(vg)

δvg

, (4.21)

with the same step size δvg. Finally, (4.18) and (4.19) are discretized into

km,r(vg) ≈ Φm(vgt2 + δx, t2)− Φm(vgt2, t2)

δx
, (4.22)

ωm,r(vg) ≈ −Φm(vgt2, t3)− Φm(vgt2, t2)

t3 − t2
, (4.23)

where t3 = 32.5. Note that, in the same spirit as in §4.1, the growth rate σm(vg) is
estimated over the large time increment t2 − t1 (equation (4.20)). By contrast, ωm,r(vg)
is evaluated over the small time increment t3− t2 (equation (4.23)) in order to account
for possible phase discontinuities.

The above methodology leads to a complete determination of the wavepacket char-
acteristics along each spatio-temporal ray x/t = vg. A typical amplitude distribution
of the various helical modes Am(x, t) is illustrated on figure 7(a) for the Batchelor
vortex without external flow. The associated growth rates σm(vg) are displayed on
figure 7(b), as a function of group velocity x/t = vg.

The impulse response is seen to be composed of individual wavepackets pertaining
to different azimuthal modes m. The curves σm(vg) contain all the essential information
necessary to characterize the spatio-temporal behaviour of each azimuthal mode. As
sketched on figure 8, the streamwise extent of each wavepacket is delineated by rays
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Figure 7. (a) Amplitude distribution Am(x, t) of dominant azimuthal modes −8 6 m 6 −1 at t = 32
for a = 0, q = 0.8 and Re = 667. Linear scale. (b) Corresponding growth rate σm(vg) ‘observed’
along each spatio-temporal ray x/t = vg for −12 6 m 6 −1.

v+
g,m and v−g,m such that σm(vg) = 0 and along which a neutral wave is observed. To

each helical mode m, one may associate an absolute growth rate ω0,m,i observed in
the laboratory frame, i.e. along the ray x/t = vg = 0. The quantity ω0,m,i therefore
coincides with σm(0), as illustrated on figure 8.

Let vmax
g,m ≡ ∂ωm,r/∂k(kmax

m ) denote the spatio-temporal ray along which one observes
the most amplified wavenumber kmax

m over all real axial wavenumbers, such that
∂ωm,i/∂k(k

max
m ) = 0. Since kmax

m,i = 0, (4.12) reduces to σm = ωmax
m,i and (4.16) yields

dσm/dvg(vmax
g,m ) = 0. It can therefore be concluded that ωmax

m,i is also the maximum
growth rate over all ray directions x/t = vg, as sketched on figure 8. The associated
group velocity vmax

g,m is therefore a measure of the velocity of the wavepacket of
azimuthal mode m.

It is straightforward to extend these definitions to the full impulse response: its
streamwise extent is delineated by the fastest leading edge v+

g and the slowest trailing
edge v−g , which may pertain to distinct helical modes m. Its overall absolute growth
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Figure 8. Characteristic quantities pertaining to the growth rate curve σm(vg) for the wavepacket
of azimuthal wavenumber m. The curve displays a maximum at the ray velocity vmax

g,m whence

σm(vmax
g,m ) = ωmax

m,i . Leading- and trailing-edge v±g,m velocities correspond to σm(vg) = 0. The absolute
growth rate ω0,m,i coincides with σm(0).

rate ω0,i is the maximum absolute growth rate over all m. If it is positive (negative),
the flow is absolutely (convectively) unstable.

For the parameter setting a = 0, q = 0.8 and Re = 667, the leading and trailing
edges of the full wavepacket are associated with azimuthal modes m = −1 and
m = −2 respectively (figure 7b) and they propagate with velocities v+

g and v−g that are
both positive. As a result, the overall absolute growth rate ω0,i is negative and the
flow is convectively unstable.

In table 1, the maximum growth rate ωmax
m,i over all ray directions vg obtained from

the above wavepacket asymptotics (WA) is compared with its viscous temporal (VT)
counterpart over all real wavenumbers k, as calculated in §4.1: these theoretically
identical quantities as well as the associated wavenumbers kmax

m are seen to coincide
within 10% accuracy.

The above wavepacket decomposition has been applied to the DNS-generated
impulse response of the Batchelor vortex without external flow at a = 0, Re = 667
and q = 0, 0.1, 0.2, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.2, 1.3, 1.4, 1.5. For all swirl values,
the leading- and trailing-edge velocities v+

g and v−g are found to be both positive as in
figure 7(b). One may therefore conclude that the zero-external-flow Batchelor vortex
is at most convectively unstable for Re = 667.

Although the curves σm(vg) are sufficient to determine the absolute/convective
nature of the instability, a complete specification of the wavepacket asymptotic
behaviour requires the calculation of the complex frequency ωm(vg) and wavenumber
km(vg) as given in (4.16)–(4.19). Corresponding results are displayed on figure 9 for
the same parameter values as in figure 7. Smooth variations of km and ωm are
obtained at all but the lowest azimuthal wavenumbers. Spurious oscillations are
observed at m = −12 and m = −11: the energy levels are then so small that there is
contamination by the more energetic azimuthal modes. Note also the presence of a
bump near vg = 1.1 in the curves relative to m = −1. This feature is possibly due to
a shift in the most amplified mode at m = −1, as vg is increased.

In the same spirit as in §4.1, it may be checked that for the selected times t1 = 16
and t2 = 32, radial distributions are shape-invariant along each spatio-temporal ray
x/t = vg. Sample validation results are displayed on figure 10 for three particular
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group velocities indicated by open circles on figure 7(b): retrieved axial eigenfunctions
are seen to preserve their shape between t1 and t2 so that transients have died out
and asymptotic formula (4.11) indeed applies.

5. Convective/absolute properties of the Batchelor vortex with external flow
An essential feature of the present approach lies in its ability to deduce the

absolute/convective nature of the instability for arbitrary values of the external flow
parameter a solely from the results for zero external flow (a = 0). We exploit the
fact that, at a given value of q, the impulse response for a 6= 0 may be obtained
by applying a trivial Galilean transformation of velocity a to its zero-external-flow
counterpart.

More specifically the Green function u(x, r, θ, t; a) for finite external flow a is related
to the Green function u(x, r, θ, t; 0) for zero external flow via the change of variable

u(x, r, θ, t; a) = u(x− at, r, θ, t; 0) . (5.1)

Note that (5.1) remains applicable for obtaining the response to any initial distribution
of perturbations. Equivalently, in terms of the group velocity x/t = vg,

u(vg, r, θ, t; a) = u(vg − a, r, θ, t; 0) . (5.2)
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Figure 10. Radial distribution of spatio-temporal eigenfunction ũm(r, k, t) for azimuthal mode
m = −4 retrieved by DNS from the perturbation axial velocity fields at t1 = 16 and t2 = 32 with
a = 0, q = 0.8, Re = 667. The amplitude (left) is represented on a semi-log plot and the phase
(right) on a linear plot at three values of the group velocity vg indicated by the symbols ◦ on figure
7(b): (a) vg = vmax

g,−4 = 0.55, (b) vg = 0.84 and (c) at the leading-edge vg = v+
g,−4 = 0.94.

In the context of expression (4.11), (5.2) implies that the complex wavenumber km and
frequency ωm for finite external flow can be deduced from their zero-external-flow
analogues through the Doppler shift transformation

km(vg; a) = km(vg − a; 0) , (5.3)

ωm(vg; a) = akm(vg − a; 0) + ωm(vg − a; 0) . (5.4)
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Figure 11. (a) Typical instability properties of each azimuthal mode: the absolute instability region
(AI) is nested within the convectively unstable zone (CI); outside a horizontal band of finite height
in q the azimuthal mode remains stable (S). (b–d) Isocontours of absolute growth rate ω0,m,i in
parameter plane (a, q) for azimuthal modes (b) m = −1, (c) m = −2 and (d) m = −3. The bold
curve corresponds to ω0,m,i = 0. Isocontours of ω0,m,i in step increases of 0.025, for positive values
only, have been reported in order to delineate clearly the absolute instability region.

As a result, the growth rate σm(vg; a) = ωm,i(vg; a) − km,i(vg; a)vg observed along the
spatio-temporal ray x/t = vg is transformed according to the rule

σm(vg; a) = σm(vg − a; 0) . (5.5)

The observed growth rate curves of figure 7(b) therefore experience a simple translation
of amount a along the vg-axis. The same reasoning may be invoked to obtain finite-
external-flow results for all swirl parameter values q of interest. Thus, for each
parameter setting (a, q), the diagnostic quantities introduced in §4.2 and sketched
in figure 8 may be calculated. In particular the absolute growth rate ω0,m,i satisfies
ω0,m,i ≡ σm(0; a) = σm(−a; 0) and it may directly be read off figure 7(b) by setting
vg = −a. Remaining quantities such as k0,m,r and ω0,m,r may similarly be calculated by
applying (5.3) and (5.4).

Resulting isolines of absolute growth rate ω0,m,i in the (a, q)-plane are displayed
on figure 11 for azimuthal wavenumbers m = −1, −2 and −3. As sketched in figure
11(a), the particular contour ω0,m,i = 0 typically delineates an oval domain within
which ω0,m,i > 0 and mode m therefore exhibits absolute instability (AI). Outside this
region, mode m is either convectively unstable (CI) or stable (S). The neutral curves
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(a, q) parameter plane for the Batchelor vortex at Re = 667. Thin lines indicate AI/CI transition
curves for each azimuthal mode m = +1 and m = −1, · · · ,−7. Bold line denotes outermost boundary
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separating the CI, AI regions from the S region do not depend on the magnitude of
the external flow parameter a and are therefore straight horizontal lines q = const.
Typically each mode m becomes unstable in a horizontal band at intermediate values
of the swirl parameter q. Note that m = ±1 are the only unstable modes at q = 0.
All other modes are stable at sufficiently low q. For large swirl values, all modes are
ultimately stabilized. These results are entirely consistent with the temporal instability
analyses of Lessen et al. (1974) and Mayer & Powell (1992) summarized in §1.

The AI region typically lies in the left half-plane a < 0 which implies that negative
external flow is a prerequisite for absolute instability. More specifically, for each swirl
level q within the unstable horizontal band, there exists a range of negative external
flow values giving rise to AI. As q is increased from the lower neutral value (from
zero in the case m = −1), the extent of the AI range gradually widens towards both
the zero-external-flow axis and the large negative-external-flow values. The reverse
trend is observed as the swirl q approaches the upper neutral curve. Furthermore the
absolute growth rate ω0,m,i reaches a well defined maximum within the AI zone at a
particular value of a and q.

In order to determine the overall instability properties, the various absolute/convec-
tive transition curves ω0,m,i = 0 are overlaid on figure 12 for m = +1 and m =
−1, · · · ,−7. The global AI/CI transition boundary is given by the outermost envelope
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of the individual transition curves pertaining to different values of m. If higher-order
azimuthal modes m 6 −8 are taken into consideration, corresponding transitional
curves ω0,m,i = 0 become nested one inside the other so that the outer CI/AI boundary
remains unaffected.

In the no-swirl case (q = 0), absolute instability is triggered by the m = ±1 modes
and it prevails in the range −0.80 < a < −0.39, i.e. for wake/jet configurations with
sufficiently large counterflow (figure 1b). As q increases, the AI range widens towards
a = 0 (zero-counterflow jet) and a = −1 (zero-counterflow wake).

On the wake side (a < −0.5), the transitional mode leading to AI remains m = −1
at all swirl values. It is essential to note that for swirl values as low as 0.13, wakes may
undergo a transition to AI for a < −1, i.e. without requiring any external counterflow.

On the jet side (a > −0.5), the transitional mode first leading to AI as q increases
varies in discrete steps from m = −1 to m = −2,−3,−4,−5,−4,−3,−2,−1. Crossover
points from one azimuthal mode to another can only be very coarsely determined
on account of the finite 0.1 step size in q. Furthermore, absolute instability may be
triggered for a counterflow as small as a = −0.015 ± 0.001 provided that swirl is
of order q = 0.55 ± 0.05. The transitional AI/CI curve runs almost parallel to the
q-axis and only a slight amount of counterflow is therefore necessary to provoke AI
onset over an extended range 0.2 < q < 1. Moreover, when 0.2 < q < 0.5, AI/CI
transition curves pertaining to m = −2,−3, . . . remain extremely close to each other.
This is further confirmed by the absolute growth rate curves prevailing in the zero-
external-flow jet (a = 0) and the AI/CI transitional jet (a = −0.014) as shown in
figure 13. For such small external flows, the value of swirl that is optimum to promote
AI is seen to lie in the range 0.5 < q < 0.7. It should be noticed that this range
of values of q does not include the most unstable swirl q ≈ 0.87 discussed in the
introduction.

The same representation may be used for the real parts of the absolute wavenumber
k0,m,r and absolute frequency ω0,m,r resulting from the application of (5.3) and (5.4) at
vg = 0. Typical results are displayed on figure 14 for azimuthal modes m = −1,−2,−3.
These results may be compared with those obtained in the context of non-rotating
axisymmetric bluff body wakes by Monkewitz (1988a) for the family of parallel axial
velocity profiles

U(r;Λ,N) = 1− Λ+
2Λ

1 + (er2 ln 2 − 1)N
. (5.6)

In the above equation, Λ denotes the velocity ratio Λ = (Uc − U∞)/(Uc + U∞)
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V denote ‘hills’ and ‘valleys’ of saddle points of surface k0,m,r.
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and N a shape parameter. In the particular case N = 1, one recovers our zero-
swirl basic velocity field provided that a = (1 − Λ)/2Λ and q = 0. The complex

absolute wavenumbers and frequencies k
(M)
0,±1 and ω

(M)
0,±1 calculated by Monkewitz

(1988a) for m = ±1 at Re = ∞ translate into the present k0,±1 and ω0,±1 via the scaling

relations k0,±1 = k
(M)
0,±1/(ln 2)1/2 and ω0,±1 = ω

(M)
0,±1/(4Λ

2 ln 2)1/2. At Λ = −1, i.e. a = −1,

Monkewitz found k(M)
0,±1 = 1.04−0.85 i and ω(M)

0,±1 = 0.75−0.20 i, i.e. k0,±1 = 1.25−1.02 i
and ω0,±1 = −0.45 − 0.12 i. Extrapolated values from the results displayed in figures
11(b) and 14(a) yield k0,±1 = 1.20− 0.73 i and ω0,±1 = −0.39− 0.06 i: real parts are in
good quantitative agreement whereas imaginary parts noticeably differ on account of
their smaller absolute values. Similar trends prevail for corresponding results obtained
at Λ = −1.1, i.e. a ≈ −0.95.

6. Conclusions and discussion
A detailed analysis of the transition from convective to absolute instability has been

presented for the Batchelor vortex as a function of external flow a and swirl q for a
fixed Reynolds number Re = 667. The application of swirl has been found to widen
considerably the range of external flow values giving rise to absolute instability. In
wakes (a < −0.5), the ‘critical’ helical mode for absolute instability onset is m = −1
and no counterflow is necessary to trigger absolute instability over almost the entire
range of unstable q. In jets (a > −0.5), the ‘critical’ helical mode is found to be
extremely sensitive to swirl. A slight counterflow a ≈ −0.015 equivalent to 1.5% of
the centreline axial velocity remains necessary in order to trigger absolute instability.
This value is to be compared with a = −0.39 corresponding to 64% of the centreline
axial velocity in the absence of swirl.

A new method has been presented in order to retrieve the main features of the
dispersion relation from direct numerical simulations of the linear impulse response.
This procedure leads to the determination of the dominant complex frequency and
wavenumber observed along each spatio-temporal ray x/t = vg. In particular, one
may calculate the complex absolute frequency and wavenumber and thereby identify
domains of absolute and convective instability.

The results of the present investigation have been compared with a direct ap-
plication of the zero-group-velocity criterion to the inviscid dispersion relation
D[k, ω; a, q] = 0 as performed in Olendraru et al. (1996). AI/CI transition curves
obtained via each method are overlaid on figure 15. There is good overall qualitative
and quantitative agreement over a wide domain in the (a, q)-plane but the direct nu-
merical simulation procedure yields a slightly smaller region of AI. In particular, the
analysis of the inviscid dispersion relation predicts the occurrence of AI/CI transition
on the co-flowing jet side a > 0. By contrast, the fully viscous numerical study of
the linear impulse response slightly pushes AI/CI transition into the counterflow side
a < 0.

The merits and disadvantages of the present procedure are as follows. In a single
run, the direct simulation of the impulse response provides a global picture of all
dominant modes along all spatio-temporal rays x/t = vg. However, its successful
implementation requires large computational domains in order to avoid end effects,
which makes it costly in computer time. In addition, this methodology is incapable
of isolating less-unstable modes. For instance, we have not determined the role, if
any, played by the purely viscous modes of Khorrami (1991) and Mayer & Powell
(1992). It may very well be that their effect is masked by faster growing inviscid-like



252 I. Delbende, J.-M. Chomaz and P. Huerre

S

–3

AICI CI

–1

–1

–3

–2
+1

–2

1.5

1.0

0.5

0
–1.5 1.0 –0.5 0

a

q

Figure 15. AI/CI transition curves in the (a, q) parameter plane for azimuthal modes
m = ±1,−2,−3. Solid lines: present study at Re = 667. Dashed lines: results of Olendraru et
al. (1996) obtained by application of the zero-group-velocity criterion to the inviscid dispersion
relation of the Batchelor vortex.

modes. It is also important to emphasize that as a result of finite time integration,
the method slightly underestimates the spatio-temporal growth rate and therefore the
extent of the absolutely unstable region. Although high precision cannot be expected
from the present method, the results provide excellent guess values, which considerably
facilitates the hunt for pertinent saddle points as required in the Briggs–Bers criterion.
More generally the procedure is most useful whenever the dispersion relation cannot
be derived explicitly due to the complexity of the basic flow. For instance, it has
successfully been applied by Brancher & Chomaz (1997) to the study of secondary
instabilities in two-dimensional spatially periodic shear flows.

The presence of a sufficiently large region of absolute instability is known to
encourage the onset of synchronized self-sustained oscillations commonly referred
to as global modes (Chomaz, Huerre & Redekopp 1988). According to the present
investigation, swirl is likely to increase drastically the extent of the absolutely unstable
region and thereby the synchronization of spatially developing wakes and jets. For
instance, helical vortex shedding behind non-rotating axisymmetric bluff bodies has
been ascribed by Monkewitz (1988a) to the existence of an absolutely unstable ‘source’
region located in the near wake. Only the first helical mode m = ±1 is then found to
be absolutely unstable, in agreement with experimental observations. The results of
the present investigation suggest that the application of swirl will rapidly single out
m = −1 as the dominant helical mode within such wake flows.

It is much more delicate to interpret the occurrence of breakdown in vortices with
axial flow in the light of the present results. Experiments indicate that breakdown is
either axisymmetric (m = 0) or spiral (m = −1), whereas in the jet range (a > −0.5)
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our analysis shows higher-order helical modes (m = −2,−3, . . .) to be favoured.
However, the present results upstream and downstream of the stagnation point might
very well prove to be pertinent in accounting for the unsteady behaviour of the
observed breakdown states. Garg & Leibovich (1979) have emphasized that ‘vortex
breakdown, of either the bubble or spiral form, act like solid objects in changing an
upstream jet-like flow into a wake-like flow’. The observed dominant oscillations of
the wake then correspond to the counter-rotating spiral mode m = −1, in agreement
with the AI/CI analysis for wakes (a < −0.5).

In order to reach a more definite conclusion, one would have to carry out a detailed
investigation of the AI/CI nature of measured velocity profiles at each downstream
station, as in the wake studies of Monkewitz (1988a,b).
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Appendix. Proof of relation (4.16)
Differentiation of (4.12) with respect to vg leads to

dσm
dvg

=
dωm,i
dvg

− dkm,i
dvg

vg − km,i . (A 1)

The Cauchy–Riemann conditions imply that

vg ≡
dωm
dk

=
∂ωm,r

∂km,r
+ i

∂ωm,i

∂km,r
=
∂ωm,i

∂km,i
+ i

∂ωm,i

∂km,r
. (A 2)

Only real values of the group velocity vg = dωm/dk are of interest here, in which case
(A 2) reduces to the identities

vg =
∂ωm,i

∂km,i
and

∂ωm,i

∂km,r
= 0 . (A 3)

Under this real group velocity condition, the chain rule and (A 3) imply that

dωm,i
dvg

=
∂ωm,i

∂km,i

dkm,i
dvg

= vg

dkm,i
dvg

, (A 4)

and (A 1) effectively reduces to relation (4.16).
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