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The e!ect of internal plug #ow on the lateral stability of #uid conveying pipes is investigated by
determining the absolute or convective nature of the instability from the analytically derived
linear dispersion relation. The #uid}structure interaction is modelled by following the work of
Gregory & PamKdoussis. The formulation of the #uid-conveying pipe problem is shown to be
related to previous studies of a #at plate in the presence of uniform #ow by Brazier-Smith
& Scott and Crigthon & Oswell. The di!erent domains of stability, convective instability, and
absolute instability are explicitly derived in control parameter space. The e!ects of #ow
velocity, #uid}structure mass ratio, sti!ness of the elastic foundation, bending rigidity and axial
tension are considered. Absolute instability in #exural pipes prevails over a wide range of
parameters. Convective instability is mostly found in tensioned pipes, which are modelled by
a generalized linear Klein}Gordon equation. The impulse response is given in closed form or as
an integral approximation and its behaviour con"rms the results found directly from the
dispersion equation. ( 1999 Academic Press
1. INTRODUCTION

INTERACTIONS BETWEEN A MOVING FLUID and an elastic boundary give rise to a large variety of
physical phenomena that need to be understood from both a fundamental and applied
point of view. Flow stability is known to be modi"ed by the compliance of an adjacent solid
boundary, which might have some in#uence on the magnitude of drag. Conversely, the
stability of the solid boundary may be a!ected by the #ow, thereby leading to unacceptable
mechanical strains. According to the fundamental analyses of Landahl (1962) and Benjamin
(1963), energy exchanges between the solid and the #uid media may give rise to a profusion
of instability types even in deceptively simple physical models.

Instabilities that develop both in space and time may be classi"ed as convective or
absolute, according to the nature of the long-time impulse response. This theoretical
framework, now of common use in hydrodynamics (Huerre & Monkewitz 1990), has also
been fruitfully applied to #uid}structure interactions problems. The generic case of inviscid
889}9746/99/060663#18 $30.00 ( 1999 Academic Press



664 E. DE LANGRE AND A. E. OUVRARD
uniform #ow above an elastic plate, further referred to as the #at-plate problem, has been
extensively analysed (Brazier-Smith & Scott 1984; Carpenter & Garrad 1986; Crighton
& Oswell 1991; Lucey & Carpenter 1992; Peake 1997) and extended to membranes under
tension (Kelbert & Sazonov 1996). These analyses have brought to light many of the
fundamental features of these interactions, such as the existence of negative energy waves or
possible violations of the usual out-going wave radiation condition.

In the vast domain of #uid}structure interactions, the speci"c problem of bending
vibrations of #uid-conveying pipes has drawn the attention of a large community, because
of the fascinating variety of dynamical properties that are exhibited by these simple systems
(PamKdoussis & Li 1993). In a pioneering work, Bourrières (1939) derived the equation of
motion of a beam-like structure that conveys #uid and examined the stability of "nite length
pipes. This problem was subsequently solved by Gregory & PamKdoussis (1966) for the
particular case of a cantilevered pipe which displays the well-known garden-hose instability.
Since then, "nite-length systems have been extensively studied, under all possible varieties of
#ow conditions or mechanical characteristics (PamKdoussis & Li 1993).

Comparatively little attention has been paid to the question of wave propagation in such
systems. The stability conditions for harmonic waves were derived by Roth (1964), who
clearly identi"ed for all wavepackets a common convection velocity that is smaller than the
#uid velocity. Stein & Tobriner (1970), by the use of numerical simulations, could display
the evolution of stable wavepackets with time. More recently, Kulikovskii & Shikina (1988)
found that the mass ratio between the #uid and the pipe had a crucial e!ect on the
convective or absolute nature of the instability. A slender cylindrical structure exposed to
external axial #ow may be modelled by equations identical in form to those of the
#uid-conveying pipe (PamKdoussis 1987). For that geometry, Triantafyllou (1992) succeeded
in exhibiting the physical nature of the various families of waves that come into play by
analysing the origin of their energy density.

The goal of the present paper is to systematically determine the convective or absolute
nature of instabilities that may arise in an in"nite pipe conveying #uid, as a function of
several physical parameters such as the #exural rigidity, the tension, the foundation
sti!ness, or the #ow velocity, thereby extending the work of Kulikovskii & Shikina (1988)
and Triantafyllou (1992). The impulse response is also sought in explicit form to con"rm
and illustrate results derived from the analysis of the dispersion relation. The variety of
possible transitions is underscored by considering the general case as well as the extreme
values of the nondimensional parameters. We "nally demonstrate the relationship between
such models of #uid-conveying pipes and those involving semi-in"nite #ow over an elastic
plate or membrane. The long-range objective is to identify the local nature of the instabili-
ties in order to ultimately shed some light on the global dynamics of #uid-conveying
systems of "nite length.

Let us recall the dynamical equation governing small lateral motions of an initially
straight #uid-conveying pipe, as sketched in Figure 1. Under the plug-#ow assumption, the
#uid motion may be explicitly determined in terms of the pipe motion and the dynamics of
Figure 1. Flexural pipe conveying #uid, with tension and spring foundation.
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the coupled system is entirely speci"ed by that of the pipe. In the most general case
(PamKdoussis & Li 1993), the equation of motion governing the lateral in-plane de#ection of
the pipe y(x, t) as a function of axial distance x and time t is

EI
R4y
Rx4

#(m#oA)
R2y
Rt2#(oA;2!¹)

R2y
Rx2

#2oA;
R2y
RxRt#Sy"0, (1)

where EI is the #exural rigidity of the pipe, oA the #uid mass per unit length, ; the plug
#ow velocity, m the mass of pipe per unit length, ¹ a prescribed axial tension, and S the
elastic foundation modulus. This relation also describes the in-phase #exural motion of two
walls of a channel with plug #ow, as will be discussed in the next section. Without #ow
(;"0), this equation becomes identical to that of a beam with an added mass oA
appearing in the inertia term. With #ow (;O0), two additional terms are present:
a centrifugal term oA;2(R2y/Rx2), which modi"ed the e!ective tension, and a Coriolis term
2oA;(R2y/RxRt). It should be emphasized that this partial di!erential equation has a wide
range of applicability which is not restricted to inviscid #ow (PamKdoussis & Li 1993). It is
also relevant to the modelling of travelling chains and bands provided one assumes m"0
(Lee & Mote 1997).

The development in space and time of in"nitesimal perturbations may be analysed by
invoking the notions of absolute and convective instability (Bers 1983). In this framework,
the nature of the instability is determined by considering the long-time behaviour of the
impulse response G(x, t). The dynamical system is said to be linearly stable if
lim

t?=
G(x, t)"0 along all rays x/t"constant, and unstable otherwise. Two unstable cases

may then be distinguished according to the long-time response at the point of impulse: the
instability is said to be convective if lim

t?=
G(0, t)"0, the response wavepacket being thus

convected away from the source. Conversely, absolute instability refers to the case where
lim

t?=
G(0, t)"R, the response then contaminating the entire medium. In practice, such

criteria may be expressed in terms of wavenumber k and frequency u, through the
examination of the dispersion equation D(k,u)"0 (Bers 1983). The system is stable if
max

k 3%!-
[Im (u (k))]40, and unstable otherwise. Consider now the absolute frequency u

0
such that

D(k
0
, u

0
)"0 and

RD
Rk (k

0
, u

0
)"0. (2)

The absolute or convective nature of the instability is then determined by the sign of its
imaginary part Im(u

0
). It is said to be absolute if Im (u

0
)'0 and convective if

Im(u
0
)40. In fact, this criterion is not precise enough as it stands and the root (u

0
, k

0
)

must be associated, as Im(u) decreases from large positive values, with pinching of two
branches of the dispersion relation k`(u) and k~(u), that originate respectively in the upper
and the lower complex k-plane.

In the next sections, we successively apply these criteria to the various #uid-conveying
systems that are represented by equation (1). This is done by "rst considering models for
several limiting cases of the nondimensional parameters, namely the #exural pipe in Section
2, the #exural pipe on an elastic foundation in Section 3, and the tensioned pipe on an elastic
foundation, in Section 4. The most general case is then analysed in Section 5.

2. FLEXURAL PIPE

Let us introduce the following nondimensional variables:

xJ "xS
o
m

, yJ "yS
o
m

, tI"t
o
m S

EI

oA#m
, (3)
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and the nondimensional physical parameters

;I ";S
mA

EI
, b"

oA

oA#m
, ¹I "

m¹

oEI
, SI "

m2S

o2EI
, (4)

so that equation (1) reads

y(4)#yK#(;I 2!¹I )y(2)#2Jb;3 yR (1)#SI y"0, (5)

where ( )(n) and ()) refer to the space and time derivatives, respectively, and y8 is denoted by
y for simplicity. As a generic case, we consider "rst the situation where the only mechanical
sti!ness is due to bending, so that D¹I D;1 and DSI D;1. From now on in this section, tildes
will be omitted from all nondimensional quantities. Equation (5) then becomes

y(4)#yK#;2y(2)#2Jb;yR (1)"0, (6)

a case previously analysed by Kulikovskii & Shikina (1988) and Triantafyllou (1992) and
which we shall refer to as the #exural pipe. In should be noted here that our choice of
nondimensional parameters di!ers from that of previous authors. For instance, Gregory
& PamKdoussis (1966) considered a "nite-length pipe, and used the length as reference scale.
As in previous studies of in"nite media (Crighton & Oswell 1991), the only length scale here

is l"Jm/o .
If the pipe displacement is sought in the form y(x, t)"y

0
e*(kx~ut), the linear dispersion

relation is readily obtained as

D (k,u)"k4!;2k2#2Jb;uk!u2"0. (7)

Before exploring the stability conditions of this generic case, we give below some elements
of comparison with the now classical #at-plate problem (Brazier-Smith & Scott 1984;
Carpenter & Garrad 1986; Crighton & Oswell 1991). Consider the plug #ow of an inviscid
incompressible #uid in a plane channel of width e bounded by two parallel elastic plates. If
the two plates are restricted to have the same transverse displacement, i.e., if they are
subjected to a sinuous mode as opposed to a varicose mode, the equation of motion of each
plate may be derived by following the same approach as in Crighton & Oswell (1991) and
reads

B
R4y
Rx4

#M
R2y
Rt2"oA

RU
Rt#;

RU
RxB , (8)

where B and M are, respectively, the bending sti!ness and mass per unit surface of the plate,
o and ; are, respectively, the #uid density and steady velocity, while the velocity potential
U satis"ed

+2U"0 (9)

and the boundary conditions

RU
Ry Ax, !

e

2
, tB"

RU
Ry Ax,

e

2
, tB"A

Ry
Rt#;

Ry
Rx B (x, t). (10)

Considering again all dependent variables to be harmonic in t and x, the corresponding
dispersion relation is readily obtained as (Walsh 1995)

Bk4!Mu2!o tanhA
ke

2 B
(u!;k)2

k
"0. (11)
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In the short-wavelength approximation, i.e., ke<1, we have tanh(ke/2)"k/ DkD and the
dispersion relation reduces to

Bk4!Mu2!o
(u!;k)2

DkD
"0. (12)

and it is identical to the single #at-plate case (Brazier-Smith & Scott 1984). Similarly, in the
long-wavelength approximation, ke;1, one has tanh(ke/2)"ke/2, so that

Bk4!Mu2!o
e

2
(u!;k)2"0. (13)

If an arbitrary thickness, say h, is then assigned in the out-of-plane direction, we may de"ne
for the coupled plates the total bending sti!ness EI"2hB, the mass per unit length
m"2hM and the #uid section A"he. Upon introducing the nondimensional parameters
(3), equation (13) then reduces to the dispersion relation (7) pertaining to the #uid-conveying
pipe.

The #exural pipe case and the #at plate case may therefore be understood, respectively, as
the long- and short-wave approximation of the more general #exible channel problem.
A signi"cant di!erence between these two limiting cases appears when one considers the
#ow-induced forces. In the general #exible channel problem as well as its short-wavelength
limit (single #at-plate case), the local pressure p (x, t) is obtained by solving the Laplace
equation over the whole #uid domain together with the plate boundary conditions. By
doing so, the local pressure is in#uenced by the motion of all points along the plate. In
contrast, in the long-wavelength limit, e.g. in the #uid-conveying pipe problem, the local
#uid forces only depend on the local displacement: the #uid does not introduce any
coupling between various points of the elastic system. This di!erence is clearly evident when
examining the nature of the added mass e!ects in the simple case of quiescent #uid (;"0).
In the short-wavelength approximation (12), #uid forces represented by the last term then
remain k-dependent. In the long-wavelength approximation (13), #uid forces represented by
the last term are independent of k and may be absorbed as a constant added mass in the
inertia term. This feature is well-known in #uid}structure interaction problems (Blevins
1991).

Consider now the development in space and time of bending waves governed by
dispersion relation (7), a problem which has been solved by Kulikovskii & Shikina (1988).
Let X"u/;2 and K"k/;, respectively, denote the reduced frequency and the wavenum-
ber. The dispersion relation (7) becomes

D(K,X)"K4!K2#2JbXK!X2"0. (14)

For real values of the wavenumber, the corresponding frequencies are

X"JbK$KJK2!(1!b). (15)

When b(1, which is the case of #uid-conveying pipes, the system is always unstable in the
range of wavenumbers K2(1!b. The nature of the instability is given by the absolute
frequency X

0
de"ned in equation (2). One "nds

X
0
"

K
0
(1!2K2

0
)

Jb
, (16)

where the absolute wavenumbers satis"es

4K4
0
#K2

0
(3b!4)#(1!b)"0. (17)
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The quantity X"K2
0

is seen to be the root of the quadratic polynomial
4X2#(3b!4)X#(1!b). Let us de"ne the critical mass ratio parameter value

b
c
"8

9
. (18)

If b5b
c
, the above quadratic polynomial has two positive real roots; K

0
is then real, and so

is X
0
. The instability is therefore convective, but in a marginal sense, as there is no

exponential decrease of G(0, t), X
0

being only real. If b(b
c
, K

0
will have an imaginary part

and so will X
0
. More speci"cally, equation (17) has four roots two of which being always

such that Im(X
0
)'0, thereby indicating absolute instability. In order to con"rm this

result, it must be checked that pinching of two spatial branches K`(X) and K~(X) does take
place (Bers 1983). An example of the pinching analysis is presented in Figure 2 for the
particular case b"0)5. The four spatial branches K(X

R
#iX

I
) of the dispersion relation

(14) are displayed as the imaginary part X
I
of X is gradually lowered. For a given X

I
, the loci

of the spatial branches are obtained by varying the real part X
R
. Pinching occurs between

two acceptable branches and the absolute character of the instability is established. It
should be noted that the critical value b

c
"8

9
may also be obtained by exploiting the

particular symmetries of the dispersion relation (Crighton & Oswell 1991; Triantafyllou
1992). If (X,K) satis"es equation (14), their complex conjugates are also solutions. As the
boundary between absolute and convective instability occurs when Im(X)"0, at
transition there must be a triple root of equation (14) which simultaneously satis"es

D(K
0
, X

0
)"
RD
RK (K

0
, X

0
)"
R2D
RK2

(K
0
, X

0
)"0. (19)

These conditions do give b
c
"8

9
, but not the nature of the instability for b(8

9
and b'8

9
.

3. FLEXURAL PIPE ON AN ELASTIC FOUNDATION

In recent work (Peake 1997), it has been observed that an additional spring sti!ness does
signi"cantly modify the ranges of convective and absolute instability in the #at-plate
problem. Keeping the foundation sti!ness SI in equation (5), one obtains the nondimensional
equation

y(4)#yK#;2y(2)#2Jb;yR (1)#Sy"0, (20)

where the nondimensional sti!ness S3 is written as S for simplicity. It is allowed to be positive
or negative in order to provide a simple model for restoring or destabilizing static forces.
The corresponding dispersion relation then reads

D(k,u)"k4!;2k2#2Jb;uk!u2#S"0. (21)

The dependence on; may again be simpli"ed by introducing a reduced sti!ness R"S/;4

to yield

D(K,X)"K4!K2#2JbXK!X2#R"0. (22)

According to Roth (1964) and Stein & Trobiner (1970) the system is unstable when

R(

(1!b)2

4
. (23)
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The nature of the instability is again analysed by calculating the roots of equation (2), i.e.,

X
0
"

K
0
(1!2 K2

0
)

Jb
, (24)

where

4K6
0
#K4

0
(3b!4)#K2

0
(1!b)!Rb"0. (25)

The absolute frequency X
0

is now related to the roots of the third-order polynomial
4X3#(3b!4)X2#(1!b)X!Rb. Let us de"ne a critical foundation sti!ness value

R
c
"

b
c
!b
12b

, (26)

where b
c
"8

9
, as speci"ed in equation (18). If R'R

c
, the three roots are positive real, K

0
is

real and so is X
0
. The instability is then marginally convective as before. It is also necessary

that the instability condition (23) be satis"ed. Convective instability is then found to exist
for b'2

3
only. If R(R

c
it may be shown that there always exist two roots X

0
with positive

imaginary parts, as in the generic case of Section 2. The absolute nature of the instability is
established by examining the pinching behaviour of spatial branches as in Figure 2. Again
the critical value of R

c
could be inferred from the triple root criterion, equation (19). The

preceding results may also be expressed in terms of the original nondimensional parameters,
; and S. Stability is ensured when ;4(4S/(1!b)2. For positive foundation sti!ness,
convective instability is found in the range 4S/(1!b)2(;4(12b S/(b

c
!b), if it exists.
Figure 2. Pinching behaviour of spatial branches in the complex K-plane, b"0)5, (a) X
I
"2; (b)X

I
"0)5;

(c) X
I
"0)2; (d) X

I
"0)15. Pinching occurs at X

I
"0)1939.



Figure 3. Stability diagram of the #exural pipe with foundation sti!ness S, in terms of #ow velocity ;: stability
(ST), absolute instability (AI), convective instability (CI). (a) b"0)5(2

3
; (b) 2

3
(b"0)87(8

9
; (c) 8

9
(b"0)95(1.
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For negative foundation sti!ness, it is necessary that ;4'12b S/(b
c
!b)'0 in order to

have a convective instability. These various domains are represented in Figure 3, for the
three cases b(2

3
, 2
3
(b(8

9
, and 8

9
(b(1. Depending on the value of b and on the sign of

S, a progressive increase in the #ow velocity induces quite di!erent transitions: for positive
foundation sti!ness, S'0, the onset of instability may be either absolute for b(2

3
or

convective for b'2
3
; further transition from convective to absolute instability may appear,

but only in the range 2
3
(b(8

9
. Conversely, for negative foundation sti!ness S(0,

a transition from absolute to convective instability is found when b'8
9
.

These results are now illustrated by considering the nondimensional Green's function
de"ned by

G(4)#GG #;2G(2)#2Jb;GQ (1)#SG"d (x)d(t). (27)

This corresponds to the response of the #uid-conveying pipe to a short transverse impact of

unit momentum. In a Galilean reference frame at the velocity ;Jb, the impulse response

GK (xL , t )"G(x!;Jb t, t) satis"es

GK (4)#GKG #(1!b);2GK (2)#SGK "d(xL ) d(t). (28)

This is the dynamic equation of a beam on an elastic foundation undergoing a static
divergence instability, or buckling, under compressive load. When criterion (23) for instabil-
ity is satis"ed the range of unstable wavenumbers is limited by

k2
.*/

"[(1!b);2!JD]/2; k2
.!9

"[(1!b);2#JD]/2; D"(1!b)2;4!4S. (29)

A straightforward integration over all wavenumbers gives the impulse response

G(x, t)"P
=

0

f
k
(t) cos [k(x!Jb;t)] dk, (30)

where f
k
(t)"sinh(at)/a with a2"k4!k2;2(1!b)#S for unstable wavenumbers, i.e.,

k
.*/

(k(k
.!9

, and f
k
(t)"sin (at)/a with a2"![k4!k2;2(1!b)#S] otherwise. This



Figure 4. Impulse response of the #exural pipe, ;"1, S"0: (a) b"0)5, absolute instability; (b) b"0)95,
convective instability. The time increment between frames (traces) is Dt"1 in (a), and Dt"5 in (b).

Figure 5. Impulse response at the point of impact for the #exural pipe on an elastic foundation, b"0)85, S"1.
Displacement of the point of impact for increasing #ow velocity; (a) ;"2, stable case; (b) ;"3)8, convective

instability; (c) ;"5, absolute instability.

ABSOLUTE/CONVECTIVE BENDING INSTABILITIES OF PIPES 671
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integral is amenable to a simple numerical integration for any value of the space and time
variables. Figure 4 displays the evolution of the pipe displacement with time, in a case of
absolute instability b"0)5, S"0 and a case of convective instability, b"0)95, S"0. In
Figure 5, the response at the point of impact in the case b"0)85, S"1 illustrates the
successive transitions from stability to convective and absolute instability as the #ow
velocity is progressively increased.

4. PIPE UNDER TENSION

In the limit ¹I <1 where tension is large as compared with #exural rigidity, it is convenient
to use a di!erent set of nondimensional variables

xN "xS
o
m

, yN "y S
o
m

, tN"t S
¹b
mA

, (31)

and physical parameters

EI"
1

¹3
"

oEI

¹m
, ;1 ";S

oA

¹

, b"
oA

oA#m
, S1 "S

m

o¹
. (32)

Assuming EI;1, the equation of motion becomes using x, y, t,;,S instead of xN , yN , tN , ;1 , S1 ,

(;2!1)yA#yK#2;Jb yR @#Sy"0. (33)

This lower-order model, which is referred to as the pipe under tension, in analogous to the
membrane approximation developed in Carpenter & Garrad (1986) and Kelbert & Sazonov
(1996).

When S"0, equation (33) reduces to the wave equation in a moving frame and waves are
nondispersive. As for membranes in Carpenter & Garrad (1986), two critical velocities exist
corresponding respectively to marginal divergence ;

d
"1 and wave coalescence

;
c
"1/J1!b . In the more general dispersive case SO0 of interest here, it is necessary to

consider two di!erent ranges of #ow velocities.
When the #ow velocity is less than the coalescence velocity, ;(;

c
, a further change of

variables x*"x/[1!;2/;2
c
])1@2 and <";Jb/[1!;2/;2

c
)]1@2 turns equation (33)

into

(<2!1)yA#yK#2<yR @#Sy"0, (34)

where primes indicate di!erentiation with respect to x*. This is the linearized
Klein}Gordon equation, which has been extensively studied in the context of marginal
stability in inviscid #ows. It should be noted that in our case, < can assume all positive
values when; is varied from zero to;

c
. In the present context, the results of Huerre (1987)

for the Klein}Gordon equation translate into the following conclusions: in the range
;(;

c
, the tensioned pipe is stable for S'0, absolutely unstable for S(0 and 0(;(1,

and convectively unstable for S(0 and 1(;(;
c
.

These results may be illustrated by considering the impulse response (Figure 6). In the
range;(;

c
where the equation reduces to the Klein}Gordon equation, explicit solutions

may be derived. When S'0, in the stable range, the response may be adapted from that of
a string on a spring foundation (Gra! 1975); upon making a Galilean transformation one
obtains

G(x, t)"
1

2
J
0GS1@2Ct2!A

x!;Jbt

1!(1!b);2B
2

D
1@2

HHCt2!A
x!;Jbt

1!(1!b);2B
2

D , (35)



Figure 6. Impulse response of a tensioned pipe, b"0)5; (a) ;"0)5, S"0)1, stable case; (b) ;"1)2, S"0)1,
stable case; (c);"0)5, S"!0)1, absolutely unstable case; (d);"1)2, S"!0)1, convectively unstable case. The

time increment between frames in Dt"1.

ABSOLUTE/CONVECTIVE BENDING INSTABILITIES OF PIPES 673
where J
0

is the Bessel function and H is the Heaviside step function. Similarly, the unstable
case S(0 yields (Huerre 1987)

G(x, t)"
1

2
I
0 G(!S)1@2Ct2!A

x!;Jbt

1!(1!b);2B
2

D
1@2

HHCt2!A
x!;Jbt

1!(1!b);2B
2

D , (36)

where I
0

is the modi"ed Bessel function.
A completely new situation arises after coalescence, when;';

c
, where equation (33) is

not reducible to the Klein}Gordon equation. It is then necessary to use a di!erent

transformation of variables x*"x/[(;2/;2
c
]!1)1@2 and <";Jb/[(;2/;2

c
)!1]1@2

which now yields

(<2#1)yA#yK#2< yR @#Sy"0. (37)

The corresponding dispersion relation reads

!(<2#1)k2!u2#2<uk#S"0, (38)



Figure 7. Pinching behaviour for the pipe under tension, b"0)5,;"3, S"!1: (a) X
I
"1)6; (b) X

I
"1)52; (c)

X
I
"1)49; (d) X

I
"1)45. Pinching occurs at X

I
"4/J7"1)512 but it does not involve k` and k~ branches

emanating from distinct halves of the complex k-plane.
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so that

u"k<$JS!k2 . (39)

The system is therefore unstable for any value of S, but here for high wavenumbers as
opposed to the case of a #exural pipe. Moreover, the temporal growth rate given by
equation (39) increases inde"nitely with wavenumber. As a result of this pathological
behavior, causality cannot be enforced. This is also apparent in the pinching analysis of the
k-branches as seen in Figure 7. In practice, one should note that in any physical situation
the present model is not applicable when the wavelength becomes comparable to the pipe
thickness. Furthermore, #exural sti!ness does play an increasing role at short wavelengths,
when compared with sti!ness due to tension. It is therefore reasonable to consider that
a characteristic length exists in practice that bounds the range of unstable wavelengths. To
further analyse the nature of the instability that arises beyond coalescence, we consider in
the next section the simultaneous e!ect of tension and #exural rigidity in order to introduce
a cut-o! wavenumber.

5. GENERAL CASE

When all sti!ness terms are present, namely #exural rigidity, tension and spring foundation,
the nondimensional equation of motion is equation (5). A straightforward analysis of the
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imaginary part of the frequency for real wavenumbers yields that the pipe is only stable
when (Roth 1964)

SI '0 and ;I 2(
2JSI #¹I

1!b
. (40)

In the limit ¹I "0, the stability criterion of Section 3 is recovered. Conversely, the pure
tension case may be obtained when equation (40) is written in terms of nondimensional
variables based on tension, as in Section 4. The stability criterion reads

SM '0 and ;1 2(
2JSEI#1

1!b
. (41)

With a vanishing #exural rigidity EI"0, equation (41) reduces to the coalescence criterion.
In order to clarify the noncausal situation that arose in the preceding section, consider

now the nature of the instability in the range of velocities ;I 2'¹I /(1!b). Let us de"ne
a modi"ed velocity <I 2";I 2!¹I and mass ratio c"b;I 2/(;I 2!¹I ). Equation (5) then
reads

y(4)#yK#<I 2y(2)#2Jc<I yR @#SI y"0, (42)

which is identical to equation (20) of Section 3 when tension e!ects were neglected. Note
that the modi"ed mass ratio c varies between b and 1 as ;3 varies in the range under
consideration, so that the results of Section 3 are applicable. It is found that a transition
between convective and absolute instability occurs at values of ;I de"ned by

[;I 2!¹I ]2 [;I 2(b
c
!b)!b

c
¹I ]!12bSI ;I 2"0. (43)

This criterion may also be expressed in terms of non-dimensional variables pertaining to the
tensioned case:

[;1 2!1]2[;1 2 (b
c
!b)!b

c
]!12bSM EI;1 2"0. (44)

The particular solution of Triantafyllou (1992) for the tensioned pipe without spring
foundation is readily obtained for SI "0.

Figures 8 and 9 display the evolution of these domains, as de"ned by equations (41) and
(44). Depending on the value of b, two cases need to be considered. When b(b

c
, Figure

8(a, b), two distinct domains of convective and absolute instability persist as the non-

dimensional #exural rigidity EI is decreased. It may be inferred that the limiting case of

vanishing #exural rigidity EI"0 gives rise to the stability diagram depicted in Figure 8(c),

which precisely coincides with the tensioned pipe. When EI"0, a transition from convec-
tive to absolute instability exists at;1 2"b

c
/(b

c
!b). It may be shown that the correspond-

ing nondimensional absolute frequency based on tension scales as

u6
0
"

1

JEI
(;1 2!1) X

0
, (45)

so that the robustness of the pinching is ensured in the limit of vanishing #exural rigidity

EIP0. Conversely, when b'b
c
, Figure 9(a, b), the region of absolute instability moves o!

to unattainable negative values of S1 as EI is lowered. By going to the limit EI"0,
Figure 9(c), convective instability therefore prevails for the tensioned pipe beyond coales-
cence. By exploiting the results of Section 4 pertaining to pre-coalescence values of



Figure 8. Stability diagram in the ;M 2 versus S1 plane for the general case with b"0)5(b
c
. Stability (ST),

absolute instability (AI), convective instability (CI). (a) EI"1; (b) EI"0)1; (c) EI"0, tensioned pipe.
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velocities, ;1 (;1
c
, the tensioned pipe stability diagram may be completed as sketched in

Figures 8(c) and 9(c).

6. CONCLUDING REMARKS

In this paper, we have systematically investigated the nature of the various instabilities that
may arise in a #uid-conveying pipe on an elastic foundation, thus extending the results of
Kulikovskii & Shikina (1988) for the #exural pipe and Triantafyllou (1992) for the #exural
pipe with tension. For the simple models that have been considered here, closed-form
solutions have been derived for the boundaries between convective and absolute instability
in control parameter space. Furthermore, the impulse response has been expressed in
a simple integral form that is amenable to numerical integration.

We have analysed the various e!ects of the physical parameters, namely the tension, the
#exural rigidity, the #uid velocity, the mass ratio and the foundation sti!ness. By consider-
ing the limit models of #exural pipes and tensioned pipes, as well as the general case, we



Figure 9. Stability diagram in the ;1 2 versus S1 plane for the general case with b"0)9'b
c
. Stability (ST),

absolute instability (AI), convective instability (CI). (a) EI"1; (b) EI"0)5; (c) EI"0, tensioned pipe.
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have shown that the ratio between the #exural rigidity and that induced by tension plays
a crucial role in the dynamics of the system. Absolute instability has been shown to widely
prevail in the case of a #exural pipe with a spring foundation. Conversely, convective
instability is much more likely to be found in a tensioned pipe. As to this di!erence, it should
be recalled that the #exural model yields waves of in"nite phase velocities, which is not the
case for the tensioned pipe (Gra! 1975). In this sense the possibility exists in #exural pipes
that the upstream going unstable waves of high velocity overcome the global advection of
the wavepacket, thereby bringing about an absolute instability. In the tensioned pipe, the
phase velocity is bounded and a su$ciently large convection velocity will prevent absolute
instability. This has been shown in earlier work on the Klein}Gordon equation (Huerre
1987) of which the tensioned pipe problem is a generalization.

When the #uid velocity is progressively increased, di!erent types of transitions occur
depending on the range of the other parameters. Denoting stability, convective and absolute
instability by ST, CI and AI respectively, one observes the following variety of scenarios:



678 E. DE LANGRE AND A. E. OUVRARD
ST-AI, ST-CI-AI, ST-CI, AI-CI and even AI-CI-AI. This complex in#uence of the #uid
velocity may be understood by realizing that it plays a double role in the dynamics of the
system: on the one hand it advects the perturbations, thereby favouring convective instabil-
ity, and on the other it increases the instability growth rate.

The e!ect of the mass ratio between the #uid and the pipe represented by b appears in the
dimensional convection velocity;b of the centre of the wavepacket. The impulse response
travels at a velocity lower than the #uid velocity by a factor equal to the mass ratio b (Roth
1964). Convective instabilities are therefore most likely to arise at high mass ratios.
This is precisely what is found in all the cases we have considered. In practice, values
of b are typically of the order of 0)5 because of the pipe thickness required for pressure
con"nement. Yet, the particular case b"1 is also of some interest as it represents
the case of travelling chains and bands or chain-saw blades, where the #uid/solid media of
the present work are replaced by a single moving elastic medium (Lee & Mote 1997). In this
limit, any positive elastic foundation stabilizes the #exural system, and negative values
allow transition between absolute and convective instability as the travelling velocity is
increased. For tensioned media, the situation is then totally reducible to the Klein}Gordon
equation.

The foundation sti!ness S, considered here positive or negative, has a strong in#uence on
both the stability limits and the nature of the instability, in a manner similar to that found in
Peake (1997).

In the present analysis, the e!ect of damping has not been considered. The stability
threshold for the general case, equation (40), is known to be signi"cantly modi"ed
as soon as dissipation is included in the model (Roth 1964; PamKdoussis 1998). This is re-
lated to the destabilizing e!ect of damping. The limits between domains of convective and
absolute instabilities should then also be reanalysed, and some substantial modi"cations
may be expected as for other systems (Carpenter & Garrad 1986; Peake 1997). More
generally, the concept of negative-energy waves would be helpful to give some physical
understanding of the mechanisms involved (Triantafyllou 1992; PamKdoussis 1998).

All the solutions presented here have been derived in the frame of a linear analysis and
with a plug-#ow approximation. These are known to yield results qualitatively applicable to
a large range of geometrical parameters, as discussed in PamKdoussis (1998).

We have indicated that the #exural pipe model bears some similarity with the #exible #at
plate case considered by Brazier-Smith & Scott (1984). These authors did "nd a transition
from convective to absolute instability, but it has been demonstrated by Peake (1997) that
this occurs only in unrealistic ranges of physical parameters: in contrast to the #exural pipe,
convective instability actually prevails for the #exible #at plate. Conversely, when the
#exible plate is replaced by a tensioned #at plate, i.e., a membrane, it has been shown by
Kelbert & Sazonov (1996) that convective instability takes place only in a very small range
of #ow velocities and that absolute instability therefore prevails. The tensioned pipe
problem analysed in the present work also bears some similarity to this membrane case. We
have shown in Section 5 that the range for convective instability that arises for pipes under
tension is strongly dependent on the mass ratio b. However, as soon as the mass ratio
exceeds the small value of b"0)25, the #ow velocity range for convective instability
becomes larger than in the membrane case. It may therefore legitimately be concluded that
convective instability dominates for the tensioned pipe, whereas absolute instability domin-
ates for the membrane. This conclusion is reversed when comparing the #exural pipe with
the #exural plate. Such di!erences between models assuming semi-in"nite or con"ned #uid
domains have not been explained. We believe that this might be related to the local nature
of #uid forces associated with #uid-conveying pipes, as discussed in Section 1. Yet, it
appears that the results obtained with models of #uid-conveying pipes are much simpler
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and probably less pathological than those derived from the #at-plate or membrane
problems.

The various types of instabilities of modes arising in pipes of ,nite length have in many
cases been satisfactorily interpreted in terms of the exchange of energy between the #uid and
the pipe that arise at the ends (PamKdoussis 1987). It is hoped that, as in the "eld of
hydrodynamic stability (Huerre & Monkewitz 1990), an understanding of these global
instabilities might be gained from the knowledge of the absolute/convective nature of the
instability within the bulk of the medium. More generally, PamKdoussis & Li (1993) have
demonstrated that the #uid-conveying pipe constitutes a &&model dynamical problem'' for
one-dimensional systems of ,nite extent. The present results as well as recent work on wave
energetics (Triantafyllou 1992) or weakly nonuniform media (Kulikovskii 1993) have
further indicated that the #uid-conveying pipe may also serve as a convenient archetype in
the study of instabilities in in,nitely extended one-dimensional systems.
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